DPP9 Directly Sequesters the NLRP1 C-Terminus to Repress Inflammasome Activation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
DPP9 Deficiency: an Inflammasomopathy
medRxiv preprint doi: https://doi.org/10.1101/2021.01.31.21250067; this version posted June 9, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. DPP9 deficiency: an Inflammasomopathy which can be rescued by lowering NLRP1/IL-1 signaling Cassandra R. HARAPAS1,2,$, Kim S. ROBINSON3,$, Kenneth LAY4,$, Jasmine WONG4, Ricardo MORENO TRASPAS4 , Nasrin NABAVIZADEH4, Annick RAAS-ROTHSCHILD5, Bertrand BOISSON6,7,8, Scott B. DRUTMAN6, Pawat LAOHAMONTHONKUL1,2, Devon BONNER9, Mark GORRELL10, Sophia DAVIDSON1,2, Chien-Hsiung YU1,2, Hulya KAYSERILI11, Nevin HATIPOGLU12, Jean-Laurent CASANOVA6,7,8,13,14, Jonathan A. BERNSTEIN15, Franklin L. ZHONG3,16,*, Seth L. MASTERS1,2,* , Bruno REVERSADE4,10,17,* Affiliations: 1. Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia 2. Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia 3. Skin Research Institute of Singapore (SRIS), A*STAR, Singapore 4. Genome Institute of Singapore (GIS), A*STAR, Singapore 5. The Institute for Rare Diseases, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel 6. St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA 7. Paris University, Imagine Institute, Paris, France NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. 1 medRxiv preprint doi: https://doi.org/10.1101/2021.01.31.21250067; this version posted June 9, 2021. -
DPP9 Mouse Monoclonal Antibody [Clone ID: OTI1G9] – TA504307
OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TA504307 DPP9 Mouse Monoclonal Antibody [Clone ID: OTI1G9] Product data: Product Type: Primary Antibodies Clone Name: OTI1G9 Applications: FC, IHC, WB Recommended Dilution: WB 1:500~2000, IHC 1:150, FLOW 1:100 Reactivity: Human, Monkey, Mouse, Rat, Dog Host: Mouse Isotype: IgG1 Clonality: Monoclonal Immunogen: Full length human recombinant protein of human DPP9(NP_631898) produced in HEK293T cell. Formulation: PBS (PH 7.3) containing 1% BSA, 50% glycerol and 0.02% sodium azide. Concentration: 0.7 mg/ml Purification: Purified from mouse ascites fluids or tissue culture supernatant by affinity chromatography (protein A/G) Conjugation: Unconjugated Storage: Store at -20°C as received. Stability: Stable for 12 months from date of receipt. Predicted Protein Size: 96.4 kDa Gene Name: dipeptidyl peptidase 9 Database Link: NP_631898 Entrez Gene 224897 MouseEntrez Gene 485033 DogEntrez Gene 301130 RatEntrez Gene 695587 MonkeyEntrez Gene 91039 Human Q86TI2 This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 3 DPP9 Mouse Monoclonal Antibody [Clone ID: OTI1G9] – TA504307 Background: This gene encodes a protein that is a member of the S9B family in clan SC of the serine proteases. The protein has been shown to have post-proline dipeptidyl aminopeptidase activity, cleaving Xaa-Pro dipeptides from the N-termini of proteins. -
Involvement of DPP9 in Gene Fusions in Serous Ovarian Carcinoma
Smebye et al. BMC Cancer (2017) 17:642 DOI 10.1186/s12885-017-3625-6 RESEARCH ARTICLE Open Access Involvement of DPP9 in gene fusions in serous ovarian carcinoma Marianne Lislerud Smebye1,2, Antonio Agostini1,2, Bjarne Johannessen2,3, Jim Thorsen1,2, Ben Davidson4,5, Claes Göran Tropé6, Sverre Heim1,2,5, Rolf Inge Skotheim2,3 and Francesca Micci1,2* Abstract Background: A fusion gene is a hybrid gene consisting of parts from two previously independent genes. Chromosomal rearrangements leading to gene breakage are frequent in high-grade serous ovarian carcinomas and have been reported as a common mechanism for inactivating tumor suppressor genes. However, no fusion genes have been repeatedly reported to be recurrent driver events in ovarian carcinogenesis. We combined genomic and transcriptomic information to identify novel fusion gene candidates and aberrantly expressed genes in ovarian carcinomas. Methods: Examined were 19 previously karyotyped ovarian carcinomas (18 of the serous histotype and one undifferentiated). First, karyotypic aberrations were compared to fusion gene candidates identified by RNA sequencing (RNA-seq). In addition, we used exon-level gene expression microarrays as a screening tool to identify aberrantly expressed genes possibly involved in gene fusion events, and compared the findings to the RNA-seq data. Results: We found a DPP9-PPP6R3 fusion transcript in one tumor showing a matching genomic 11;19-translocation. Another tumor had a rearrangement of DPP9 with PLIN3. Both rearrangements were associated with diminished expression of the 3′ end of DPP9 corresponding to the breakpoints identified by RNA-seq. For the exon-level expression analysis, candidate fusion partner genes were ranked according to deviating expression compared to the median of the sample set. -
ATP-Binding and Hydrolysis in Inflammasome Activation
molecules Review ATP-Binding and Hydrolysis in Inflammasome Activation Christina F. Sandall, Bjoern K. Ziehr and Justin A. MacDonald * Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada; [email protected] (C.F.S.); [email protected] (B.K.Z.) * Correspondence: [email protected]; Tel.: +1-403-210-8433 Academic Editor: Massimo Bertinaria Received: 15 September 2020; Accepted: 3 October 2020; Published: 7 October 2020 Abstract: The prototypical model for NOD-like receptor (NLR) inflammasome assembly includes nucleotide-dependent activation of the NLR downstream of pathogen- or danger-associated molecular pattern (PAMP or DAMP) recognition, followed by nucleation of hetero-oligomeric platforms that lie upstream of inflammatory responses associated with innate immunity. As members of the STAND ATPases, the NLRs are generally thought to share a similar model of ATP-dependent activation and effect. However, recent observations have challenged this paradigm to reveal novel and complex biochemical processes to discern NLRs from other STAND proteins. In this review, we highlight past findings that identify the regulatory importance of conserved ATP-binding and hydrolysis motifs within the nucleotide-binding NACHT domain of NLRs and explore recent breakthroughs that generate connections between NLR protein structure and function. Indeed, newly deposited NLR structures for NLRC4 and NLRP3 have provided unique perspectives on the ATP-dependency of inflammasome activation. Novel molecular dynamic simulations of NLRP3 examined the active site of ADP- and ATP-bound models. The findings support distinctions in nucleotide-binding domain topology with occupancy of ATP or ADP that are in turn disseminated on to the global protein structure. -
NLRP1 Haplotypes Associated with Vitiligo and Autoimmunity Increase Interleukin-1Β Processing Via the NLRP1 Inflammasome
NLRP1 haplotypes associated with vitiligo and autoimmunity increase interleukin-1β processing via the NLRP1 inflammasome Cecilia B. Levandowskia, Christina M. Maillouxa, Tracey M. Ferraraa, Katherine Gowana, Songtao Bena, Ying Jina,b, Kimberly K. McFannc, Paulene J. Hollanda, Pamela R. Faina,b,d, Charles A. Dinarelloe,1, and Richard A. Spritza,b,1 aHuman Medical Genetics and Genomics Program and bDepartment of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045; cColorado Biostatistics Consortium, Colorado School of Public Health, Aurora, CO 80045; and dBarbara Davis Center for Childhood Diabetes, and eDepartment of Medicine, University of Colorado School of Medicine, Aurora, CO 80045 Contributed by Charles A. Dinarello, January 8, 2013 (sent for review December 26, 2012) Nuclear localization leucine-rich-repeat protein 1 (NLRP1) is a key associated molecular patterns stimulate surface Toll-like recep- regulator of the innate immune system, particularly in the skin tors (TLRs) with subsequent assembly of the NLRP1 inflam- where, in response to molecular triggers such as pathogen- masome and activation of caspase-1. Active caspase-1 then associated or damage-associated molecular patterns, the NLRP1 cleaves the inactive IL-1β precursor (pro–IL-1β) to the mature inflammasome promotes caspase-1–dependent processing of bio- bioactive IL-1β (23), thereby stimulating downstream inflam- active interleukin-1β (IL-1β), resulting in IL-1β secretion and down- matory responses (23, 24). Because of its highly inflammatory stream inflammatory responses. NLRP1 is genetically associated and immunostimulating properties, the processing and release of with risk of several autoimmune diseases including generalized bioactive IL-1β are tightly controlled. However, in cryopyrin- vitiligo, Addison disease, type 1 diabetes, rheumatoid arthritis, associated periodic syndromes (CAPSs), which include familial and others. -
NLR Members in Inflammation-Associated
Cellular & Molecular Immunology (2017) 14, 403–405 & 2017 CSI and USTC All rights reserved 2042-0226/17 $32.00 www.nature.com/cmi RESEARCH HIGHTLIGHT NLR members in inflammation-associated carcinogenesis Ha Zhu1,2 and Xuetao Cao1,2,3 Cellular & Molecular Immunology (2017) 14, 403–405; doi:10.1038/cmi.2017.14; published online 3 April 2017 hronic inflammation is regarded as an impor- nucleotide-binding and oligomerization domain IL-2,8 and NAIP was found to regulate the STAT3 Ctant factor in cancer progression. In addition (NOD)-like receptors (NLRs). TLRs and CLRs are pathway independent of inflammasome formation.9 to the immune surveillance function in the early located in the plasma membranes, whereas RLRs, The AOM/DSS model is the most popular model stage of tumorigenesis, inflammation is also known ALRs and NLRs are intracellular PRRs.3 Unlike used to study the function of NLRs in fl fl as one of the hallmarks of cancer and can supply other families that have been shown to bind their in ammation-associated carcinogenesis. In amma- the tumor microenvironment with bioactive mole- specific cognate ligands, the distinct ligands for somes initiated by NLRs or AIM2 have been widely cules and favor the development of other hallmarks NLRs are still unknown. In fact, mounting evidence reported to participate in the maintenance of 10,11 Nlrp3 Nlrp6 of cancer, such as genetic instability and angiogen- suggests that NLRs function as cytoplasmic sensors intestinal homeostasis. -/-, -/-, Nlrc4 Nlrp1 Nlrx1 Nlrp12 esis. Moreover, inflammation contributes to the and participate in modulating TLR, RLR and CLR -/-, -/-, -/- and -/- mice are 4 more susceptible to AOM/DSS-induced colorectal changing tumor microenvironment by altering signaling pathways. -
Structural Mechanism of CARD8 Regulation by DPP9
bioRxiv preprint doi: https://doi.org/10.1101/2021.01.13.426575; this version posted January 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Structural mechanism of CARD8 regulation by DPP9 Humayun Sharif,1,2,7 L. Robert Hollingsworth,1,2,3,7 Andrew R. Griswold,4,5,7 Jeffrey C. Hsiao,5 Qinghui Wang,6 Daniel A. Bachovchin,5,6,* and Hao Wu1,2,8,* 1Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA 2Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA 3Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA 4Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA 5Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA 6Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA 7These authors contributed equally 8Lead Contact *Correspondence: [email protected] (H.W.), [email protected] (D.A.B.) Keywords: CARD8, NLRP1, DPP9, inflammasome, pyroptosis, Val-boroPro (VbP), cryo-EM bioRxiv preprint doi: https://doi.org/10.1101/2021.01.13.426575; this version posted January 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
The NLRP3 and NLRP1 Inflammasomes Are Activated In
Saresella et al. Molecular Neurodegeneration (2016) 11:23 DOI 10.1186/s13024-016-0088-1 RESEARCHARTICLE Open Access The NLRP3 and NLRP1 inflammasomes are activated in Alzheimer’s disease Marina Saresella1*†, Francesca La Rosa1†, Federica Piancone1, Martina Zoppis1, Ivana Marventano1, Elena Calabrese1, Veronica Rainone2, Raffaello Nemni1,3, Roberta Mancuso1 and Mario Clerici1,3 Abstract Background: Interleukin-1 beta (IL-1β) and its key regulator, the inflammasome, are suspected to play a role in the neuroinflammation observed in Alzheimer’s disease (AD); no conclusive data are nevertheless available in AD patients. Results: mRNA for inflammasome components (NLRP1, NLRP3, PYCARD, caspase 1, 5 and 8) and downstream effectors (IL-1β, IL-18) was up-regulated in severe and MILD AD. Monocytes co-expressing NLRP3 with caspase 1 or caspase 8 were significantly increased in severe AD alone, whereas those co-expressing NLRP1 and NLRP3 with PYCARD were augmented in both severe and MILD AD. Activation of the NLRP1 and NLRP3 inflammasomes in AD was confirmed by confocal microscopy proteins co-localization and by the significantly higher amounts of the pro-inflammatory cytokines IL-1β and IL-18 being produced by monocytes. In MCI, the expression of NLRP3, but not the one of PYCARD or caspase 1 was increased, indicating that functional inflammasomes are not assembled in these individuals: this was confirmed by lack of co-localization and of proinflammatory cytokines production. Conclusions: The activation of at least two different inflammasome complexes -
Complementary Regulation of Caspase-1 and IL-1Β Reveals Additional Mechanisms of Dampened Inflammation in Bats
Complementary regulation of caspase-1 and IL-1β reveals additional mechanisms of dampened inflammation in bats Geraldine Goha,1, Matae Ahna,1, Feng Zhua, Lim Beng Leea, Dahai Luob,c, Aaron T. Irvinga,d,2, and Lin-Fa Wanga,e,2 aProgramme in Emerging Infectious Diseases, Duke–National University of Singapore Medical School, 169857, Singapore; bLee Kong Chian School of Medicine, Nanyang Technological University, 636921, Singapore; cNTU Institute of Structural Biology, Nanyang Technological University, 636921, Singapore; dZhejiang University–University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University International Campus, Haining, 314400, China; and eSinghealth Duke–NUS Global Health Institute, 169857, Singapore Edited by Vishva M. Dixit, Genentech, San Francisco, CA, and approved September 14, 2020 (received for review February 21, 2020) Bats have emerged as unique mammalian vectors harboring a experimental confirmation is rare. We recently demonstrated diverse range of highly lethal zoonotic viruses with minimal that NLRP3 is dampened in bats as a result of loss-of-function clinical disease. Despite having sustained complete genomic loss bat-specific isoforms and impaired transcriptional priming (9). of AIM2, regulation of the downstream inflammasome response in The stimulator of IFN genes (STING), a key adaptor to the bats is unknown. AIM2 sensing of cytoplasmic DNA triggers ASC DNA-sensing cGAS protein, is also exclusively mutated at S358 aggregation and recruits caspase-1, the central inflammasome ef- in bats, resulting in a reduced IFN response to HSV1 (10). We fector enzyme, triggering cleavage of cytokines such as IL-1β and previously reported a complete absence of Absent in melanoma inducing GSDMD-mediated pyroptotic cell death. -
The Molecular Links Between Cell Death and Inflammasome
cells Review The Molecular Links between Cell Death and Inflammasome Kwang-Ho Lee 1,2 and Tae-Bong Kang 1,2,* 1 Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea 2 Research Institute of Inflammatory Diseases, Konkuk University, Chungju 27478, Korea * Correspondence: [email protected]; Tel.: +82-43-840-3904; Fax: +82-43-852-3616 Received: 30 July 2019; Accepted: 9 September 2019; Published: 10 September 2019 Abstract: Programmed cell death pathways and inflammasome activation pathways can be genetically and functionally separated. Inflammasomes are specialized protein complexes that process pro-inflammatory cytokines, interleukin-1β (IL-1β), and IL-18 to bioactive forms for protection from a wide range of pathogens, as well as environmental and host-derived danger molecules. Programmed cell death has been extensively studied, and its role in the development, homeostasis, and control of infection and danger is widely appreciated. Apoptosis and the recently recognized necroptosis are the best-characterized forms of programmed death, and the interplay between them through death receptor signaling is also being studied. Moreover, growing evidence suggests that many of the signaling molecules known to regulate programmed cell death can also modulate inflammasome activation in a cell-intrinsic manner. Therefore, in this review, we will discuss the current knowledge concerning the role of the signaling molecules originally associated with programmed cell death in the activation of inflammasome and IL-1β processing. Keywords: inflammasome; apoptosis; necroptosis; programmed cell death; Caspase-8; RIPK1/3; MLKL; PGAM5; DRP1 1. Introduction Homeostasis is a principle property of living organisms and it is maintained at the systemic, tissue, and cellular levels through the homeostatic control system. -
NAIP5/NLRC4 Inflammasomes Compounds Inhibit the NLRP1, NLRP3, and Arsenic Trioxide and Other Arsenical
The Journal of Immunology Arsenic Trioxide and Other Arsenical Compounds Inhibit the NLRP1, NLRP3, and NAIP5/NLRC4 Inflammasomes Nolan K. Maier,* Devorah Crown,* Jie Liu,† Stephen H. Leppla,* and Mahtab Moayeri* Inflammasomes are large cytoplasmic multiprotein complexes that activate caspase-1 in response to diverse intracellular danger signals. Inflammasome components termed nucleotide-binding oligomerization domain–like receptor (NLR) proteins act as sensors for pathogen-associated molecular patterns, stress, or danger stimuli. We discovered that arsenicals, including arsenic trioxide and sodium arsenite, inhibited activation of the NLRP1, NLRP3, and NAIP5/NLRC4 inflammasomes by their respective activat- ing signals, anthrax lethal toxin, nigericin, and flagellin. These compounds prevented the autoproteolytic activation of caspase-1 and the processing and secretion of IL-1b from macrophages. Inhibition was independent of protein synthesis induction, proteasome-mediated protein breakdown, or kinase signaling pathways. Arsenic trioxide and sodium arsenite did not directly modify or inhibit the activity of preactivated recombinant caspase-1. Rather, they induced a cellular state inhibitory to both the autoproteolytic and substrate cleavage activities of caspase-1, which was reversed by the reactive oxygen species scavenger N-acetylcysteine but not by reducing agents or NO pathway inhibitors. Arsenicals provided protection against NLRP1-dependent anthrax lethal toxin–mediated cell death and prevented NLRP3-dependent neutrophil recruitment in a monosodium urate crystal inflammatory murine peritonitis model. These findings suggest a novel role in inhibition of the innate immune response for arsenical compounds that have been used as therapeutics for a few hundred years. The Journal of Immunology, 2014, 192: 763–770. nflammasomes are large cytoplasmic multiprotein complexes domain–containing protein 4 (NLRC4) inflammasome by direct that form in response to intracellular danger signals. -
Genome Sequencing of Idiopathic Pulmonary Fibrosis in Conjunction with a Medical School Human Anatomy Course
Genome Sequencing of Idiopathic Pulmonary Fibrosis in Conjunction with a Medical School Human Anatomy Course Akash Kumar1,2,3, Max Dougherty1,2,3., Gregory M. Findlay1,2,3., Madeleine Geisheker1,2., Jason Klein1,2,3., John Lazar1,2., Heather Machkovech1,2,3., Jesse Resnick1,2., Rebecca Resnick1,2., Alexander I. Salter1,2., Faezeh Talebi-Liasi1., Christopher Arakawa1,2, Jacob Baudin1,2, Andrew Bogaard1,2, Rebecca Salesky1, Qian Zhou1, Kelly Smith4", John I. Clark5", Jay Shendure3", Marshall S. Horwitz4*" 1 University of Washington School of Medicine, Seattle, Washington, United States of America, 2 Medical Scientist Training Program (MSTP), University of Washington, Seattle, Washington, United States of America, 3 Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America, 4 Department of Pathology, University of Washington, Seattle, Washington, United States of America, 5 Department of Biological Structure, University of Washington, Seattle, Washington, United States of America Abstract Even in cases where there is no obvious family history of disease, genome sequencing may contribute to clinical diagnosis and management. Clinical application of the genome has not yet become routine, however, in part because physicians are still learning how best to utilize such information. As an educational research exercise performed in conjunction with our medical school human anatomy course, we explored the potential utility of determining the whole genome sequence of a patient who had died following a clinical diagnosis of idiopathic pulmonary fibrosis (IPF). Medical students performed dissection and whole genome sequencing of the cadaver. Gross and microscopic findings were more consistent with the fibrosing variant of nonspecific interstitial pneumonia (NSIP), as opposed to IPF per se.