Solid Earth, 11, 437–467, 2020 https://doi.org/10.5194/se-11-437-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

Cenozoic deformation in the Tauern Window (Eastern ) constrained by in situ Th-Pb dating of fissure monazite

Emmanuelle Ricchi1, Christian A. Bergemann2, Edwin Gnos3, Alfons Berger4, Daniela Rubatto4,5, Martin J. Whitehouse6, and Franz Walter7 1Department of Earth Sciences, University of Geneva, Rue des Maraîchers 13, 1205 Geneva, Switzerland 2Institute of Geosciences, Heidelberg University, Im Neuenheimer Feld 236, 69120 Heidelberg, Germany 3Natural History Museum of Geneva, Route de Malagnou 1, 1208 Geneva, Switzerland 4Institute of Geological Sciences, University of Bern, Baltzerstrasse 1+3, 3012 Bern, Switzerland 5Institute of Earth Sciences, University of Lausanne, Geopolis, 1015 Lausanne, Switzerland 6Swedish Museum of Natural History, P.O. Box 50007, 104-05 Stockholm, Sweden 7Institut für Erdwissenschaften, Karl-Franzens-Universität, Universitätsplatz 2, 8010 Graz, Austria

Correspondence: Emmanuelle Ricchi ([email protected])

Received: 21 October 2019 – Discussion started: 30 October 2019 Revised: 14 February 2020 – Accepted: 24 February 2020 – Published: 3 April 2020

Abstract. Thorium–lead (Th-Pb) crystallization ages of – New constraints on the exhumation of the Tauern meta- hydrothermal monazites from the western, central and morphic dome. eastern Tauern Window provide new insights into Ceno- zoic tectonic evolution of the Tauern metamorphic dome. – Distinct tectonic pulses recorded from east to west. Growth domain crystallization ages range from 21.7 ± 0.4 to 10.0 ± 0.2 Ma. Three major periods of monazite growth are recorded between ∼ 22–20 (peak at 21 Ma), 19–15 (major peak at 17 Ma) and 14–10 Ma (major peak around 12 Ma), 1 Introduction respectively, interpreted to be related to prevailing N–S shortening, in association with E–W extension, beginning In situ thorium–lead (Th-Pb) dating of hydrothermal fissure strike-slip movements and reactivation of strike-slip faulting. monazite-(Ce) (in the following simply monazite) has re- Fissure monazite ages largely overlap with zircon and apatite cently been demonstrated to be a reliable method for dat- fission track data. Besides tracking the thermal evolution of ing tectonic activity under retrograde metamorphic condi- the Tauern dome, monazite dates reflect episodic tectonic tions (Bergemann et al., 2017, 2018, 2019, 2020; Berger et movement along major shear zones that took place during al., 2013; Fitz-Diaz et al., 2019; Gasquet et al., 2010; Gnos the formation of the dome. Geochronological and structural et al., 2015; Grand’Homme et al., 2016a; Janots et al., 2012; data from the Pfitschtal area in the western Tauern Window Ricchi et al., 2019). These studies conducted through the en- show the existence of two cleft generations separated in time tire Alpine orogenic belt allowed constraining tectonic activ- by 4 Ma and related to strike-slip to oblique-slip faulting. ity in relation with exhumation and fault activity under retro- Moreover, these two phases overprint earlier phases of grade lower greenschist to sub-greenschist facies metamor- fissure formation. phic conditions. Hydrothermal fissure monazite, concentrating light rare Highlights. earth elements (LREE), Th and U, generally crystallizes in Ca-poor lithologies, outside the stability field of ti- tanite or epidote / allanite. However, once formed, hy- drothermal processes may cause dissolution–reprecipitation – In situ dating of hydrothermal monazite-(Ce). events leading to resetting of the monazite Th-Pb decay

Published by Copernicus Publications on behalf of the European Geosciences Union. 438 E. Ricchi et al.: Cenozoic deformation in the Tauern Window system in parts of the crystal. Chemically and isotopi- rium between fluid, rock wall and mineral assemblage within cally homogeneous crystals indicate a single, rapid growth the cleft (e.g. Putnis, 2009). Thus, hydrothermal minerals episode (e.g. Grand’Homme et al., 2016a). However, crys- like monazite do not only grow following the initial fissure tals showing different growth domains indicative of suc- formation but form, continue to grow or dissolve during sub- cessive growth episodes are more common. In other cases, sequent deformation stages. The timing of these growth or parts of, or entire, grains display a patchy zoning due to alteration stages may not always be resolvable with the pre- dissolution–reprecipitation processes (e.g. Ayers et al., 1999; cision of currently available geochronological methods, but Grand’Homme et al., 2016b). These processes involve ele- different growth stages may be distinguishable through dif- ment fractionation resulting in crystal zones with often dis- ferences in the chemical composition (Grand’Homme et al., tinct Th/U values (Seydoux-Guillaume et al., 2012). 2018). In contrast to the surrounding country rock, the fis- The advantage of using hydrothermal monazite for dat- sures and clefts remain highly reactive at low temperature ing tectonic activity is related to the high closure tempera- due to the presence of fluids. For this reasons, deformation ture of monazite of > 800 ◦C, implying that diffusion in mon- steps during brittle deformation may be registered through azite is negligible (Cherniak et al., 2004; Gardés et al., 2006, mineral growth or recrystallization in clefts (e.g. Berger et 2007) under P –T conditions at or below 450–500 ◦C and al., 2013) down to conditions where clay minerals form in 0.3–0.4 GPa (e.g. Mullis et al., 1994; Mullis, 1996; Sharp et fault gauges. al., 2005) where hydrothermal fissures form. Fissure mon- The Tauern Window (TW) is a thermal and structural azites date crystallization following chemical disequilibrium dome of the eastern Alps (Fig. 1) exhumed over a pe- within a fissure. This causes a dissolution–precipitation cy- riod of about 30 Ma starting from the Early Oligocene (e.g. cle that may include dissolution or partial dissolution of Rosenberg et al., 2018; Schmid et al., 2013). Previous mon- existing fissure monazite. This has the consequence that azite crystallization ages obtained in the eastern subdome late dissolution–precipitation steps may be well recorded, of the TW record tectonic activity between 19.0 ± 0.5 and whereas earlier growth domains may be completely de- 15.0 ± 0.5 Ma (Gnos et al., 2015). In the current study, mon- stroyed. Thus, monazite crystallization due to chemical dise- azite geochronology is extended to the entire TW in order quilibrium is interpreted as being related to tectonic activity to investigate its Cenozoic deformation history. We particu- (e.g. volume change, fissure propagation, exposure of fresh larly aim to establish a chronological record for the younger host rock, delamination of fissure wall, seismic activity, fluid exhumation history recorded by fissure monazite crystalliza- loss or gain). tion, to be compared with known deformation phases. Recent studies have shown that fissure monazite typically A total of 23 monazite grains together with provenance forms between generally lower to higher 200–400 ◦C (Gnos data, and in some cases host-rock information, were dated et al., 2015; Janots et al., 2019). For this reason, fissure mon- (Table 1). Seven grains come from the western limb of the azite ages are generally interpreted as dating crystallization TW (INNB1 ZEI1, SCHR1, MAYR4, PFIT1, BURG2 and or re-crystallization. Monazite geochronology can thus be PLAN1; samples 1–7; Fig. 1), another seven grains come utilized to constrain shear and damage zone activity under from the eastern border of the western subdome (central TW; greenschist and very low-grade metamorphic conditions at SCHEI1, HOPF2, GART1, NOWA3, GART3, STEI2 and least down to 200 ◦C (e.g. Bergemann et al., 2017, 2018; KNOR1; samples 8–14; Fig. 1), and nine grains were col- Gnos et al., 2015). lected in the eastern subdome (KAIS6, SALZ18, LOHN4, Fissures and clefts develop close to the brittle–ductile tran- ORT1, EUKL2, HOAR1, MOKR1, SAND1 and REIS1; sition (< 450 ◦C; Mullis, 1996) and are usually oriented per- samples 15–25; Fig. 1, Table 1). In order to capture at best pendicular to the foliation and lineation of the host rock the tectonic activity during the exhumation of the TW, the in- (Gnos et al., 2015). Fissures are generally straight when they vestigated samples were selected in a way that gives priority form and either became enlarged by subsequent tectonic ac- to sample localities in regions affected by major fault zones tivity to form fluid-filled decimetre- to metre-sized clefts, and at lithological boundaries. In the following, we will dis- displaying a more open shape with rounded surfaces (e.g. cuss the ages in terms of sample ID numbers (1–25) provided Ricchi et al., 2019) when the stress field retains the same ori- in Table 1. entation, or become completely filled to form mineral veins. However, they may show a complex shape when the stress field direction changes during deformation. Fluid inclusion 2 Geologic settings studies (e.g. Mullis, 1996) show that clefts generally suffered several deformation episodes. In the largest tectonic window of the Austroalpine nappe Interaction of the fluid that fills the fissures with the sur- stack, the TW, Penninic (Glockner nappe system and Matrei rounding rock leads to dissolution of minerals in the wall zone; Fig. 1) and Subpenninic nappes (mainly the Venediger rock and mineral precipitation in the fissure. As long as de- Duplex) are exposed (e.g. Schmid et al., 2013; Fig. 1). The formation continues, fluid-filled clefts will react to deforma- TW metamorphic and structural dome consists of two sub- tion via dissolution–precipitation cycles due to disequilib- domes, with E–W-striking upright folds in the internal parts

Solid Earth, 11, 437–467, 2020 www.solid-earth.net/11/437/2020/ E. Ricchi et al.: Cenozoic deformation in the Tauern Window 439 this studythis study SwissSIMS NordSIMS this study SwissSIMS this study NordSIMS this studythis study NordSIMS this study NordSIMS this study NordSIMS Gnos NordSIMS et al. (2015) NordSIMS Gnos et al. (2015) NordSIMS Gnos et al. (2015) NordSIMS Bt and Chl from + EDS analyses association Asc, Syn, Ap, Chl, Lm Asc Rt, Chl Rt, Chl Rt, Chl Chl,goethite–todorokite– euclase,nordstrandite Xnt, Chl,goethite-todorokite- euclase,nordstrandite Xnt, phenakite, Rt, Cc Cc Xnt Brk, Ant, Syn, Asc Alpine met. mineral Bloc in rock slide. b Bloc in glacial moraine. gneiss GAT Qtz, Adl,meta-arenite Ant, Rtl, meta-arenitemeta-arenite GATgranitic gneissBt-Mu schist GAT GAT Qtz, Adl, Trm, Cc, Hm, GAT Alb, Qtz,Bt-Mu Trm, schist Hm, Rt GAT Qtz, Adl, Trm, Cc, Hm, Gnos et Qtz, al. Adl, (2015) Rt, Chl, Ap NordSIMS Alb,granitic gneiss GAT Pyr, thisBt-Mu study schist Qtz, Rt, gneiss Alb, GAT Pyr,graphite-bearing SwissSIMS schist GAT Qtz,banded gneiss GAT Rt, banded gneiss Qtz, Ab, Rt Qtz, GAT Qtz, Sid GAT Ab, AM Adl, this Qtz, study Ab, Qtz, Adl, Ant/Rt, Chl, Sid, Chl, Ant Qtz, Ant, Ab, Chl this study this study SwissSIMS this study SwissSIMS SwissSIMS SwissSIMS mica schistgneiss UGS GAT Qtz, Ab, Ant,gneiss Ank, Rt Qtz, this study Ilm, Rt, Ant, Brk, meta-arenite SwissSIMS AM GAT Adl, Qtz, Chl Qtz, Adl, Trm, Cc, Hm, this study NordSIMS mica schist AM Qtz, Hm, Adl, Trm, Rt, a approx. gneiss GAT Qtz, Ab, Adl this study SwissSIMS approx. gneiss AM Qtz, Adl this study SwissSIMS approx. gneiss AM Qtz, Adl, Rt, Chl this study SwissSIMS approx. gneiss AM Qtz, Adl, Chl this study SwissSIMS approx. gneiss AM Qtz, Adl, Chl this study SwissSIMS approx. gneiss AM Qtz, Chl, Adl, Rt, Snt this study NordSIMS approx. gneissapprox. serpentinite AM GAT Qtz, Adl, Ant, Cc, Rt, Ilm, Rt, Cc this study SwissSIMS approx. gneiss AM Qtz, Adl this study SwissSIMS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E) Remark Host rock Host rock Fissure Reference Ion probe ◦ 59.33 59.33 59.33 56.05 38.60 39.60 ◦ ◦ ◦ ◦ ◦ ◦ 20.000 18.517 14.167 17.250 04.217 57.250 57.250 56.083 57.917 54.650 53.983 22.433 47.667 18.667 14.844 25.183 58.708 35.767 36.217 33.350 53.302 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 012 012 012 012 011 011 012 012 012 012 013 012 012 012 012 012 012 013 011 012 012 012 012 011 011 011 011 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N) Longitude ( ◦ 07.20 07.20 07.20 01.47 59.65 ◦ ◦ ◦ ◦ ◦ 12.633 11.250 12.100 09.783 05.150 04.683 04.683 04.500 04.133 03.783 03.033 01.983 56.950 05.850 14.483 12.278 06.117 07.787 01.400 00.400 55.217 58.641 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ SALZ18 16aT3LOHN4 47 17 16b 47 47 KAIS6 15 47 BURG2 6 46 b b b b a Summary of monazite samples investigated in this study and by Gnos et al. (2015). Samples name, number, location, host-rock lithology, metamorphic degree and fissure Wildenkarer Wald, Habachtal, Salzburg, Austria NOWA3 11 47 Beryller, Untersulzbachtal, Salzburg, Austria GART3 12 47 Hopffeldgraben, Obersulzbachtal, Salzburg, AustriaSattelkar, GART1 Obersulzbachtal, Salzburg, Austria 10 47 Lohninger Quarry, Hüttwinkeltal, Rauris, Salzburg, Austria STEI2Lohninger Quarry, Hüttwinkeltal, Rauris, Salzburg, Austria Lohninger Quarry, 13 Hüttwinkeltal, Rauris, Salzburg, Austria Ortberg bei 47 Böckstein, Salzburg, AustriaEuklaskluft, Griesswies, Salzburg, AustriaEuklaskluft, Griesswies, Salzburg, AustriaHocharn, ORT1 Kärnten, EUKL2 AustriaErfurter Steig, Rauris, Salzburg, 19a Austria 18Gjaidtroghöhe, Grosses Fleisstal, Kärnten, 47 Austria T2 47 Mokritzen, Kleines Fleisstal, Kärnten, AustriaSandkopf, Grosses Zirknitztal, Kärnten, AustriaKleiner Reisseck, 19b Reisseckgruppe, Kärnten, Austria T4 47 T1 MOKR1 22 REIS1 SAND1 HOAR1 21 23 47 24 25 20 47 47 47 46 47 LocalityWestern Tauern Window Innerböden, Zillertal, Tyrol, AustriaCentral Tauern Window INNB1Scheissgraben (Kotriesen), Habachtal, Salzburg, AustriaHopffeldboden, Obersulzbachtal, Salzburg, Austria 1 Sample 47 SCHEI1 No. Latitude ( 8 HOPF2 47 9Innerer Knorrkogel, East Tyrol, AustriaEastern 47 Tauern Window Kaiserer Steinbruch, Hüttwinkeltal, Rauris, Salzburg, Austria KNOR1 14 47 Zeischalm, Valsertal, Tyrol, Austria ZEI1 2 47 Schrammacher, Zillertal, Tyrol, Italy SCHR1 3 47 Kluppen, Pfitschtal, , ItalyPfitscherjoch, Tyrol, AustriaBurgumalpe, Pfitschtal, South Tyrol, Italy MAYR4 4 47 PFIT1 5 46 Schwarzenbach, , South Tyrol, Italy PLAN1 7 46 Table 1. mineral association are provided. Samples with approximate finding location are marked with “approx.”. Ab – albite; Adl – adularia;synchisite; Ank Trm – – ankerite; tourmaline; Ant Xnt – – anatase; xenotime; Ap Alpine – metamorphism: fluorapatite; AM Asc (amphibolite – facies), GAT aeschynite; (greenschist–amphibolite Brk transition), – UGS brookite; (upper Cc greenschist – facies). calcite; Chl – chlorite; Clc – clinochlore; Hm – hematite; Ilm – ilmenite; Lm – limonite; Pyr – pyrite; Qtz – quartz; Rt – rutile; Sd – siderite; Snt – senaite; Str – strontianite; Syn – www.solid-earth.net/11/437/2020/ Solid Earth, 11, 437–467, 2020 440 E. Ricchi et al.: Cenozoic deformation in the Tauern Window

Figure 1. Tectonic map of the TW dome modified after Bertrand et al. (2017), Scharf et al. (2013), Schmid et al. (2013) and Schneider et al. (2013). Yellow stars on the map represent sample locations, and numbers inside the stars refer to samples listed in Table 1. Range of weighted mean growth domain ages are indicated for each grain from this study and Gnos et al. (2015), labelled in black and green, respectively, on the map (see Table 4 for an exhaustive summary of all the ages). Only the spot date range is indicated for grains 1, 4 and 6. Locations of AA’, BB’ and CC’ cross sections are indicated by black lines, and individual cross sections are presented in Fig. 6 together with monazite crystallization ages. Two normal faults delimit the western and eastern borders of the TW, the Brenner normal fault (BNF) and the Katschberg normal fault (KNF), respectively. Note that the KNF prolongation results in dextral and sinistral strike slips in the north and south, respectively (KSZS: Katschberg shear zone system). Several sinistral strike-slip faults (AhSZ: Ahrntal shear zone; ASZ: Ahorn shear zone; DAV: Defereggen–Antholz–Vals fault; GSZ: Greiner shear zone; InF: Inntal fault; MüF: Mur–Mürz fault; NF: Niedere Tauern southern fault; OSZ: Olperer shear zone; SEMP: Salzach–Ennstal–Mariazell–Puchberg fault; SpSZ: Speikboden shear zone; TSZ: Tuxer shear zones; ZWD: Zwischenbergen–Wöllatratten and Drautal faults), dextral shear zones (HoF: Hochstuhl fault; IsF: Iseltal fault; KLT: Königsee–Lammertal–Traunsee fault; Mölltal fault (MöF); PF: Pustertal fault) and a reverse fault (MM: Meran–Mauls fault) are also visible in red on the map. and bordered by two major normal faults, the Katschberg dered to the east by the Katschberg normal fault (KNF), con- normal fault (KNF) in the east and the Brenner normal fault tinuing to the north into the dextral Katschberg shear zone (BNF) in the west (Fig. 1). The western subdome is dissected system (KSZS) and to the south into an unnamed sinistral by numerous sinistral shear zones (Ahorn shear zone (ASZ), shear zone and oriented parallel to the Mölltal fault (MöF). Olperer shear zone (OSZ), Tuxer shear zones (TSZ), Greiner The deformation history of these fault complexes will be dis- shear zone (GSZ) and Ahrntal shear zone (AhSZ)) and is cussed later. bordered by the Salzach–Ennstal–Mariazell–Puchberg fault The Alpine evolution of the TW started in the Early Pa- (SEMP) in the north (Fig. 1). The eastern subdome is bor- leocene with the accretion and subduction of the Piemonte–

Solid Earth, 11, 437–467, 2020 www.solid-earth.net/11/437/2020/ E. Ricchi et al.: Cenozoic deformation in the Tauern Window 441

Table 2. Summary of deformation phases in the Tauern metamorphic dome.

Age (Ma) Phase Fault Domain Characteristics Ref. Remarks Estimated peaks of deformation ∼ 65 D1 Penninic nappes Accretion and subduction of E Piemonte–Liguria Ocean ∼ 41 D2 Penninic and Subpenninic Subduction of Valais Ocean and parts of E nappes the distal European margin ∼ 35 D3 Central TW Exhumation of high-pressure units E Folding of D2 thrust, decompression ∼ 29 D4 Subpenninic nappes European slab break-off, Venediger E Contemporaneous intrusion of Duplex formation and Periadriatic plutons and incipient “Tauernkristallisation” NE-wards subduction of the Adriatic slab ∼ 23–21 East of the Giudicarie belt Incipient indentation of the southern D, E alpine units in the Eastern Alps ∼ 17 D5 TW Indentation, doming and E lateral extrusion Faults’ motion 33–15 ASZ Western TW Sinistral ductile shear F, G Ductile continuation of the SEMP fault 24–12 TSZ Western TW Sinistral ductile shear B, F 20–7 GSZ Western TW Sinistral ductile shear F 21–10 BNF Western TW Normal fault C 22–13 KNF Eastern TW Normal fault C

A: Bertrand et al. (2017, 2015); B: Blanckenburg et al. (1989); C: Favaro et al. (2017); D: Scharf et al. (2013); E: Schmid et al. (2013); F: Schneider et al. (2013); G: Rosenberg and Schneider (2008). ASZ: Ahorn shear zone, BNF: Brenner normal fault, GSZ: Greiner shear zone, KNF: Katschberg normal fault, SEMP: Salzach–Ennstal–Mariazell–Puchberg fault, TSZ: Tuxer shear zones.

Liguria Ocean (Matrei zone; Fig. 1) under the Apulian mar- shear zone development (e.g. Luth and Willingshofer, 2008; gin (Austroalpine nappe stack; e.g. Schmid et al., 2004, 2013; Rosenberg and Berger, 2009; Rosenberg and Garcia, 2011; D1 deformation of Schmid et al., 2013; Fig. 1, Table 2). In Schmid et al., 2004, 2013; Selverstone, 1988; D5 deforma- the Middle Eocene, the Valais Ocean and parts of the dis- tion of Schmid et al., 2013). Previous shear zone age dating tal European margin (Glockner nappe system, Eclogite zone in the TW was achieved using different geochronometers: and parts of the Modereck nappe system; Fig. 1) were equally Rb-Sr whole-rock–phengite dating (20 Ma; Blanckenburg et subducted below the Austroalpine nappe stack and the Ma- al., 1989), Rb-Sr whole-rock–white mica dating (39–16 Ma; trei zone accreted during D1 deformation (D2 deformation Glodny et al., 2008), Sm-Nd dating on garnet (27.5–20 Ma; of Schmid et al., 2013; Table 2). In the Late Eocene, ex- Pollington and Baxter, 2010, 2011) and 40Ar / 39Ar dating humation was achieved by extrusion of the high-pressure on mica (35–28 Ma; Urbanek et al., 2002). A recent detailed units that went together with major folding of the D2 thrust study by Schneider et al. (2013) using texturally controlled formed between the subducted Glockner nappe system and in situ 40Ar / 39Ar dating of syn-kinematic phengite and K- Modereck nappe system (D3 deformation of Schmid et al., feldspar returned ages of 33–15, 24–12 and 20–7 Ma. They 2013; Table 2). In the Early Oligocene, nearly contempo- were interpreted as recording deformation along three major raneous break-off of the subducting European slab and for- shear zones (ASZ, TSZ and GSZ, respectively) of the west- mation of the Venediger Duplex (crustal-scale duplex struc- ern subdome. ture) occurred, followed by the “Tauernkristallisation” (re- heating of the whole nappe stack to amphibolite facies condi- Sample location tions) (D4 deformation of Schmid et al., 2013; Table 2). This was followed by an inversion of subduction polarity at ∼ 23 Fissure monazite is rare and difficult to find, meaning that to 21 Ma (e.g. Rosenberg et al., 2018; Scharf et al., 2013; this study could not have been conducted without the help of Schmid et al., 2013; Table 2). The following exhumation of crystal searchers who provided samples. Fissure monazites the TW started in the Early to Middle Miocene by Alpine were selected to cover all parts of the TW areas with known N–S collisional shortening and E–W orogen-parallel exten- shear zones within it. It was, however, unfortunately not pos- sion leading to folding, erosion and lateral extrusion through sible to obtain exact coordinates for all of the samples (Ta- ble 1). This is due to the rarity of fissure monazite, so that www.solid-earth.net/11/437/2020/ Solid Earth, 11, 437–467, 2020 442 E. Ricchi et al.: Cenozoic deformation in the Tauern Window some samples were obtained from old finds or collections. statistics and less scatter in the data). Calculation of weighted In other cases, the crystal searcher could not anymore pre- mean ages, based on 207Pb correction, and plotting was car- cisely identify the fissure in which the monazite was found. ried out using the IsoPlot Ex 4.1 programme (Ludwig, 2003). These samples are marked with “approx.” in Table 1. We Single and weighted mean ages (or average ages) are quoted could therefore only revisit some of the sample locations in at the 1σ and at the 95 % confidence level in the text, respec- order to add structural information. Experience from other tively. parts of the Alps (e.g. Bergemann et al., 2017, 2019; Ricchi Weighted mean 208Pb / 232Th ages were calculated for et al., 2019) shows that fissure monazite sampled within the each growth domain following the approach of Bergemann damage or central zones of a shear zone generally records et al. (2017, 2018, 2019, 2020) and Ricchi et al. (2019). Dis- shear zone activity well. Information on the source localities, tinct chemical and textural domains were carefully defined in host rocks, degree of alpine metamorphism and mineral as- each grain based on Th concentrations as function of U con- sociations is in Table 1. centrations and BSE image information. Since fissure mon- azite is dissolved and re-precipitated under changing chemi- cal conditions (e.g. Grand’Homme et al., 2018), spot analy- 3 Methods ses affected by Pbc (resulting in older dates directly related to higher Pbc, i.e. positive age-f208 correlation), inclusions The crystals were polished individually on a lapidary disc or those with high uncertainty (1σ > 1 abs.) were removed and embedded in epoxy together with the monazite stan- from the dataset and marked in italic in Table 3. However, dard “44069” (425 Ma, Aleinikoff et al., 2006), following the spot dates located on dissolution trails, generally providing same procedure as that in Bergemann et al. (2017). Backscat- younger dates, were considered in the age ranges because ter electron (BSE) images were acquired in order to investi- they likely record a later phase of monazite crystallization. gate the internal textural features of each grain (e.g. zoning, evidence of alteration) using an energy dispersive spectrome- ter (EDS)-equipped JEOL JSM7001F and a Zeiss DSM940A 4 Results electron microscope at the University of Geneva with a beam current of 3.5 nA and acceleration voltage of 15 kV. BSE im- 4.1 Field observations ages helped in the selection of secondary-ion mass spectrom- etry (SIMS) spot analysis points, carefully placed in chemi- An example of deformed fissures and different stages of fis- cally distinct domains. sure formation is well exposed in outcrops along the road Ion probe U-Th-Pb analyses of 15 monazite crystals were leading to Pfitscherjoch (in proximity to the PFIT1 sample conducted at the SwissSIMS ion microprobe facility, Uni- locality 5, western TW; Table 1), where two fissure genera- versity of Lausanne, Switzerland, and analyses of another tions are present (Fig. 2a and b). In this outcrop, an earlier fis- eight crystals were performed at the NordSIMS facility, sure generation (C2, green ellipses) is partly deformed during Swedish Museum of Natural History, Stockholm (Tables 1 subsequent deformation, and a younger generation of fissures and 3). Both laboratories are equipped with a Cameca IMS (C3, blue ellipses) is also present. Subhorizontal fissures (C3) 1280-HR instrument. The instruments were run following the seem linked to a strongly inclined lineation (L3, blue ar- 2− procedure of Janots et al. (2012), applying a −13 kV O pri- rows), whereas older subvertical fissures (C2) seem related mary beam, an intensity of ∼ 3 and 6 nA focused on the sam- to a weakly inclined strike-slip lineation (L2, green arrows). ple (SwissSIMS and NordSIMS, respectively) to produce a The older fissures are wider and sigmoidal in shape and con- spot of 15–20 µm in diameter. A mass resolution of 4300– tain muscovite which is not found in the younger fissures. In 5000 (M/1M, 208Pb / 232Th at 10 % peak height) and an some cases, younger fissures crosscut older ones (Fig. 2b). energy window at 40 eV were applied, with data collection Moreover, the orientation of the foliation (S2, 3; Fig. 2c) of in peak hopping mode using an ion-counting electron multi- these two fissure generations (C2 and C3) is different from plier. All the unknowns were standardized to 44069 (425 Ma; the foliation (S1; Fig. 2c) of early fissure formation mainly Aleinikoff et al., 2006) monazite, and the uncertainty on the observed in the eastern part of the TW (C1, Fig. 2c, discussed standard 208Pb / 232Th-ThO / Th calibration in each session below). This suggests that, in the Pfitscherjoch area, early fis- was 1.7 % on average. sures C1 were overprinted by younger tectonic movements. A 207Pb and 204Pb common lead (Pbc) correction calcu- The large majority of the fissures present in all the inves- lated at time zero was applied to the data acquired at the tigated localities are oriented subvertically (C1 and C2 type SwissSIMS and NordSIMS (Table 3) using the terrestrial Pb in Fig. 2c), roughly striking NE–SW. For C2, this would in- evolution model of Stacey and Kramers (1975). Cameca cus- dicate a similar direction of extension for the development tomizable ion probe software (CIPS) was used for data re- of this fissure type, which is in line with palaeostress orien- duction. 204Pb- and 207Pb-corrected ages agree within uncer- tations provided by Bertrand et al. (2015). However, even if tainty (Table 3), but we preferred to discuss 207Pb-corrected all subvertical fissures are subparallel, at least two genera- ages because they are more robust and consistent (better tions exist. (i) Early subvertical fissures (C1, Fig. 2c) are re-

Solid Earth, 11, 437–467, 2020 www.solid-earth.net/11/437/2020/ E. Ricchi et al.: Cenozoic deformation in the Tauern Window 443 (abs.) σ Th 1 8.219.809.65 0.42 0.26 9.84 0.29 9.39 0.26 0.26 9.75 0.26 9.95 0.26 9.499.819.52 0.22 8.56 0.22 7.18 0.22 8.82 0.24 8.15 0.20 7.30 0.28 7.38 0.22 9.03 0.20 0.20 0.24 10.9711.5211.34 0.16 10.80 0.18 10.43 0.16 10.54 0.18 10.53 0.18 0.15 0.17 10.20 0.28 10.2110.0310.75 0.27 10.38 0.27 0.28 10.37 0.27 10.1110.37 0.28 10.09 0.28 0.38 10.01 0.28 10.24 0.28 0.23 20.5320.2821.85 0.45 20.98 0.51 20.35 0.48 21.33 0.46 20.47 0.44 20.95 0.47 20.54 0.45 20.81 0.46 21.25 0.45 20.60 0.45 20.75 0.46 20.37 0.45 20.07 0.45 20.31 0.45 20.30 0.44 19.83 0.44 19.95 0.45 19.72 0.44 19.81 0.44 20.01 0.44 0.43 0.44 232 / Age (Ma) 207-corr spot ages Pb 208 (%) σ Th 1 207-corr 232 / 0.0005430.0005700.000561 1.5 0.000534 1.6 0.000516 1.4 0.000521 1.6 0.000521 1.8 0.000406 1.4 1.6 0.000485 5.1 0.0004770.000505 2.7 0.000487 3.0 0.000465 2.7 0.000505 2.7 0.000496 2.7 0.000532 2.7 0.000514 2.7 0.000482 2.6 0.000513 2.6 0.000500 2.7 0.000513 2.7 0.000499 2.7 0.000492 3.6 0.000495 2.8 0.000507 2.6 0.000470 2.8 0.000486 2.2 0.000471 2.3 2.3 0.000423 2.3 0.0003550.000436 2.8 0.000403 2.8 0.000361 3.2 0.000365 2.8 0.000447 2.7 2.7 0.001016 2.6 0.0010040.001082 2.2 0.001039 2.5 0.001007 2.2 0.001056 2.2 2.2 0.001013 2.2 0.0010370.001016 2.2 0.001030 2.2 0.001052 2.2 0.001020 2.2 0.001027 2.2 0.001008 2.2 0.000993 2.2 0.001005 2.2 0.001005 2.2 0.000981 2.2 0.000988 2.2 0.000976 2.2 0.000980 2.2 0.000991 2.3 2.2 2.2 Pb 208 (abs.) σ Th 1 8.749.399.60 0.45 9.79 0.29 0.36 9.21 0.36 9.969.60 0.32 0.30 0.34 9.589.79 0.27 9.91 0.30 9.629.78 0.33 9.91 0.26 9.28 0.27 9.45 0.24 9.19 0.23 8.12 0.23 7.19 0.24 8.78 0.29 8.12 0.25 7.12 0.33 7.37 0.27 8.89 0.28 0.26 0.24 10.3911.3211.05 0.29 10.83 0.19 10.47 0.18 10.39 0.31 10.26 0.20 0.17 0.27 10.16 0.32 10.4910.29 0.28 10.23 0.29 10.00 0.30 0.52 20.4220.2921.80 0.44 20.97 0.51 20.32 0.47 21.24 0.45 20.38 0.44 20.88 0.46 20.44 0.43 20.72 0.45 21.28 0.44 20.57 0.44 20.76 0.46 20.29 0.44 20.05 0.44 20.27 0.44 20.23 0.43 19.72 0.44 19.81 0.44 19.66 0.43 19.78 0.43 20.03 0.44 0.43 0.43 232 / Age (Ma) 204-corr spot ages Pb 208 (%) σ Th 1 204-corr 232 / Pb 208 207 (%) (%) f208 from σ Th 1 232 / Pb 208 (%) σ Pb 1 206 / Pb 207 (%) σ Pb 1 204 / Pb 208 U / Th-U-Pb analyses of monazite by ion microprobe (SwissSIMS and NordSIMS). Analyses resulting in unreliable dates (e.g. presence of cracks, affected by Pbc causing high INNB1@01 258 8810 34 180 11 0.359 3.0 0.000621 1.4 13 0.000514 2.7 INNB1@02INNB1@03INNB1@04 397INNB1@05 341INNB1@06 1098 26461INNB1@07 924 19205INNB1@08 883 8717 67 923 23297 56 1217ZEI1@04 24902ZEI1@06 8 10635 25ZEI1@07 15622 28ZEI1@08 497 12 75ZEI1@10 421 147 13ZEI1@11 185 202 10ZEI1@13 421 2041 189 11ZEI1@14 2086 364 198ZEI1@15 2785 200 12 107 10 27 283ZEI1@16 2292 14 230 0.253ZEI1@17 3078 9 15 226 0.280 11ZEI1@19 1820 12 284 13ZEI1@20 5870 0.158 2.8 16 192 0.216ZEI1@21 4846 3.0 408 17 200 251ZEI1@22 4694 0.215 26 325 2.7 0.194 0.000592 547ZEI1@24 3057 2.3 0.228 21 391 0.000589 316 25ZEI1@25 3756 16 115 2.3 18 421ZEI1@26 1152 2.6 0.000607 1.6 16 24 0.000552 2.7 74 298ZEI1@27 2715 1.4 19 21 58 559 7335 0.000557 20 1.6 0.000594 0.196 4 60 532 1.8 0.185 0.000466 9153ZEI1@03 20 7 70 412 4 0.159 4809 64 207ZEI1@05 15 1.4 422 5 1.6 5.8 0.185 5152 124ZEI1@09 18 4.2 282 5.1 12 0.143 8182ZEI1@12 16 0.000560 4.4 82 130 6179 7 188 0.180ZEI1@18 18 0.000547 4.2 0.000509 86 485 0.163 0.000558 45 117ZEI1@23 14 6 12 0.000536 4.0 555 325 1.7 0.153 0.000524 13 30 2246 0.000518 4.6 780 22 117 1.6 3.0 0.204 0.000519 3.2 2.6 27 2301 258SCHR1@02 0.000514 2.8 617 0.158 0.000508 0.000542 15 2860 3.8 2.6 17SCHR1@03 0.000433 1.9 670 0.234 0.000546 78 15 1943 3.4 2.7 609SCHR1@04 0.000558 51 3058 1.7 499 0.114 3.7 2.6 2.7 565 19SCHR1@05 6 0.000542 9 5.1 417 0.094 3.1 9 2.6 21 6403 17SCHR1@06 0.219 0.000523 18 438 7 2.6 36495 12 3.8 0.281 0.000553 10 663 21 465 2.6 0.000475 45163 4.6 0.000561 82 0.000485SCHR1@08 443 0.235 4.3 7 447 2.7 43245 73 0.000503SCHR1@09 0.230 4.0 0.000622 9 615 2.6 37059 108 0.000456 41 3.8 0.255 312SCHR1@10 0.000533 5 2.7 46170 3.6 4.7 482 99 0.109 0.000509 393 0.000493 26SCHR1@11 5 3.2 4.8 3.3 478 80 0.000509 0.000475 3.5 35SCHR1@12 4.8 8 744 104 24 2.8 510 2194 25025 0.000519SCHR1@13 4.4 0.000523 7 2.6 0.177 1969 3.0 25 465 11 26320 0.000509SCHR1@14 0.000485 2.8 3.5 331 0.286 1960 0.000499 28255 0.000474 20SCHR1@15 18 52 2.6 2.2 312 0.127 2172 7.7 8 0.000485 26453 0.000506SCHR1@16 55 0.139 1859 2.8 5 0.000484 6 2.3 316 27180SCHR1@17 5.9 3 55 2.3 0.127 2.8 331 6 28957 0.000495SCHR1@18 6.4 3 57 2.3 2.9 0.000378 471 0.307 5.4 7 29632 3.0 SCHR1@19 82 0.000491 1167 5 0.124 3 477 5.0 0.000468 31105 0.000476SCHR1@20 0.132 93 1119 5.2 3 480 0.000429 2.7 25641 0.000484SCHR1@21 4.7 3 94 1211 0.000394 0.142 492 3.3 28482SCHR1@22 2.7 3.1 3 94 0.000491 1145 2.7 6 0.000398 0.126 2.2 506 18234 0.137 2.7 54 0.000459 1099 2.7 6 443 0.000464 2.7 18252 0.000468 2.3 60 1243 6 0.001012 453 2.4 6 2.6 18432 0.000455 2.5 0.001090 38 1200 6 2.3 2.5 21802 0.158 7 2.6 37 1151 2.4 6 0.001048 2.51 24816 0.167 6 36 1676 2.18 2.6 6 0.000356 0.001016 8 0.168 0.001064 49 1358 6 2.0 2.18 8 0.000434 0.169 55 1599 5 1.9 2.18 0.000402 3.5 0.212 4 1339 2.20 7 0.000352 2.0 1 0.233 0.001060 1 1461 3.7 6 0.000365 1.8 0.239 0.001040 1500 3.4 9 2.0 1 0.000440 3.9 0.247 0.001051 2.20 1475 0.001004 8 2.0 1 3.5 0.001079 0.132 0.001076 2.19 1 8 2.1 0.151 0.001043 2.17 2.7 0.001038 8 2.1 2.5 0.119 0.001052 2.18 0.001006 2.2 7 2.3 0.001051 0.116 0.001031 2 2.18 2.3 2.2 0.117 0.001016 2 2.19 2.5 2.2 0.134 0.001020 2 2.22 2.2 2.5 0.001033 0.149 0.001020 2 2.21 2.5 0.001012 0.000998 2 2.19 2.4 0.001026 0.001004 2 2.20 2.2 2.4 0.001053 0.000992 2 2.21 2.1 0.001018 0.000997 2 2.21 2.1 0.001028 0.001007 1 2.25 2.1 0.001004 2 2.19 2.1 0.000993 2 2.18 2.1 0.001004 2 2.2 0.001001 2 2.2 0.000976 2 2.2 0.000981 2 2.2 0.000973 2.2 0.000979 2.2 0.000991 2.2 2.2 2.2 Groups Analysis IDWestern U Tauern (ppm) Window Th (ppm) Th A ZEI1@01 84 2630 31 393 21B 0.202 ZEI1@02 5.2 99 0.000515A 2499 2.6 SCHR1@01 25 423 6B 37708 0.000465 352 SCHR1@07 89 3.1 23 509 1766 24001 0.194 47 6 6.0 0.000451 1168 0.126 2.8 2.4 6 0.001025 6 0.160 2.19 0.000402 2.0 3.6 1 0.001037 0.001011 2.18 2.2 2 0.001009 2.1 Table 3. uncertainty) were not considered and are written in italic. www.solid-earth.net/11/437/2020/ Solid Earth, 11, 437–467, 2020 444 E. Ricchi et al.: Cenozoic deformation in the Tauern Window al 3. Table FT@62556 2551 .5 . .06722 .0642.2 0.000664 6 2.20 0.000697 3.0 2.1 0.155 0.000809 10 5 525 2.19 22 0.000852 5464 2.6 245 0.387 PFIT1@06 6 B 554 2.3 114 0.000957 11683 4 103 2.42 PFIT1@12 0.000994 A 2.4 0.323 7 921 77 16187 211 SCHR1@23 Th (ppm) C Th (ppm) Window U Tauern Western ID Analysis Groups UG@314593435 .1 . .063231 .0606.5 3.0 3.9 0.000660 3.4 0.000774 4.4 0.000685 12 2.8 0.000790 7 2.5 0.000585 6 2.4 0.000641 12 2.3 2.4 0.000636 10 2.3 2.3 0.000647 12 0.000683 0.000642 9 2.1 2.2 0.000878 2.3 3.4 0.000797 11 2.3 7.5 6 0.000756 2.33 0.000959 2.2 0.000732 4.1 0.000690 2.2 2.21 5.1 0.000681 0.112 2.3 0.000740 2.21 4 3.6 0.000808 2.2 0.000704 0.179 4.7 2.33 0.000721 4 0.087 2.2 3 0.000631 0.000728 3.7 2.4 0.306 0.000853 1 0.000706 55 3.9 0.165 2.2 2 0.000856 2.18 2.2 19 3 3.5 0.190 0.000859 3.39 24 3 2.28 3.6 0.170 403 2.3 0.000833 0.000800 16 3 2.2 0.000877 2.24 0.000710 0.201 20 324 3 2.25 0.000705 275 2.2 0.161 0.000835 11 4 2.29 2.7 0.000824 219 0.000868 13 2.19 4 0.000754 7.1 193 3 5.7 0.000845 1.9 2.19 0.000658 12 5 0.428 238 1.6 2.40 0.000885 36 6.9 11 2273 5 0.389 343 12 5.0 1.5 2.25 0.000896 0.317 0.000543 4 1.8 529 5.4 2.26 314 0.000892 57 0.000497 1067 0.414 26 4.9 1.8 52 381 0.000877 626 0.350 0.000503 6 2.41 1.9 4.6 0.000499 7 7 0.000913 0.360 19 2.31 164 3.5 1014 3.6 6 13 8 30 769 0.287 0.000541 2.29 0.000895 3.3 3.7 0.000574 4 53 0.328 BURG2@12 11 10 548 0.000918 5 2.8 2889 1.9 0.000491 10 1011 18 0.365 BURG2@13 13 0.000891 859 3220 2.1 1.1 6 12 30 2.3 0.506 BURG2@10 0.000446 7 3300 1.9 11 0.9 1033 2.4 0.497 BURG2@09 0.000553 388 9 723 4523 1.6 10 1.0 2.4 BURG2@08 0.000522 0.000603 383 1.4 0.430 808 119 4.8 7 14 102 BURG2@07 0.000536 0.000553 347 0.413 871 3.1 7 1.2 5 166 0.000544 0.000546 336 1.3 0.450 697 PFIT1@10 13146 2.4 5 9 0.000545 3.0 466 8610 0.000504 2.0 PFIT1@09 2.5 8 662 3.1 209 6027 5 0.000536 0.000602 2.2 PFIT1@08 2.5 7 0.000627 586 3.5 110 199 5940 5 0.000451 0.200 3.6 84 PFIT1@07 1.8 1.2 15 0.000582 629 70 6627 5 0.000476 0.270 36 1.4 11 0.000511 82 3.3 5962 0.000468 473 0.236 3.4 13 1.2 6 0.274 PFIT1@11 0.000527 3.1 0.000600 569 153 8358 3.5 32 1.2 5 14 PFIT1@05 2.7 0.000602 580 171 9937 0.289 2.3 3.4 30 6 0.335 14 PFIT1@04 3.2 0.000599 244 12054 1.9 2.5 0.001006 4 119 3.2 0.112 15 PFIT1@03 0.000601 13368 2.3 0.000954 130 15 351 1.6 0.000618 121 2.7 0.103 PFIT1@02 15956 79 0.001027 120 381 1.5 0.000636 0.000968 2.9 14 PFIT1@01 3 0.139 78 165 13449 16 486 1.5 0.000960 2.8 PFIT1@20 0.000496 2 0.233 457 65 3.2 13986 18 1.3 PFIT1@19 0.000541 2 0.224 3.0 6 18466 24 381 104 23 PFIT1@18 0.000527 0.294 404 6 117 3.8 0.097 16 43 PFIT1@17 0.000567 3.21 229 112 3.6 0.135 13 50 PFIT1@16 2.75 300 4227 65 3.5 15 PFIT1@15 3.28 0.001031 0.114 2.65 5776 427 3.3 13 53 PFIT1@14 0.000973 0.109 2.39 6082 21 293 62 180 PFIT1@13 6085 0.001047 0.120 0.001036 17 370 7 3.5 134 0.127 0.001025 5475 411 5 3.3 21 122 5010 189 MAYR4@18 94 3.8 2.3 17 19 246 0.215 2169 MAYR4@17 2.0 19 103 24 0.177 1748 MAYR4@16 424 81 18 26 0.168 0.370 4665 MAYR4@15 305 295 51 0.371 4829 MAYR4@14 341 3 11 334 5038 MAYR4@13 514 7 10 251 6949 MAYR4@12 11 201 10 6 1190 MAYR4@11 1394 192 11 5 2301 MAYR4@10 1635 136 10 3691 MAYR4@09 1579 385 20 546 3763 MAYR4@08 311 513 3449 MAYR4@07 36 368 5113 MAYR4@06 52 336 MAYR4@05 38 340 18145 MAYR4@04 48 259 18354 MAYR4@03 58 17105 499 MAYR4@02 17322 351 MAYR4@01 17861 447 SCHR1@28 363 SCHR1@27 306 SCHR1@26 SCHR1@25 SCHR1@24 Continued. / 44 U 208 Pb / 204 b1 Pb 91 .1 . .008864 .04210.7 0.000462 46 8.6 0.001048 3.7 0.415 18 69 σ (%) 207 Pb / 206 b1 Pb σ (%) 208 Pb / 232 h1 Th σ % 28from f208 (%) 0 (%) 207 208 Pb / 232 204-corr h1 Th σ (%) 208 Pb 0-orso ages spot 204-corr g (Ma) Age / 232 33 0.86 0.47 0.54 13.35 0.54 15.63 0.53 13.85 0.36 15.97 0.32 11.83 0.32 12.95 0.31 12.86 0.30 13.07 0.32 12.98 0.47 13.42 0.31 15.28 0.37 13.94 0.32 13.77 0.29 16.33 0.37 14.57 0.38 12.74 0.41 17.23 0.37 17.29 0.39 17.35 0.39 16.82 0.39 17.72 0.38 16.87 0.35 17.54 0.21 17.06 0.16 16.34 0.15 10.96 0.18 10.04 0.20 10.16 0.23 10.09 10.92 11.60 0.21 0.22 0.21 11.17 0.18 10.55 0.49 10.84 0.34 10.99 10.19 10.84 0.19 0.64 0.52 10.65 0.67 20.33 0.49 19.28 0.44 20.74 0.45 19.55 19.39 19.34 .41.00 9.34 0.35 0.33 9.92 9.00 0.22 0.24 0.23 9.12 9.62 9.45 h1 Th σ (abs.) 208 Pb .0519.5 2.8 2.3 0.000571 2.4 0.000600 2.3 0.000818 2.4 0.000751 0.000844 2.4 0.000659 2.3 2.3 0.000650 2.3 0.000638 2.2 0.000648 0.000661 2.2 0.000658 3.4 2.3 0.000764 2.2 0.000685 2.3 0.000687 2.3 0.000814 2.2 0.000736 2.2 0.000640 2.4 0.000862 2.3 0.000869 2.3 0.000866 2.4 0.000843 2.3 0.000881 2.3 0.000849 2.2 0.000874 0.000852 1.1 0.000813 1.0 1.0 0.000561 1.4 0.000519 1.2 0.000522 1.3 0.000519 2.1 0.000564 2.4 0.000584 1.3 0.000531 1.4 0.000442 1.3 0.000568 1.2 0.000547 2.6 0.000553 2.0 0.000561 1.7 0.000524 1.5 0.000565 1.5 0.000467 1.3 0.000512 0.000493 3.2 0.000542 2.8 3.3 0.001004 2.7 0.000955 2.4 0.001029 2.4 0.000975 0.000963 0.000954 / 232 207-corr h1 Th σ (%) 208 Pb 0-orso ages spot 207-corr g (Ma) Age / 232 15 1.10 0.33 0.38 11.53 0.36 12.12 0.39 16.53 0.31 15.17 0.32 17.06 0.29 13.32 0.30 13.13 0.31 12.89 0.29 13.09 0.34 13.35 0.47 13.30 0.32 15.43 0.37 13.84 0.34 13.88 0.30 16.45 0.38 14.86 0.39 12.94 0.42 17.42 0.38 17.57 0.40 17.49 0.41 17.03 0.41 17.80 0.39 17.15 0.36 17.66 0.12 17.21 0.10 16.42 0.11 11.34 0.15 10.50 0.13 10.56 0.15 10.48 0.22 11.39 11.80 0.15 10.72 0.16 0.14 11.48 0.13 11.06 0.28 11.17 0.23 11.33 10.58 0.15 11.41 0.14 10.35 0.65 0.53 10.95 0.68 20.28 0.52 19.30 0.47 20.78 0.47 19.70 19.45 19.27 .30.21 8.93 0.16 0.15 9.44 9.96 h1 Th σ (abs.)

Solid Earth, 11, 437–467, 2020 www.solid-earth.net/11/437/2020/ E. Ricchi et al.: Cenozoic deformation in the Tauern Window 445 (abs.) σ Th 1 9.387.759.94 0.26 9.91 0.19 0.27 0.90 11.7311.8612.23 0.60 11.41 0.17 11.61 0.57 11.11 0.29 10.50 0.52 11.50 0.84 10.55 0.47 11.11 0.31 11.45 0.28 11.71 0.25 12.32 0.75 12.35 0.19 12.28 0.25 12.13 0.39 12.30 0.26 11.88 0.48 12.12 0.22 12.46 0.20 11.89 0.27 12.09 0.33 11.88 0.32 12.14 0.32 12.56 0.32 12.32 0.33 12.02 0.33 12.02 0.33 11.70 0.32 11.87 0.45 12.61 0.36 12.22 0.33 12.19 0.33 12.05 0.39 12.12 0.32 11.98 0.27 12.28 0.27 0.30 0.28 17.4618.7518.93 0.46 18.05 0.50 17.02 0.50 17.41 0.48 17.71 0.23 17.69 0.24 17.14 0.24 0.25 0.48 232 / Age (Ma) 207-corr spot ages Pb 208 (%) σ Th 1 207-corr 232 / 0.0005800.0005870.000605 5.1 0.000565 1.5 0.000574 4.7 0.000550 2.6 0.000520 4.5 0.000569 7.5 0.000522 4.5 0.000550 2.7 0.000567 2.6 0.000579 2.2 0.000610 6.6 0.000611 1.6 0.000608 2.0 0.000600 3.2 0.000609 2.1 0.000588 4.0 0.000600 1.8 0.000617 1.6 0.000588 2.2 0.000598 2.7 0.000588 2.7 0.000601 2.7 0.000622 2.7 0.000609 2.7 0.000595 2.6 0.000595 2.6 0.000579 2.7 0.000588 3.8 0.000624 3.1 0.000605 2.8 0.000603 2.6 0.000596 3.2 0.000600 2.6 0.000593 2.2 0.000608 2.2 2.5 0.000464 2.3 0.0003840.000492 2.8 0.000491 2.5 2.7 9.1 0.0008640.0009280.000937 2.6 0.000893 2.6 2.6 0.000842 2.7 0.0008620.000876 1.4 0.000876 1.4 0.000848 1.4 1.4 2.8 Pb 208 (abs.) σ Th 1 9.88 0.78 9.96 0.34 14.2711.8111.67 0.98 11.78 0.25 0.64 11.62 0.63 12.8312.26 0.93 10.12 0.81 11.26 0.74 11.65 0.51 11.73 0.44 12.61 0.96 12.04 0.43 11.44 0.65 13.53 0.63 12.04 0.54 12.25 0.67 11.66 0.31 12.34 0.34 11.63 0.43 11.94 0.33 11.52 0.31 12.19 0.33 12.21 0.32 12.09 0.35 11.60 0.32 11.16 0.31 11.08 0.31 11.57 0.49 12.43 0.44 11.97 0.33 11.87 0.32 11.73 0.36 11.74 0.31 12.36 0.27 11.80 0.27 11.69 0.41 10.28 0.27 0.74 10.99 0.81 0.92 17.1418.4918.66 0.44 17.81 0.48 16.75 0.48 17.28 0.46 17.39 0.23 17.45 0.24 16.88 0.24 0.24 0.46 232 / Age (Ma) 204-corr spot ages Pb 208 (%) σ Th 1 204-corr 232 / Pb 208 207 (%) (%) f208 from σ Th 1 232 / Pb 208 (%) σ Pb 1 206 / Pb 207 (%) σ Pb 1 204 / Pb 208 U / Continued. PLAN1@02PLAN1@03PLAN1@04 177PLAN1@05 209PLAN1@06 410PLAN1@07 12498 438PLAN1@08 2322 458PLAN1@09 3160 71 462PLAN1@10 1542 11 509PLAN1@13 1687 594PLAN1@14 8 2662 774PLAN1@15 4 3332 1215 284PLAN1@16 4 4167 589PLAN1@17 6 5878 56 424PLAN1@18 1759 7 11 101 448PLAN1@19 7 4750 454PLAN1@20 59 8 3653 8 1 443PLAN1@21 58 12 3567 365PLAN1@23 90 8 0.361 3815 104 11 467PLAN1@24 9 4422 101 10 627PLAN1@25 10351 8 0.620 148 12 2.9 373PLAN1@26 0.269 8 14 8041 68 10 390PLAN1@27 12 6050 28 0.261 176 359PLAN1@28 1.9 12 0.000643 4646 0.377 2.8 17 365PLAN1@29 98 12 4664 0.284 10 476PLAN1@30 2.7 86 0.242 14 5180 0.001634 108 1.4 12 564PLAN1@31 2.4 0.238 0.000788 161 4817 11 12 620 214PLAN1@32 2.5 0.190 3538 3.3 0.001043 10 14 528PLAN1@33 3.3 0.136 153 11 8192 1028 2.9 0.001231 2.2 13 13PLAN1@34 14199 0.167 103 1152 10 2.8 0.000864 9PLAN1@35 3.3 0.000751 7 715 8241 0.233 2.5 15 926PLAN1@36 1527 6.5 0.000690 677 9 23 0.288 3.2 63 623PLAN1@38 1721 4.0 0.198 0.000661 28 519 9 0.000585 2.3 0.250 16 408 17PLAN1@39 2.9 0.000967 401 0.305 4303 45 2.4 1 304 18PLAN1@40 2.4 0.000680 0.000578 7966 3.0 55 2.1 541 0.000583 1 580 2.1 17PLAN1@41 0.359 2.7 460 6529 0.000783 40 5.4 2.7 331 619 15 0.322 24 0.000489 5 7521 0.000869 1.5 5.5 0.102 13 344 0.000744 24 0.000575 420 5.4 19 9607PLAN1@12 2.1 0.090 0.000763 16 487 11 10707 1.8 17 0.000635 124 0.000685 10PLAN1@37 2.0 7.9 0.121 0.000607 25 2.9 2.9 41 227 2342PLAN1@22 1.9 8.0 0.116 0.000501 17 13 1310 10698 3.5 0.000751 15 3.9 32 361 6.3 1.8 0.000557 12 0.101 3.0 0.000836 483 6.0 619 22 0.125 0.000645 0.000576 19 3.0 7 185 5.1 0.130 22 733 7371 30 1.5 0.000610 0.000581 18 427 3.9 14 2.9SCHEI1@17 2.0 0.127 0.000639 21 12 3146 2.3 2.6 0.000624 525 8.2 11SCHEI1@18 0.090 2.1 0.000627 497 1514 2.6 0.000596 3.7 8 6SCHEI1@20 0.066 0.000566 13 2.7 0.000650 22 2.7 304 0.000670 311 5.1 0.000660 5 360 14 0.000596 0.085 2.0 28 2.6 265 0.000637 13 5.2 0.125 2 2.7SCHEI1@12 4 4.7 311 61361 2.7 0.000632 0.000606 4.9 0.307SCHEI1@13 4 2.6 21 60179 2.5 11 2.2 0.182 0.000802 160 2.6 0.000577 2.3SCHEI1@14 6 62554 202 0.112 0.000661 0.000611 434SCHEI1@32 6 312 2.7 2.8 0.164 227 1.7 0.000576 360 2.7 0.000642 3.1 3.7 201 23 8 52 0.000669 0.000591 321 47204 0.143 2.4 6 2.7 2.7 0.172 2.7 4 0.000570 291 20 50556 0.000746 2.7 1483 2.7 0.000646 53530 109 6 2.6 0.000603 2.8 1432 2.9 2.1 0.000626 26 0.000604 9 55126 140 0.206 2.8 0.000628 0.000598 1416 3.1 12 167 2.6 7 0.085 2.8 0.000574 189 0.000698 2.2 2.6 0.000654 0.000552 6 8 5.3 2.2 2.6 7 0.000548 857 7 0.291 2.7 19 2.7 639 2.3 2.2 4.4 7 0.000573 0.210 0.000467 655 0.000615 4.0 1026 2.1 5 0.235 9 0.000555 4 0.000592 0.222 8 2.8 1.9 2.1 0.000587 15 2.6 7 0.001227 1.9 7 0.000580 6 2.6 3.0 0.000581 2.0 2.7 0.268 0.000939 0.000612 7.7 2.3 0.349 18 0.000949 0.000584 2.3 0.402 0.000906 2.2 11 2.6 0.303 3.3 2.1 2.6 2.3 0.000509 60 1.9 2.7 1.5 0.000886 0.000493 0.000907 7.9 1 0.000544 0.000911 1.4 1 3.5 0.000868 1.4 1 0.000915 8.3 1.4 2.8 0.000924 0.000881 3 2.6 3 2.6 4 2.6 2 0.000855 0.000861 0.000863 1.4 0.000836 1.4 1.4 2.7 Groups Analysis IDWestern Tauern U Window (ppm) ThA (ppm) Th PLAN1@01 190 1647 9 56 9 0.577 2.2 0.001582 3.1 63 0.000706B 6.9 PLAN1@11Central Tauern Window 1410A 6659 SCHEI1@16B 5 408 SCHEI1@11 58860 175 144 394 20 53473 1205 136 0.204 6 4.3 780 0.181 0.000568 7 1.8 2.5 0.309 0.000876 18 2.0 2.6 0.000578 0.000868 6.4 1 1.4 0.000849 3 2.6 0.000829 1.4 Table 3. www.solid-earth.net/11/437/2020/ Solid Earth, 11, 437–467, 2020 446 E. Ricchi et al.: Cenozoic deformation in the Tauern Window al 3. Table AT@7221685 021 .7 . .0802320009 2.3 0.000799 2 2.1 0.000565 2.3 4 0.000830 2.0 2.1 2.20 0.175 0.000559 0.000591 6 3.0 10 2.3 0.646 1022 2.26 0.000542 0.000600 6 59 2 2.5 683 13668 0.735 2.37 232 0.000560 582 GART1@07 5 23096 2.2 A 480 40 0.611 HOPF2@01 591 4 C 28763 720 1.7 49 0.000802 HOPF2@07 749 7 61530 B 82 1.4 0.000888 HOPF2@15 2.1 A 0.196 8 303 22 17285 776 SCHEI1@01 Th (ppm) C Th (ppm) Window U Tauern Central ID Analysis Groups AT@61995 9528038180006 . .0802.1 2.3 2.2 0.000800 1.9 0.000779 2.0 0.000774 6 2.3 0.000786 0.000806 6 2.1 7 2.0 0.000778 2.3 6 6 0.000793 2.1 2.4 0.000785 0.000769 3 2.3 2.1 2 0.000866 1.9 2.4 0.000855 2.0 2 6 2.2 0.000864 0.000602 1.8 2.2 2.3 0.000858 0.000627 0.000889 2.0 2.2 2.1 0.000621 1.8 6 0.328 0.000617 2.0 0.000813 2.3 1.8 6 0.318 0.000590 1.8 0.000838 2.0 5 0.322 2.3 4 0.000815 0.000831 2.5 0.317 2.1 0.321 2.18 4 8 2.1 0.000614 2.8 2.48 9 0.000615 3.5 2.0 0.162 1.6 0.000628 2.35 0.000642 8 2.1 0.192 12 2.27 0.000670 8 512 0.000580 2.1 8 0.000597 10 2.23 0.000656 0.173 435 0.208 9 2.1 0.000603 0.000647 371 12 2.1 0.000593 24 0.000619 454 7 2.22 6 2.3 412 0.680 2.7 2.3 2.54 69 7 2.6 9 8 0.690 881 3.4 2.20 61 6 0.000708 3.3 0.677 2.4 3.59 716 55 0.000688 0.000667 0.000571 9550 2.8 0.659 3.67 65 0.000694 4 0.000605 1054 8048 2.3 0.682 523 93 1.6 2.17 0.000782 4 0.000667 7292 1.7 2 0.000643 3 2.20 139 44 0.000637 4 9137 2.1 2.3 0.000620 2 132 8047 0.000649 0.773 5 90 481 1.2 11 133 0.000630 0.777 6 69 451 9789 2 4.1 2.2 GART1@26 2.5 142 31 0.780 0.000793 510 3 86 1.9 2.78 GART1@25 17962 2.39 0.810 2.6 538 2.3 GART1@24 14195 3 2.5 3.49 221 0.714 0.000778 0.000784 584 9312 2.67 GART1@23 0.000683 500 3 1 199 0.000594 0.721 2.6 2.91 0.000765 GART1@22 577 4 206 0.000623 0.740 2.6 0.000804 2.36 0.000762 GART1@11 1 610 28865 3 261 2 302 6.1 0.000663 3.7 2.6 0.000829 GART1@10 642 32908 9 305 3 0.000647 2.8 2.6 0.000798 GART1@09 612 30246 4 2.3 346 4 58 1.5 2.6 GART1@08 29023 0.585 5 140 57 0.590 0.000821 3.6 2 2.6 2.2 25870 2.6 595 50 0.572 0.000847 2.6 505 3 0.000807 0.761 2.6 1.7 429 45 0.000818 HOPF2@06 2.7 775 0.571 2 2.6 495 42 0.000818 0.000800 HOPF2@05 689 27790 0.000817 0.641 13 2.0 1 7 3.1 0.000860 HOPF2@04 0.000818 2.6 701 40578 2.4 3 0.000808 5 2.1 HOPF2@03 2.6 296 26357 0.000854 3 55 2 2.6 2.0 0.000791 1.8 1309 HOPF2@02 593 28273 7 0.056 52 2.6 1 0.000860 853 9 0.000809 2.3 627 22645 2.3 4 38 0.000843 2.6 0.000831 840 2.2 0.060 1.9 32338 0.176 274 40 0.000839 2.6 7 HOPF2@14 0.000848 1.9 28779 2.4 972 76 0.000810 2.6 13 0.122 HOPF2@13 1.6 0.000865 31 215 14 2.0 0.231 619 55 0.000806 2.6 HOPF2@12 1.6 0.000846 1.5 413 12 46 0.000797 2.3 0.169 HOPF2@11 18 0.000849 8 520 37157 0.000826 18 1.5 2.8 0.108 HOPF2@10 530 2159 0.000890 49522 1.8 11 0.000933 10 0.000808 2.3 HOPF2@09 343 1.4 9 0.083 62586 7 173 1406 2.2 HOPF2@08 490 40713 1.6 6 0.000864 0.133 945 120 9 0.000942 2.6 33439 1.8 1.7 0.078 738 4 0.000979 120 10 9 33784 1.5 77 0.086 665 0.000949 HOPF2@21 2.6 11 97 0.093 1.5 0.000974 2.3 HOPF2@20 0.426 1062 18 1.4 2.0 12 69 976 0.000929 HOPF2@19 86 8782 1.9 15 0.206 1.4 HOPF2@18 1183 39 0.000862 0.212 1.7 10 12021 0.000899 HOPF2@17 0.220 1703 73 2.1 11 37275 6 996 HOPF2@16 0.383 1078 86 0.000843 23098 678 2.5 0.274 1036 27 2.2 11 37241 435 0.255 11 1132 25 SCHEI1@34 36082 9 280 588 2.6 88 0.254 SCHEI1@33 19708 8 513 0.285 314 13 SCHEI1@31 16727 8 239 420 29 0.283 SCHEI1@30 36731 9 216 720 34 SCHEI1@29 10348 279 656 10 74 SCHEI1@28 20090 9 190 417 SCHEI1@27 19 22198 252 815 11 12 SCHEI1@24 31409 312 704 12 SCHEI1@23 411 650 20671 36 SCHEI1@22 10863 655 427 14 SCHEI1@21 10829 1103 20 SCHEI1@19 19842 888 33 SCHEI1@15 11524 902 47 SCHEI1@10 14215 545 67 SCHEI1@09 20187 831 SCHEI1@08 23525 702 SCHEI1@07 32602 619 SCHEI1@06 496 SCHEI1@05 485 SCHEI1@04 SCHEI1@03 SCHEI1@02 Continued. / U 208 Pb / 204 b1 Pb σ (%) 207 Pb / 206 b1 Pb σ (%) 208 Pb / 232 h1 Th σ % 28from f208 (%) 0 (%) 207 208 Pb / 232 204-corr h1 Th σ (%) 208 Pb 0-orso ages spot 204-corr g (Ma) Age / 232 61 0.33 0.37 0.35 16.17 0.29 15.74 0.32 15.64 0.36 15.88 0.33 16.29 0.31 15.71 0.35 16.01 0.36 15.86 0.25 15.54 0.30 16.14 0.28 12.16 0.27 12.67 0.26 12.54 0.24 12.46 0.25 11.92 0.29 11.43 0.26 12.41 0.32 12.43 0.42 12.68 0.25 11.72 0.25 12.06 0.24 12.18 0.37 11.98 0.27 11.29 0.42 13.47 0.32 11.54 0.37 12.23 0.29 13.48 0.25 13.00 0.37 12.54 0.35 10.94 0.40 16.02 0.40 15.73 0.41 15.84 0.43 15.46 0.41 16.25 0.43 16.76 0.44 16.13 0.43 16.59 0.42 17.11 0.45 16.52 0.28 16.52 0.31 17.37 0.39 16.53 0.36 15.98 0.31 16.35 0.37 17.04 0.32 16.95 0.31 16.36 0.26 16.29 0.25 16.10 0.27 16.70 16.33 16.20 h1 Th σ (abs.) 208 Pb .0862.1 2.5 2.3 0.000816 1.9 0.000804 2.0 0.000808 2.3 0.000810 2.1 0.000835 2.0 0.000792 2.3 0.000823 2.3 0.000799 0.000785 2.2 0.000811 2.5 2.3 0.000602 2.3 0.000629 2.2 0.000622 2.2 0.000619 0.000594 2.2 0.000567 2.5 2.2 0.000626 3.6 0.000616 3.7 0.000628 2.2 0.000597 2.2 0.000596 2.3 0.000604 0.000592 2.8 0.000561 2.4 3.5 0.000667 2.7 0.000577 2.9 0.000609 2.4 0.000677 2.4 0.000647 0.000625 2.3 0.000546 2.2 2.6 0.000796 2.7 0.000792 2.6 0.000800 2.6 0.000787 2.6 0.000823 2.6 0.000846 2.6 0.000809 2.6 0.000834 2.6 0.000855 2.6 0.000825 1.6 0.000836 1.5 0.000878 1.8 0.000851 1.5 0.000801 1.6 0.000819 1.8 0.000843 1.5 0.000840 1.5 0.000800 1.4 0.000825 1.4 0.000802 1.4 0.000844 0.000808 0.000825 / 232 207-corr h1 Th σ (%) 208 Pb 0-orso ages spot 207-corr g (Ma) Age / 232 64 0.35 0.40 0.38 16.49 0.31 16.24 0.34 16.32 0.38 16.36 0.36 16.86 0.32 16.00 0.37 16.63 0.38 16.14 0.27 15.85 0.32 16.38 0.30 12.17 0.28 12.70 0.27 12.58 0.25 12.50 0.28 11.99 0.32 11.45 0.28 12.65 0.43 12.45 0.44 12.69 0.27 12.07 0.26 12.05 0.26 12.20 0.38 11.97 0.28 11.35 0.43 13.47 0.37 11.67 0.38 12.30 0.30 13.67 0.26 13.08 0.37 12.63 0.36 11.03 0.43 16.08 0.43 16.00 0.44 16.16 0.45 15.89 0.43 16.64 0.44 17.08 0.45 16.35 0.44 16.86 0.44 17.28 0.47 16.66 0.28 16.89 0.24 17.73 0.31 17.19 0.25 16.18 0.27 16.55 0.30 17.03 0.25 16.97 0.25 16.16 0.25 16.66 0.24 16.21 0.23 17.05 16.33 16.67 h1 Th σ (abs.)

Solid Earth, 11, 437–467, 2020 www.solid-earth.net/11/437/2020/ E. Ricchi et al.: Cenozoic deformation in the Tauern Window 447 (abs.) σ Th 1 9.09 0.36 15.3214.4715.59 0.37 14.64 0.35 16.56 0.35 16.15 0.44 15.42 0.30 16.26 0.30 16.48 0.34 14.72 0.33 13.72 0.34 2.61 16.35 1.76 14.8016.03 0.71 14.40 0.57 14.37 0.61 13.75 0.84 15.01 0.84 13.86 0.77 14.91 0.72 15.38 0.82 16.65 0.89 16.85 0.72 15.45 0.20 17.01 0.16 16.15 0.16 15.64 0.15 15.87 0.61 15.87 0.59 15.30 0.62 16.08 0.62 15.62 0.61 14.61 0.63 14.66 0.60 13.68 0.58 15.93 0.56 15.65 0.60 15.36 1.09 15.78 0.41 14.82 0.44 13.38 0.62 13.65 0.48 16.04 0.40 14.37 0.41 14.43 0.44 15.05 0.39 14.92 0.40 15.35 0.43 15.27 0.41 14.29 0.40 16.09 0.65 14.38 0.53 15.61 0.44 13.92 0.39 12.17 0.45 12.02 0.36 12.92 0.37 12.72 0.37 11.28 0.36 0.34 0.91 232 / Age (Ma) 207-corr spot ages Pb 208 (%) σ Th 1 207-corr 232 / 0.0007580.0007160.000771 2.4 0.000724 2.4 0.000820 2.2 0.000799 3.0 0.000763 1.8 0.000805 1.8 0.000816 2.2 0.000729 2.0 0.000679 2.0 0.000450 17.7 12.9 0.000809 4.0 0.0007330.000793 4.3 0.000713 3.8 0.000711 3.8 0.000681 5.9 0.000743 5.9 0.000686 5.6 0.000738 4.8 0.000761 5.9 0.000824 6.0 0.000834 4.7 0.000765 1.2 0.000842 0.9 1.1 0.000799 0.9 0.0007740.000786 3.7 0.000786 3.8 0.000757 3.9 3.9 0.000796 4.0 0.0007730.000723 3.9 0.000726 3.8 0.000677 3.9 0.000788 3.8 4.4 0.000775 6.9 0.0007600.000781 2.6 0.000733 2.9 0.000662 3.9 0.000676 3.3 3.0 0.000794 3.0 0.0007110.000714 2.8 0.000745 2.7 0.000738 2.8 0.000760 2.9 0.000756 2.7 0.000707 2.6 0.000797 4.3 0.000712 3.7 0.000773 2.7 2.7 0.000689 2.9 0.0006020.000595 2.6 0.000639 3.1 0.000630 3.1 0.000558 2.8 2.7 8.1 Pb 208 (abs.) σ Th 1 9.01 0.35 9.65 0.52 14.8913.5115.19 0.34 14.28 0.37 16.28 0.33 15.84 0.42 14.98 0.29 15.86 0.28 16.10 0.32 10.43 0.31 11.53 0.32 0.43 16.31 0.48 14.2315.90 0.65 14.29 0.48 13.62 0.57 13.80 0.58 14.84 0.56 11.42 0.66 14.68 0.59 14.80 0.50 16.38 0.68 16.81 0.59 15.19 0.22 16.65 0.18 16.15 0.18 15.24 0.17 15.58 0.57 15.45 0.53 15.18 0.57 15.58 0.56 15.18 0.60 13.93 0.56 14.48 0.54 13.39 0.50 15.41 0.52 15.09 0.53 14.46 0.81 15.54 0.41 14.61 0.43 13.95 0.58 12.90 0.47 15.36 0.51 13.92 0.51 14.37 0.41 14.58 0.41 14.20 0.44 14.38 0.44 13.75 0.44 13.65 0.47 14.99 0.53 14.83 0.56 15.05 0.40 13.31 0.49 0.44 11.67 0.37 12.4112.58 0.60 10.73 0.44 0.51 0.73 232 / Age (Ma) 204-corr spot ages Pb 208 (%) σ Th 1 204-corr 232 / Pb 208 32 0.000531 6.8 207 (%) (%) f208 from σ Th 1 232 / 0.000824 8.0 Pb 208 (%) σ Pb 1 0.449 2.6 206 / Pb 207 34 0.802 0.810 0.8 1.0 0.001916 0.001303 11.9 7.8 62 48 0.000516 0.000571 4.1 4.2 26 0.182 6.4 0.000453 4.0 1 0.000446 3.9 (%) σ 53 69 Pb 1 109 12 2322 204 / Pb 208 U / Continued. GART1@02GART1@04GART1@05GART1@17 16GART1@18 28GART1@19 31 11180GART1@20 86 11198 110GART1@21 13066 718GART1@03 14 22525 401 108GART1@04 23948 424 106GART1@06 263 7182 19460 218 16 285 23334 19NOWA3@02 501 967 180 93 1149NOWA3@03 15175 220 14NOWA3@04 13099 679 111 894 11NOWA3@05 12315 927 11 95NOWA3@06 696 832 740 93NOWA3@07 133 7973 7 107 0.707 775 7NOWA3@09 10612 146 0.299NOWA3@10 10175 0.232 14 72 162 7NOWA3@11 6658 112 3.8 187 7NOWA3@22 7715 109 0.397 3.0 178 0.307 3.4NOWA3@23 4216 62 106 0.000774NOWA3@24 2571 0.437 53 106 1.5 0.321 0.000783 205NOWA3@25 3925 1.7 0.000731 26 506 0.330 94 5924 2.3 14 100 103 3.9 6470 1.8 0.000854 2.2 22NOWA3@18 0.000820 3.0 91 7 1.6 94 9038 56NOWA3@19 9 176 9053 0.000778 61NOWA3@20 5 1.8 0.000828 137 193 7 1.8 7689NOWA3@21 0.000839 96 179 1 81 5 90 2.2 0.569 1 124 9 189 2.0 0.474 8656 0.000669 84 188 7 212NOWA3@13 11023 2.0 0.724 1230 4 0.000752NOWA3@14 10600 2 1.8 7 0.000707 2.1 1036 7 45NOWA3@15 0.695 10750 2.7 2 62 0.606 1.2 896 7 34NOWA3@16 19 3 0.000806 2.2 56 0.461 0.000784 0.000864 2.9 1010 39NOWA3@08 3 0.000852 14 1.4 51 48 0.445 2.0 0.000742 0.001132 14 9676 1.8 0.478 0.000785 48 10246 1.6 1.8 3.8 388 15GART3@14 0.477 0.000797 212 3.8 0.133 531 11123 0.001145 287GART3@15 1.7 2.2 0.000875 5.8 451 10718 260 1.5 2.0 0.300GART3@16 0.001023 225 231 1.8 2.0 0.265 3097 3.9 112 8GART3@17 5.8 15 9 225 0.001077 5.6 0.176GART3@18 2.7 0.001053 7 95 8 4.8 37 13 3.1 15 0.000922 94 371 0.000837 9936 0.000704 159 323 5.9 3.6GART3@08 38 6.0 0.288 0.000864 9197 0.000787 161 498 22 0.286 0.000707GART3@09 4.7 0.000786 9295 89 1.2 349 27 0.278 3.4 9327 8GART3@10 0.000857 0.368 8 1.7 97 0.9 0.000674 3.6 318 8380GART3@11 123 10 36 1.7 0.000683 4.1 30 99 1.0 335GART3@12 1.7 59 0.000734 9 17 0.9 2.5 318GART3@19 4.1 0.000838 2 52 9593 0.556 0.000565 207 4.8 0.000832 387GART3@20 8 0.534 0.000726 8995 4 4.0 0.000836 484 0.504GART3@21 184 0.000732 0.000907 9819 3.8 3 30 129 0.000811GART3@22 10683 183 1.9 4.4 3.9 0.590 10 2 179 2.0 4.6 27 251GART3@23 11366 3.9 0.000832 2.1 128 4.0 10 31 4.0 247 0.375 0.000752 1.3 5307 28 2.0 0.000839 431 9 0.000824 0.000783 13 4358 24GART3@03 8 1.0 240 0.000777 13787 0.541 6 219 11 1.7GART3@04 1.2 41 10631 3.8 6 220 0.000745 17GART3@05 0.595 1.0 3.9 17 12846 0.000755 221 3.8 183 56GART3@06 2.4 0.000771 244 11 0.585 0.001111 0.621 176 25GART3@02 4.4 0.000765 210 11 2.1 0.000752 0.623 123 54 3.5 11 3983 8 0.000879 100 3.7 166 1.9 6.8 13 2.6 8 3297 122 3.6 7 4.0 13 161 2.6 0.000969 0.374 218 4784 22 2.8 0.379 9 0.000751 215 4521 0.000917 0.000881 7 19 0.000689 0.377 247 10 0.000717 29 3.9 3479 2.3 0.000904 0.326 39 8 2.2 3.5 0.388 27 0.000663 3.2 13 2.9 3.6 2.2 14 3.6 10 22 0.000763 2.9 2.8 0.000836 100 0.543 19 0.408 3.1 0.000858 138 4.0 0.411 0.000875 191 0.000715 20 5.3 2.7 25 0.466 0.000829 13 1.7 197 2.1 2.7 25 0.000769 0.414 0.000864 17 1.9 2.8 3.0 14 0.000723 2.5 2.7 0.000691 0.001103 17 3.7 2.2 0.000990 15 2.6 0.000638 0.392 0.000901 17 3.2 0.392 3.7 0.000880 4.2 15 3.6 0.393 4.0 0.000879 11 0.000689 3.3 2.7 0.374 12 0.000711 3.3 2.6 0.000722 2.9 2.9 3.0 0.000703 31 0.000778 3.5 29 3.0 0.000712 0.000802 12 3.0 0.000770 19 3.1 2.9 0.000681 0.000763 12 0.000676 3.3 2.9 0.000742 2.8 0.000734 3.9 2.6 4.1 0.000745 23 2.7 26 3.3 17 2.9 0.000477 17 0.000578 0.000614 5.4 0.000623 5.1 3.6 4.0 Groups Analysis IDCentral Tauern U Window (ppm)B Th (ppm) Th GART1@01 14 7467 551A 446 NOWA3@01 9 99 7183 0.626 73 2.3B 0.000807 397 2.3 NOWA3@17 10 192C 6 0.433 9482 NOWA3@12 0.000737 2.1 50 50 2.3 A 0.000894 12537 4.3 555 GART3@13 253 10 85 9B 347 8547 0.000807 0.290 GART3@07 101 7 4.0 1.7 251 0.000859 11739 0.547 226 3.7 47 1.8C 9 0.000868 7 GART3@01 318 0.537 3.9 0.000799 114 10 2.1 3.5 8 7936 0.000901 0.312 69 0.000771 2.6 2.1 3.6 0.000865 14 285 2.8 0.000747 12 2.7 8 0.352 0.000760 2.7 2.7 0.000762 2.6 10 0.000659 2.8 Table 3.

www.solid-earth.net/11/437/2020/ Solid Earth, 11, 437–467, 2020 448 E. Ricchi et al.: Cenozoic deformation in the Tauern Window al 3. Table AS@91 28 76342086110013 .81 .0042.4 0.001014 11 2.68 2.4 0.001135 0.000499 1.1 6 0.816 2 2.37 2.1 0.000542 324 0.000498 5.2 18 2.3 0.495 2726 0.000527 32285 2.18 11 12 4 0.000615 428 2.5 KAIS6@29 2.34 0.737 0.000558 A 118 Window Tauern Eastern 3.5 5633 5 0.392 48 189 KNOR1@10 7 246 C 466 7767 32 82 KNOR1@01 12269 149 B KNOR1@19 A Th (ppm) Th (ppm) Window Tauern U Central ID Analysis Groups AS@2628347 9 .3 . .02026 10015 2.4 2.5 2.4 0.001054 2.5 0.001057 2.4 0.001022 11 0.001046 9 0.001065 11 2.3 8 2.69 2.6 10 2.74 2.2 0.000564 0.001200 2.2 2.73 0.000544 0.001173 2.74 2.2 0.000503 2.4 2 2.71 0.001154 0.000508 1.2 2.3 0.001137 1 1.2 0.000495 2.6 2 0.001192 0.000500 1.3 0.836 2 0.000498 1.4 2.24 0.824 0.000525 3 1.9 1.1 5 2.52 0.820 2.3 2.17 5 0.000590 0.797 2 2.4 0.000555 2.19 6 0.817 0.000559 2 2.2 0.000529 0.000513 2.19 5.4 2.0 2.29 0.000529 3 0.000516 37 292 1.9 2.18 5.7 3 0.000522 0.000516 5.8 351 2.3 11 2.48 0.000541 0.191 2 0.000522 5.4 2.5 24 0.000540 316 0.000560 0.141 31 0.000560 5.6 0.224 2.21 428 0.000518 5.0 19 0.237 322 4677 0.000521 3.1 2.30 5.3 10 36 2.7 0.000920 4280 0.285 2.17 5.6 29873 32 0.331 10 3.6 2.20 0.000577 3326 32642 11 0.000517 18 0.355 3.1 0.000537 2.18 585 0.000701 3480 1.6 11 6 0.478 31600 2.35 0.000768 3587 0.000574 628 8 3.4 35481 13 2.0 4 2.66 524 0.000661 11 0.000515 4 2.8 0.759 35152 10 2.60 639 0.000869 11 2.1 2.2 10 5 0.000767 0.573 0.000835 12 KAIS6@42 729 86 2.1 2.1 2.0 10 11 445 0.000637 0.652 KAIS6@41 1.4 114 3.18 399 0.726 0.000844 2.0 KAIS6@39 91 3 2.76 1.8 6281 1.8 1 444 0.734 0.000819 0.000827 KAIS6@38 91 2.9 8867 7 3.67 0.000549 0.786 2.1 KAIS6@37 3.28 0.000570 0.000840 1 108 5872 6 0.784 2.2 0.000829 73 77 95 1 6847 5 2 0.000604 0.731 1.9 77 81 0.000587 5.3 0.000824 6093 4 2.04 281 4.1 2.1 3 65 96 0.000829 4104 2.2 3 2 136 76 KNOR1@17 5.1 0.000838 2.20 4583 2.5 4 0.000871 112 0.268 3.2 3 56 KNOR1@18 0.321 0.000829 2.09 4611 2.5 6 2.03 167 0.000828 3 234 54 KNOR1@16 0.000876 2.1 102 0.400 0.000810 2.06 3 149 57 KNOR1@15 2.6 0.488 0.000846 1.9 1.83 0.000864 115 0.000830 2 105 6902 48 KNOR1@14 13 2.5 3 197 0.000851 2.15 0.000891 152 2.3 5846 9 KNOR1@13 3 0.000864 0.084 0.000843 2.26 277 2.5 3783 KNOR1@12 2.2 2.1 13 3 30 2.0 0.000820 1.96 0.000869 356 4983 7 KNOR1@11 605 0.095 6 39 1.8 2.11 0.000871 273 9203 512 2.0 2.1 0.101 2.18 4 36 0.091 0.000831 0.000884 175 9535 642 2.1 0.000836 13 2.51 3 33 1.8 KNOR1@04 0.000858 9885 0.127 285 2.49 0.000875 33 1.8 0.138 KNOR1@09 0.000833 6107 11 1 2.06 37 0.000859 27 1.8 KNOR1@08 0.000848 2 0.099 943 13 13 1.90 48 0.000874 36 2.4 KNOR1@07 0.101 2.4 2 2.50 39 0.000915 35 KNOR1@06 10 1048 7199 0.103 2.3 2 9 52 0.000892 KNOR1@05 1180 8289 0.088 902 2.3 2.15 0.000860 0.118 KNOR1@03 10 2.04 9337 2.0 676 23 194 0.080 KNOR1@02 11 9307 2.3 2.11 0.000854 962 172 0.090 10 36 0.000869 2.2 2.12 745 239 0.176 15 33 7488 KNOR1@24 0.000862 14 798 21 181 0.125 2.2 KNOR1@22 12077 0.000873 14 755 1.9 0.101 23 KNOR1@21 11391 13 1151 323 55 8068 2.0 689 KNOR1@20 12 0.097 339 17 2.0 0.115 649 10595 13 348 17 730 19439 13 0.113 387 STEI2@20 21 556 10283 0.106 455 20 STEI2@19 700 11 10095 352 20 STEI2@18 9 844 11690 601 12 STEI2@17 7478 10 579 15 STEI2@16 1436 6041 11 548 23 STEI2@15 1022 5143 370 22 STEI2@14 1096 5851 295 22 STEI2@13 1346 5814 443 STEI2@12 48 6287 387 STEI2@11 40 7706 257 STEI2@10 40 17989 288 STEI2@09 39 16643 348 STEI2@08 16229 376 STEI2@07 15567 417 STEI2@06 403 STEI2@05 395 STEI2@04 STEI2@03 STEI2@02 STEI2@01 Continued. / U 208 Pb / 204 b1 Pb σ (%) 207 Pb / 206 b1 Pb σ (%) 208 Pb / 232 h1 Th σ % 28from f208 (%) 0 (%) 207 208 Pb / 232 204-corr h1 Th σ (%) 208 Pb 0-orso ages spot 204-corr g (Ma) Age / 232 12 0.51 0.53 0.50 21.28 0.54 21.36 0.52 20.65 0.49 21.13 21.51 20.48 0.26 0.28 0.23 11.41 0.23 11.00 0.22 10.17 0.24 10.27 0.23 10.00 0.27 10.10 0.24 10.06 0.22 10.61 0.24 10.07 0.25 11.21 0.23 10.37 0.21 10.42 0.22 10.56 0.24 10.54 0.26 11.32 0.21 10.48 0.32 10.53 0.29 10.06 0.42 10.44 0.32 10.86 0.24 11.60 0.34 10.41 0.37 10.64 0.34 16.87 0.34 17.05 0.34 16.55 0.30 16.71 0.35 16.96 0.37 16.75 0.33 16.65 0.35 16.75 0.37 16.94 0.41 16.76 0.41 16.73 0.36 16.37 0.33 16.76 0.41 17.20 0.35 17.02 0.34 16.57 0.35 16.79 0.36 16.89 16.82 17.14 h1 Th σ (abs.) 208 Pb .0062.7 2.8 2.7 0.001066 2.8 0.001063 2.7 0.001030 2.7 0.001045 0.001072 0.001015 2.2 2.5 2.2 0.000578 2.2 0.000552 2.2 0.000517 2.3 0.000515 2.2 0.000501 2.5 0.000513 2.4 0.000513 0.000528 2.3 0.000508 2.3 2.3 0.000576 2.3 0.000514 2.2 0.000533 2.4 0.000527 2.7 0.000533 2.6 0.000558 2.2 0.000518 0.000524 3.2 0.000505 2.8 3.7 0.000529 3.3 0.000545 2.3 0.000572 0.000522 2.0 0.000535 2.2 2.1 0.000858 2.0 0.000864 2.1 0.000835 1.8 0.000846 2.2 0.000861 2.3 0.000848 2.0 0.000843 2.1 0.000844 2.2 0.000859 2.5 0.000841 2.5 0.000844 2.1 0.000832 1.9 0.000848 2.5 0.000858 2.1 0.000857 2.0 0.000837 2.1 0.000844 2.1 0.000854 0.000847 0.000859 / 232 207-corr h1 Th σ (%) 208 Pb 0-orso ages spot 207-corr g (Ma) Age / 232 15 0.58 0.59 0.57 21.54 0.58 21.48 0.59 20.81 0.55 21.12 21.66 20.51 0.26 0.28 0.23 11.68 0.23 11.15 0.22 10.45 0.24 10.41 0.23 10.12 0.27 10.37 0.24 10.36 0.27 10.67 0.24 10.27 0.24 11.63 0.25 10.38 0.24 10.76 0.27 10.64 0.29 10.77 0.28 11.28 0.23 10.47 0.34 10.59 0.30 10.21 0.42 10.68 0.35 11.01 0.25 11.56 0.35 10.55 0.39 10.81 0.35 17.33 0.35 17.45 0.36 16.87 0.31 17.10 0.37 17.39 0.39 17.14 0.34 17.03 0.36 17.06 0.37 17.36 0.43 16.99 0.43 17.06 0.36 16.82 0.33 17.13 0.42 17.34 0.37 17.32 0.35 16.92 0.36 17.05 0.37 17.25 17.11 17.36 h1 Th σ (abs.)

Solid Earth, 11, 437–467, 2020 www.solid-earth.net/11/437/2020/ E. Ricchi et al.: Cenozoic deformation in the Tauern Window 449 (abs.) σ Th 1 21.1220.6521.20 0.59 20.71 0.57 21.28 0.59 20.86 0.61 20.35 0.60 21.07 0.61 20.74 0.57 21.02 0.60 20.98 0.60 20.56 0.58 20.93 0.59 21.02 0.58 21.39 0.58 20.26 0.59 20.73 0.58 20.51 0.57 20.82 0.59 20.89 0.57 20.66 0.58 20.39 0.59 21.73 0.58 22.11 0.56 20.21 0.59 20.44 0.61 20.91 0.63 20.09 0.62 20.94 0.63 20.87 0.63 20.98 0.77 18.67 0.64 18.65 0.63 17.71 0.59 19.31 0.66 17.58 0.65 19.19 0.59 17.79 0.58 19.22 0.63 19.53 0.68 19.28 0.52 20.48 0.58 21.87 0.52 18.61 0.56 18.75 0.59 17.25 0.43 18.84 0.41 18.22 0.39 18.90 0.47 17.31 0.40 17.66 0.43 18.88 0.40 18.33 0.42 19.46 0.46 18.39 0.47 17.37 0.46 19.01 0.50 15.81 0.60 0.43 0.37 232 / Age (Ma) 207-corr spot ages Pb 208 (%) σ Th 1 207-corr 232 / 0.0010450.0010220.001049 2.8 0.001025 2.7 0.001053 2.8 0.001033 2.9 0.001007 2.8 0.001043 2.9 0.001027 2.8 0.001041 2.8 0.001039 2.9 0.001017 2.7 0.001036 2.8 0.001041 2.8 0.001059 2.8 0.001003 2.8 0.001026 2.7 0.001015 2.8 0.001031 2.8 0.001034 2.8 0.001023 2.8 0.001009 2.8 0.001076 2.8 0.001094 2.8 2.7 0.001001 2.7 0.0010120.001035 3.1 0.000994 3.0 0.001037 3.0 0.001033 3.1 0.001039 3.7 3.1 0.000924 3.0 0.0009230.000877 3.2 0.000956 3.5 0.000870 3.7 0.000950 3.1 0.000881 3.3 0.000951 3.3 0.000967 3.8 0.000955 2.7 0.001014 3.0 0.001083 2.7 2.7 0.000921 2.7 0.0009280.000854 2.31 0.000933 2.17 0.000902 2.25 0.000935 2.52 0.000857 2.20 0.000874 2.26 0.000934 2.34 0.000907 2.39 0.000963 2.42 0.000910 2.57 0.000860 2.38 0.000941 2.74 0.000783 3.43 2.24 2.37 Pb 208 (abs.) σ Th 1 20.8320.6121.12 0.43 21.01 0.44 20.96 0.47 20.85 0.45 20.27 0.44 20.88 0.46 20.76 0.43 21.11 0.43 21.05 0.46 20.60 0.46 20.80 0.46 21.06 0.46 21.19 0.45 20.35 0.46 20.56 0.48 20.52 0.43 20.70 0.47 20.83 0.45 20.68 0.45 20.35 0.46 21.55 0.49 21.88 0.48 20.43 0.49 20.83 0.51 20.41 0.34 20.11 0.39 20.81 0.38 20.96 0.40 20.61 0.32 19.07 0.37 17.98 0.37 17.93 0.38 19.37 0.38 17.09 0.40 18.52 0.33 16.89 0.33 19.20 0.35 19.44 0.44 19.16 0.44 20.49 0.51 21.66 0.46 18.75 0.47 18.46 0.51 17.23 0.41 18.36 0.39 18.24 0.39 19.00 0.46 17.33 0.41 17.29 0.44 18.87 0.41 17.96 0.42 19.44 0.47 17.80 0.47 17.18 0.47 18.95 0.50 15.79 0.65 0.43 0.38 232 / Age (Ma) 204-corr spot ages Pb 208 (%) σ Th 1 204-corr 232 / Pb 208 207 (%) (%) f208 from σ Th 1 232 / Pb 208 (%) σ Pb 1 206 / Pb 207 (%) σ Pb 1 204 / Pb 208 U / Continued. KAIS6@16KAIS6@17KAIS6@18KAIS6@19KAIS6@20 5KAIS6@21 5KAIS6@22 5 22052KAIS6@23 5 25100 4771KAIS6@24 5 25260 4752KAIS6@25 5 23495 4905KAIS6@26 4 24260 5173KAIS6@27 3 25950 5377KAIS6@28 4 20175 161 5040KAIS6@31 5 18427 189 4625KAIS6@32 4 17328 148 5349KAIS6@33 4 17901 148 2 4822KAIS6@34 3 19477 157 2 3588KAIS6@35 3 19595 155 2 5281KAIS6@36 3 17683 134 2 5290KAIS6@43 4 0.831 19464 153 2 5368KAIS6@44 3 0.825 17623 178 2 6314KAIS6@45 4 0.827 23433 154 2 0.9 5729KAIS6@46 4 0.825 22517 167 2 1.0 5395 4 0.829 23426 165 2 0.9 6923 5 0.837 0.001329 24762 162 2 0.9KAIS6@02 6129 4 0.813 0.001299 19511 207 2 0.9KAIS6@05 6924 4 0.828 0.001392 2.69 20543 145 2 0.9KAIS6@06 4948 0.830 0.001390 2.73 17366 191 2 0.9KAIS6@09 3995 0.833 0.001351 2.81 14595 175 2 1.0KAIS6@10 3 4418 0.820 0.001320 2.75 175 2 1.1KAIS6@12 3 23 3614 0.821 0.001424 2.83 169 2 0.9 4 14140 19 0.817 0.001353 2.73 229 2 1.0 3 10157 26 0.826KAIS6@04 0.001313 2.76 252 2 4835 0.001020 1.1 3 15227 24 0.823KAIS6@07 0.001366 2.82 225 2 2957 0.001046 1.0 3 10348 24 0.819KAIS6@08 0.001304 2.69 231 2 3566 0.001040 1.2 12624 24 2.1 0.836KAIS6@11 0.001325 2.77 3 3946 0.001038 1.0 10457 27 2.2 0.827KAIS6@13 4 0.001354 2.75 3 4224 0.001032 1.0 24 2.2 0.821KAIS6@14 6 0.001275 97 2.72 3 3171 0.001003 0.9 21 2.1 0.828KAIS6@30 3 0.001352 96 2.76 16156 0.001034 0.9 24 104 2.2 0.828KAIS6@40 4 0.001257 2.67 11981 0.001028 0.9 22 2.1 3905 0.834KAIS6@47 4 0.001289 74 2.75 2 10466 0.001045 1.2 22 2.1 2002 0.813KAIS6@48 9 0.001299 90 2.79 2 13094 0.001042 1.5 14 23 2.2 2 3145KAIS6@49 0.001316 91 2.73 13271 0.001020 1.4 10 17 2.2 3210 0.001210 2.72 1 13459 0.001030 1.5 26 2.2 25376 3273 0.823 9 0.001177 2.76 2 0.001043SALZ18@02 91 18 2.2 32326 1568 13 0.837 0.001269 2.76 2 0.001049 1840 0.828SALZ18@03 89 21 2.2 13 0.001284 2.72 31411 0.001007 0.9 3141SALZ18@04 87 21 2.2 0.828 18728 2.67 0.001018 1.0SALZ18@05 89 19 21 2 2.2 3692 0.828 18241 1.0 2.70 0.001016SALZ18@06 1403 88 23 15 4 2.1 0.822 0.001682 105 0.001025 0.7SALZ18@07 1449 20 14 2 2.3 11907 225 0.001672 0.001031 0.9SALZ18@08 0.001564 28 15 2 2.2 12452 301 2.76 0.001024 1.0 0.829SALZ18@09 11 15 2 2.2 639 0.002146 2.69 8334 311 0.001007 4 0.843SALZ18@10 23 2.84 2.2 552 2 217 0.001795 6912 0.001067 0.824SALZ18@11 20 2.4 3 1.0 248 0.001752 2.71 2256 407 0.001083 0.830SALZ18@12 40 18 2.4 1.6 2.74 9797 245 3 0.842SALZ18@13 38 19 2.3 0.8 2.68 3 0.827 4607 36 200 515 0.001531SALZ18@14 13 0.837 2.3 1291 1.1 3 3952 429 0.001031 0.001562SALZ18@15 52 17 0.800 1.0 3681 232 0.001010 1.7 0.001711 3.25 42 17 800 0.000995 0.818 1.1 1751 224 1239 6 11 0.001493 2.89 41 22 1.9 0.836 1.4 4555 189 1200 0.001030 0.001621 2.68 37 1.9 0.813 0.001323 1752 134 1862 0.001037 2.0 10 1.3 2.92 0.001130 12 40 1037 267 0.001020 1.5 2.84 980 1.5 0.001094 13 0.546 44 3.57 9684 106 1353 0.191 1.3 1.8 2.68 19 0.001069 44 48 894 1.8 2.93 0.000890 0.001218 0.246 42 262 1123 14 3.0 0.235 7.3 0.000887 18 0.001252 41 2.68 731 0.314 33 0.000959 2.67 2.1 18 16 6.5 617 0.208 0.000846 15 2.69 6.6 0.000970 2.3 0.000859 12 0.000917 975 0.186 7.5 1073 1.7 19 0.000836 0.180 11 0.000950 9.6 0.000943 2.16 2.0 27 2.25 17 0.000911 0.000962 0.178 10.0 1.9 14 0.312 11 0.000947 2.6 14 9.3 2.52 0.000949 2.3 0.000863 2.20 0.169 10.2 0.001014 2.6 0.000880 2.26 0.207 7.3 0.001072 4 1 0.000942 2.34 2.4 10.8 0.270 2.3 0.224 0.000917 2.39 11.1 1 2.3 0.000979 1 2.42 0.000914 0.000853 0.000922 1 2.57 6.1 7.5 0.000887 1 2.38 0.000909 2.1 0.000903 2.3 1 2.74 0.000941 0.000953 0.000792 1 3.43 2.5 0.000858 1 2.2 0.000856 2.24 2 2.37 2.3 0.000934 1 2.4 0.000889 3 2.4 0.000962 2.5 0.000881 1 1 2.6 0.000850 2.4 2.8 0.000938 0.000781 3.8 2.3 2.4 KAIS6@03 4 15947 3922 100 2 0.844 1.0 0.001524 2.91 39 0.000944 2.0 SALZ18@01 11 443 40 428 6 0.642 2.9 0.001001 2.30 8 0.000928 2.2 Groups Analysis ID U (ppm)B Th (ppm) Th KAIS6@15 5 21644 4568 142 2 0.833 0.9C 0.001399 KAIS6@01 2.69 2D 25 13078 6002 0.001031 2.0 83 2 0.844 0.8 0.001865 2.70 46 0.001011 1.7 Eastern Tauern Window Table 3. www.solid-earth.net/11/437/2020/ Solid Earth, 11, 437–467, 2020 450 E. Ricchi et al.: Cenozoic deformation in the Tauern Window al 3. Table ON@51 49 8 7 .2 . .01930 20008 2.5 0.000882 22 3.06 0.001129 1.6 0.821 4 171 787 14990 19 LOHN4@05 B 1.7 0.001031 47 2.96 0.001981 0.7 0.826 1 79 1076 14552 14 LOHN4@01 Th (ppm) A Th (ppm) Window Tauern U Eastern ID Analysis Groups ON@71 15 6 3 .2 . .01434 80004 2.6 2.1 2.3 0.000847 2.9 0.000895 3.2 0.000933 3.1 0.000927 28 0.000936 28 0.000913 15 8 2.0 3.44 5 2.0 2.78 26 2.0 0.000982 2.66 0.001194 2.3 0.000979 3.06 0.001272 2.3 0.001029 3.29 0.001120 2.4 27 3.80 1.5 0.000973 0.001003 2.4 26 1.2 0.001014 0.000980 2.4 28 0.001237 1.2 0.001045 0.826 2.2 14 2.3 0.001018 2.67 0.833 2.3 14 2.8 0.001045 2.66 0.808 2.3 2.3 13 0.001047 2.69 0.001355 0.760 2.3 13 0.001058 3 2.68 0.001350 0.732 2.3 14 0.794 0.001055 2 2.67 0.001422 2.3 17 1.0 0.001057 3 2.70 0.001146 2.3 15 1.1 0.001078 5 2.2 2.73 133 0.001179 15 1.0 0.001061 6 2.78 129 0.001208 0.806 2.3 15 5 1.2 0.001029 2.3 2.67 222 0.001179 0.812 0.001047 16 1.2 2.2 2.70 461 0.001210 0.818 17 1.2 0.001033 2.5 2.72 714 0.001277 0.785 0.001062 862 17 146 1.1 2 2.2 2.70 18 0.001255 0.800 0.001052 1254 1.1 2 2.2 2.74 0.001254 0.806 0.001045 816 16 11550 1.0 2 2.4 2.72 17 11815 0.001247 0.789 0.001043 591 2.5 1.0 2 137 2.78 19 0.001279 0.808 0.001002 717 19054 2.69 13 1.1 2 2.2 137 298 21 0.001271 0.813 9 0.001061 23334 1.1 2 2.3 136 0.001139 2.72 19 0.001245 0.787 23011 2.78 23 0.001272 1.1 2 2.3 242 18 9191 0.803 0.001067 2.73 39 1.0 LOHN4@57 2 2.2 259 13 0.001239 0.802 1515 0.001051 3.07 32 8 0.001282 1.0 LOHN4@56 2 260 0.816 0.9 2.2 1330 0.001068 2.71 31 0.001308 LOHN4@47 2 2.2 259 14821 19 0.800 1539 0.001056 2.67 0.001327 1.0 LOHN4@18 2 262 13028 20 0.814 1.0 2.3 1023 2.70 0.001293 LOHN4@17 0.806 0.001001 2 204 15092 20 10 0.9 2.2 1121 0.000969 2.67 0.001233 LOHN4@06 2 2.2 232 20091 19 0.812 10 0.9 1049 2.71 0.001212 0.802 0.000990 2 231 22103 10 1.0 2.2 1065 21 2.85 0.001235 0.786 0.001074 2 2.4 236 22193 21 20 LOHN4@55 1.0 1093 0.001055 2 2.80 0.001322 0.812 2.4 226 23546 20 LOHN4@54 1.7 1027 22 2.6 2.72 0.001304 0.812 0.001064 2 221 23727 21 LOHN4@53 1.6 1188 0.001042 23 2 2.5 0.001324 0.805 211 20913 2.68 22 22 LOHN4@52 0.9 1138 0.001075 2 207 2.68 0.001317 0.797 2.2 0.001003 23831 22 LOHN4@51 1.0 1157 22 2 1.9 0.777 218 0.001040 23194 2.87 10 0.001276 20 LOHN4@50 0.9 1235 2 210 0.001232 0.798 2.5 23764 2.79 12 20 LOHN4@49 0.9 1248 0.001087 2 190 2.76 5 0.809 2.4 0.001071 23602 0.001258 20 LOHN4@48 1007 4 174 6 1.1 0.816 988 24124 2.70 0.001388 21 LOHN4@46 1.2 2.4 0.001078 3 188 2.67 0.001359 0.819 26144 23 19 LOHN4@45 2.4 1016 0.000977 2 199 2.71 39 1.1 980 25481 0.001354 0.806 19 LOHN4@44 2.5 2 287 2.75 0.001156 1.0 0.823 0.001058 972 27571 9 26 LOHN4@43 1.1 2.4 2 433 2.69 0.001221 0.001094 925 26268 10 0.810 26 LOHN4@42 2.3 2 190 2.83 0.001062 1.0 0.001074 948 25326 0.819 27 2.99 LOHN4@41 1.4 2.1 10 191 0.001109 0.810 0.001094 2 2.8 856 23076 27 LOHN4@40 1.3 11 3 190 0.001418 0.001051 606 24807 2.68 0.798 26 0.001750 LOHN4@39 2.2 11 184 2.67 0.785 0.001026 2 855 23182 25 LOHN4@38 1.9 0.000964 10 0.788 2 172 915 21812 2.68 0.001185 26 LOHN4@37 1.0 22 2 174 0.001085 0.728 0.7 955 25226 2.70 27 LOHN4@36 24 0.742 2 176 955 25099 2.75 13 0.001171 36 LOHN4@35 3 1.3 0.806 162 974 25484 2.68 0.001224 30 LOHN4@34 1.3 0.823 3 165 27181 2.87 0.001208 27 LOHN4@33 1172 4 1.1 171 875 26405 2.67 0.001218 0.776 27 LOHN4@32 4 350 3.21 1.1 0.796 17857 0.001332 28 LOHN4@31 1108 2 299 1.0 15361 0.001356 2 0.788 27 LOHN4@30 1091 575 0.001112 1.1 991 21768 0.790 15 LOHN4@29 523 1.2 3 17269 0.782 18 LOHN4@28 1046 3 156 1.2 801 16983 0.779 97 20 LOHN4@27 1.4 2 807 17205 0.820 16 LOHN4@26 2 366 797 23422 0.805 17 LOHN4@25 355 0.779 2 866 21599 16 LOHN4@24 2 349 792 23937 29 LOHN4@23 2 323 935 20864 27 LOHN4@22 2 312 22365 30 LOHN4@21 1065 3 338 888 23964 24 LOHN4@20 173 29155 28 LOHN4@19 1072 151 29955 26 LOHN4@16 1040 272 35690 27 LOHN4@15 1044 34180 34 LOHN4@14 1048 32345 33 LOHN4@13 1017 35456 33 LOHN4@12 1175 662 16561 31 LOHN4@11 12883 34 LOHN4@10 25804 16 LOHN4@09 11 LOHN4@08 39 LOHN4@07 LOHN4@04 LOHN4@03 LOHN4@02 Continued. / U 208 Pb / 204 b1 Pb σ (%) 207 Pb / 206 b1 Pb σ (%) 208 Pb / 232 h1 Th σ % 28from f208 (%) 0 (%) 207 208 Pb / 232 204-corr h1 Th σ (%) 208 Pb 0-orso ages spot 204-corr g (Ma) Age / 232 71 0.45 0.38 0.43 17.12 0.54 18.07 0.60 18.85 0.58 18.73 0.45 18.91 0.40 18.45 0.40 17.83 0.42 19.83 0.45 19.78 0.48 20.80 0.50 19.66 0.49 20.48 0.51 21.12 0.47 20.56 0.49 21.12 0.49 21.16 0.49 21.37 0.51 21.32 0.49 21.36 0.48 21.78 0.48 21.44 0.48 20.78 0.50 21.16 0.47 20.87 0.52 21.45 0.47 21.25 0.45 21.11 0.52 21.06 0.57 20.24 0.48 21.43 0.50 23.00 0.49 21.55 0.47 21.22 0.44 21.58 0.43 21.34 0.46 20.21 0.48 19.58 0.47 20.00 0.47 21.70 0.51 21.31 0.52 21.49 0.53 21.06 0.53 21.71 0.49 20.25 0.42 21.00 0.53 21.97 0.48 21.64 0.52 21.77 0.54 19.75 0.53 21.38 0.53 22.09 0.49 21.70 0.44 22.11 0.55 21.23 0.35 20.73 19.47 20.84 h1 Th σ (abs.) 208 Pb .0853.58 2.90 2.70 0.000855 3.07 0.000913 3.29 0.000946 3.95 0.000923 3.15 0.000933 0.000912 2.78 0.000875 2.78 2.79 0.000983 2.70 0.000993 2.69 0.001030 2.72 0.000987 2.75 0.001011 2.80 0.001047 2.70 0.001022 2.72 0.001046 2.74 0.001058 2.72 0.001065 2.77 0.001067 2.75 0.001059 2.81 0.001076 2.72 0.001057 2.75 0.001032 2.81 0.001044 2.77 0.001040 3.14 0.001061 2.75 0.001061 2.71 0.001052 2.73 0.001044 2.68 0.001011 2.75 0.001053 2.90 0.001134 2.84 0.001068 2.76 0.001048 2.73 0.001066 2.74 0.001064 2.93 0.001012 2.85 0.000979 2.82 0.000985 2.76 0.001065 2.68 0.001057 2.72 0.001060 2.76 0.001041 2.70 0.001080 2.96 0.001006 3.32 0.001044 2.69 0.001089 2.68 0.001066 2.69 0.001082 2.71 0.000977 2.77 0.001060 2.69 0.001092 2.96 0.001070 2.76 0.001097 3.24 0.001045 3.57 0.001033 0.000969 0.001059 / 232 207-corr h1 Th σ (%) 208 Pb 0-orso ages spot 207-corr g (Ma) Age / 232 72 0.62 0.53 0.52 17.28 0.57 18.45 0.62 19.12 0.73 18.66 0.56 18.85 0.55 18.42 0.56 17.68 0.58 19.85 0.54 20.07 0.55 20.80 0.57 19.93 0.57 20.43 0.59 21.15 0.58 20.65 0.58 21.13 0.59 21.38 0.58 21.51 0.60 21.56 0.59 21.40 0.59 21.73 0.57 21.35 0.58 20.85 0.60 21.08 0.59 21.02 0.67 21.43 0.58 21.43 0.55 21.26 0.58 21.09 0.61 20.42 0.59 21.27 0.61 22.92 0.61 21.58 0.59 21.18 0.56 21.53 0.54 21.50 0.58 20.44 0.61 19.77 0.60 19.90 0.59 21.52 0.56 21.35 0.59 21.41 0.56 21.02 0.57 21.82 0.65 20.33 0.72 21.09 0.59 22.01 0.53 21.54 0.57 21.86 0.60 19.74 0.60 21.41 0.60 22.07 0.63 21.62 0.58 22.16 0.63 21.12 0.76 20.86 19.58 21.39 h1 Th σ (abs.)

Solid Earth, 11, 437–467, 2020 www.solid-earth.net/11/437/2020/ E. Ricchi et al.: Cenozoic deformation in the Tauern Window 451 (abs.) σ Th 1 18.6318.8018.41 0.47 17.73 0.46 19.01 0.42 18.95 0.53 18.21 0.42 18.21 0.61 16.98 0.43 18.43 0.56 19.01 0.65 18.08 0.44 17.83 0.51 18.65 0.66 18.24 0.51 21.47 0.42 21.81 1.04 21.77 0.47 21.16 0.56 21.79 0.50 22.26 0.45 21.92 0.48 20.26 0.48 20.84 0.47 20.47 0.32 19.76 0.28 20.35 0.17 19.91 0.74 20.55 0.19 19.27 0.70 20.13 0.91 19.84 0.87 18.98 1.00 19.73 0.89 20.07 0.94 18.95 0.59 21.20 0.56 20.59 0.57 20.31 0.67 19.96 0.54 19.37 0.45 20.30 0.48 20.78 0.59 19.58 0.88 20.16 0.53 20.58 0.77 19.76 0.89 19.47 0.82 20.70 0.55 19.52 0.82 19.67 0.59 19.08 0.64 18.99 0.54 19.47 0.58 0.63 1.53 232 / Age (Ma) 207-corr spot ages Pb 208 (%) σ Th 1 207-corr 232 / 0.0009220.0009300.000911 2.5 0.000877 2.5 0.000941 2.3 0.000938 3.0 0.000902 2.2 0.000901 3.2 0.000841 2.4 0.000912 3.1 0.000941 3.8 0.000895 2.4 0.000883 2.7 0.000923 3.6 0.000903 2.9 2.2 0.001063 5.7 0.0010800.001078 2.21 0.001048 2.56 0.001079 2.30 0.001102 2.13 0.001085 2.18 2.14 0.001003 2.14 0.0010310.001013 1.6 0.000978 1.3 0.001007 0.8 0.000985 3.7 0.9 0.001017 3.5 0.0009540.000997 4.4 0.000982 4.5 0.000940 5.0 0.000977 4.5 0.000993 5.0 0.000938 3.0 0.001050 2.8 0.001019 3.0 0.001005 3.2 0.000988 2.6 0.000959 2.2 0.001005 2.4 0.001029 3.0 0.000969 4.4 0.000998 2.5 0.001019 3.9 0.000978 4.4 0.000964 4.0 0.001025 2.8 0.000966 4.2 0.000974 2.9 0.000944 3.3 0.000940 2.8 0.000964 3.0 3.3 7.9 Pb 208 (abs.) σ Th 1 18.4318.2718.10 0.46 17.40 0.44 18.67 0.41 18.12 0.50 18.05 0.41 18.09 0.54 16.65 0.41 18.01 0.52 18.71 0.60 17.44 0.38 17.28 0.50 17.86 0.60 18.06 0.48 21.07 0.40 22.00 0.76 21.65 0.37 21.39 0.47 21.74 0.41 22.17 0.39 21.91 0.43 19.65 0.40 19.00 0.40 20.00 0.48 19.10 0.55 19.94 0.17 19.20 0.88 20.18 0.28 18.40 0.76 18.59 0.92 18.70 0.83 18.84 0.89 18.66 0.85 19.66 0.92 18.94 0.57 20.04 0.55 19.79 0.62 19.71 0.63 20.04 0.52 19.01 0.43 19.33 0.49 20.41 0.56 18.26 0.72 19.07 0.51 20.73 0.71 19.29 0.79 18.01 0.81 18.37 0.53 19.55 0.76 19.27 0.57 18.57 0.63 18.34 0.53 17.88 0.60 0.63 0.70 232 / Age (Ma) 204-corr spot ages Pb 208 (%) σ Th 1 204-corr 232 / Pb 208 207 (%) (%) f208 from σ Th 1 232 / Pb 208 (%) σ Pb 1 206 / Pb 207 (%) σ Pb 1 204 / Pb 208 U / Continued. ORT1@01 367 5825 16 1263 17EUKL2@01 0.084 9 2.3 296 0.000945 32 2.48 160 2 3 0.000912 2.5 0.803 1.2 0.001359 2.12 22 0.001043 1.7 ORT1@02ORT1@03ORT1@04ORT1@05 316ORT1@06 277ORT1@07 356 4437ORT1@08 161 4950ORT1@09 222 4831ORT1@10 14 219 5336ORT1@11 18 189 3688ORT1@12 14 262 5005ORT1@13 33 199 5091ORT1@14 17 101 711 6320ORT1@15 23 106 1166 7415 27 95 926 3205 24 23EUKL2@02 96 930 3602 16 37 105EUKL2@03 382 4969 32 16EUKL2@04 277 3780 34 18EUKL2@05 422 14 4304 0.087 16EUKL2@06 52 591 13 0.097 13EUKL2@07 40 214 14 0.088 18 41 2.4 301 655 33 21097 0.139 2.5 17 661 19 18352HOAR1@28 0.166 11 1580 2.4 19 52673HOAR1@29 607 22 0.272 0.000956 17 1313 2.6 0.000936 25562HOAR1@30 628 0.220 28 1620 2.1 100 445 16767HOAR1@31 0.139 0.000905 2.43 1351 1.6 18 2.26HOAR1@32 95 0.411 0.000970 2.0 13 868 205 80 0.172 0.001012 2.92 1383 21 209 2.3 124 231 0.191 0.001039 2.17 19676 1.2HOAR1@02 316 345 0.000979 3 2.99 0.195 3.0HOAR1@03 14 3 218 2 650 0.000880 2.23 2725 208 0.183 3 2.9HOAR1@04 3 0.001086 3 0.370 2.96 1076 234HOAR1@05 51 0.000905 3 2.9 0.000981 3 3.78 0.000896HOAR1@06 48 22 8 2 2.9 0.000933 7 2.24HOAR1@07 71 1.9 0.824 13 0.000861 3 149 2.61 1211 2.4 3 0.803 0.000910HOAR1@08 782 79 0.812 0.000924 2.3 8 3.58 118 0.000960HOAR1@09 969 0.782 0.000897 1.2 4 1075 106 2.9 0.001022 0.000893HOAR1@10 2.82 0.795 11 16 1.2 15 497 1.5 2.2 214 8HOAR1@11 643 2.17 67 1676 0.000896 20 0.800 1.3 4 3.0 4.60 160HOAR1@12 15 62 0.001303 1764 0.000824 2.3 1.2 4 266 0.000892 0.001317HOAR1@13 14 0.001253 19 1358 14 2.9 8 0.248 1.2HOAR1@14 3 56 0.001194 0.000926 2.25 0.201 12 1579 17 104 3.6 200 2.51HOAR1@16 4 0.001315 1995 0.000863 2.08 2.1 12 103 250HOAR1@17 20 2.17 2.2 259 0.001282 6609 0.000855 107 2.7 0.169 2.5HOAR1@18 25 0.170 2748 2.10 18 0.000884 145 3.5 17 0.000894HOAR1@19 8 330 3259 233 0.132 18 17 117 2.10 16HOAR1@20 0.001269 72 448 2.8 18 1940 2.6 0.001023 3.3 26 10HOAR1@21 74 2.3 2711 4.2 0.001072 339 32 15 16 2.0 21HOAR1@22 60 0.001089 0.296 0.001059 364 1.2 1305 18 17HOAR1@23 0.001070 60 0.8 15 0.001153 0.205 0.001076 433 1381 19 1.9 0.182HOAR1@24 45 714 18 0.001097 0.001240 2.1 1129 3.5 1.8 HOAR1@25 18 49 263 16 0.9 0.148 1818 126 3.6 0.197 3.5 0.001085 2.0 HOAR1@26 19 19 679 15 3.5 0.162 1000 11 1.8 3.4HOAR1@15 1 19 85 272 0.001128 1540 10 0.237 2.9 30 53 632 3.4 1838 1.8 0.001088 0.000940 15 0.191 2.9 0.001075 22 60 15 6 263 1927 0.000990 12 111 3.5 0.097 31 3.2 21 292 0.242 0.001046 1330 15 16 0.001118 4.7 2.9 3.3 4.3 389 0.359 0.001065 1206 0.000946 23 0.000987 0.9 15 2877 2.4 499 0.171 2.7 0.001049 2.8 25 0.000950 15 4.2 15 183 0.213 1.8 0.001110 2.6 20 19 4.6 194 0.139 1.4 26 8 2.7 0.001076 824 17 9 2.8 4.0 0.001032 0.211 2.3 0.000911 14 3.0 511 0.001163 16 0.196 2.6 7 12 2.4 0.000920 384 0.000998 24 0.240 7 2.2 0.000926 3.1 343 4.5 0.001115 0.206 11 2.3 18 112 3.1 0.000932 0.001076 0.000924 4.8 0.309 3.0 19 3.0 5 4.6 0.000973 0.305 0.001059 3.9 18 3.2 5 0.119 0.000938 4.9 0.001088 3 2.5 3.1 6 3.0 15 0.147 0.001129 0.000992 2.8 2.8 3.7 0.230 3.4 0.001035 4 0.000980 3.3 4.2 10 0.000976 0.197 0.001130 0.000992 3.3 3.7 3.1 0.001127 4 0.516 3.5 2.6 2.6 0.001015 0.000941 2.2 0.000957 3.5 8 3.8 2.4 0.001026 8 2.5 1.2 0.001010 0.001022 10 3.2 3.0 3.7 0.001023 0.000904 5 2.6 15 0.000944 2.5 0.001353 2.9 0.001026 9 3.1 3.9 5 0.000955 4.2 5.1 0.000891 3.9 5 0.000909 8 2.7 0.000968 4.2 8 0.000954 29 3.1 0.000919 3.2 0.000908 2.8 0.000885 3.2 3.5 3.9 Groups Analysis IDEastern U Tauern Window (ppm) Th (ppm) Th A HOAR1@27 148B 1591 HOAR1@01 11 50 235 926 13 18 0.195 322 2.2 20 0.001164 0.244 1.5 3.7 14 0.001121 0.000973 4.3 2.4 9 0.000999 4.6 Table 3. www.solid-earth.net/11/437/2020/ Solid Earth, 11, 437–467, 2020 452 E. Ricchi et al.: Cenozoic deformation in the Tauern Window al 3. Table AD@12936 2151 .3 . .014402 .0705.9 0.000770 21 4.0 0.001114 3.8 2.5 0.337 0.000924 3 17 125 2.6 0.000991 12 2.3 3167 0.324 259 3.6 9 0.000876 SAND1@01 573 18 A 3.2 178 0.001121 23439 132 2.1 MOKR1@01 0.228 B 11 172 13 3840 307 MOKR1@07 Th (ppm) Th A (ppm) Window U Tauern Eastern ID Analysis Groups AD@848782539 .6 . .016141 .0027.3 2.1 0.001032 1.6 1.9 0.001086 10 2.3 0.001086 1.6 0.001031 2.9 3 0.001011 3.1 0.001032 1 1.4 4.2 0.000859 2 4.2 0.000829 1 4.4 1.4 1 0.001116 0.000923 5.2 10 0.000896 1.1 12 0.000908 1.2 0.001117 8.6 15 0.000860 1.4 0.001107 1.3 15 2.6 3.0 0.001054 17 8.6 0.066 2.6 0.001045 24 2.6 0.001049 10.3 2.7 2.6 0.000972 0.000859 10.4 0.140 2.8 2.5 0.001006 10.8 0.107 2.6 0.000975 2.5 0.001123 8.6 95 0.000864 0.098 3.1 2.9 10 0.001106 2.5 0.000869 0.096 2.6 2.6 0.001150 0.000889 4 55 0.087 4.0 2.6 513 5 0.001104 0.277 67 0.000942 3.8 2.6 4 0.274 0.000885 67 2.7 4.0 4 1385 0.328 2.6 0.000882 55 3.9 2074 0.331 2.5 0.000943 2.6 5 55 2.6 6 0.000949 15 1758 0.441 2 0.000955 2.6 7 1.6 12 1186 0.430 2.9 0.000952 0.001031 2.6 5 20 2354 26 0.000943 3.2 2.7 332 19 26 728 2.6 3 0.000948 0.001017 212 2.6 19 0.000878 22 3 0.000949 2.6 1.9 7711 216 2.6 2.6 3.6 0.303 21 0.001011 23 7743 203 0.001014 2.7 2.5 2.6 1 468 43 0.000993 6472 3 184 0.323 0.000987 2.4 302 27 2.6 0.000978 2.2 0.190 0.000958 6564 3 175 302 21 2.6 0.001007 2.3 1.7 0.191 0.001008 7714 4.4 18 2.6 SAND1@28 289 10 0.200 1 6655 0.001011 0.001015 2.6 SAND1@26 1.0 5 285 10 5768 13 1.2 0.001001 2.1 0.343 0.001038 2.6 SAND1@25 0.001049 4 181 17 12 0.242 380 5846 1.0 2.3 SAND1@24 7.2 251 14 11 2.7 0.299 3 0.001030 5757 SAND1@22 0.000922 272 12 0.001115 717 2.7 3.4 0.296 1.1 1 5540 8 462 SAND1@21 1.3 0.001059 601 0.001091 6.4 0.000639 3570 10 15 0.307 468 SAND1@08 4.1 1.3 580 7.6 12 7.1 0.283 0.000867 608 27 1 0.001011 SAND1@07 3.1 323 12 1.5 0.001021 6.5 0.000976 1 SAND1@06 5 252 4051 12 541 3.2 0.000878 1.5 0.001072 0.056 1.3 113 355 SAND1@05 0.062 32 8214 0.000845 13 9.2 12 391 0.001041 SAND1@04 8.3 0.066 38 26 12 16023 263 0.000848 1.6 570 0.001049 SAND1@02 22 0.001093 6.7 47 16572 1.0 303 0.067 1.0 12 694 95 7.7 0.108 128 16751 141 55 2.6 789 45 0.001130 13 6.1 MOKR1@19 0.101 6.6 17133 517 55 2.9 61 0.001134 0.000754 MOKR1@18 3.7 16222 446 0.087 2982 95 0.001029 MOKR1@17 802 2.6 10746 67 363 11.4 0.057 0.104 55 0.001168 MOKR1@16 846 134 11017 127 10.2 2.7 0.001143 10.0 39 MOKR1@15 128 15315 239 0.070 0.000993 3.1 1611 MOKR1@14 20039 67 182 0.063 626 7 3.2 0.062 0.000997 MOKR1@13 2.0 21412 67 162 47 646 6 MOKR1@06 0.224 2.3 149 7 1546 MOKR1@05 0.138 95 4946 167 2.8 0.134 3668 13 MOKR1@04 483 55 4284 47 0.128 10 MOKR1@03 3095 16 2865 683 19 MOKR1@02 0.228 5188 21 1029 688 12 255 3072 13 469 15 4084 14 245 7 MOKR1@31 395 4029 148 MOKR1@30 15 295 14 166 7589 MOKR1@29 220 11 260 2318 5 MOKR1@28 336 5545 259 MOKR1@27 507 10 5279 MOKR1@26 341 2 2417 4 MOKR1@25 410 7328 6 MOKR1@24 473 MOKR1@23 2971 442 15 2999 MOKR1@22 702 5949 MOKR1@21 1852 5762 MOKR1@20 814 MOKR1@12 916 MOKR1@11 393 MOKR1@10 MOKR1@09 MOKR1@08 Continued. / U 208 Pb / 204 b1 Pb / σ (%) .7 . .0031120.001023 2 1.1 0.001023 7.2 0.072 0 207 Pb / 206 b1 Pb σ (%) 208 Pb / 232 h1 Th σ % 28from f208 (%) 0 (%) 207 208 Pb / 232 204-corr h1 Th σ (%) / 208 Pb 0-orso ages spot 204-corr g (Ma) Age / 232 08 1.51 0.45 0.36 20.85 0.39 21.94 0.46 21.94 0.33 20.82 0.50 20.43 0.52 20.85 0.77 17.35 0.76 16.74 0.80 18.64 0.90 18.10 0.92 18.35 17.38 0.53 15.56 0.50 20.67 0.45 17.35 0.45 19.70 0.45 17.46 0.47 17.57 0.47 17.95 0.47 19.03 0.50 17.88 0.49 17.81 0.49 19.05 0.46 19.29 0.33 19.23 0.51 18.68 0.55 20.54 0.39 17.74 0.69 20.42 0.53 19.93 0.46 19.35 0.35 20.37 0.94 20.51 0.46 20.97 0.50 21.18 0.94 22.52 0.59 22.05 1.25 12.92 0.73 17.51 0.52 19.71 0.55 17.74 0.64 17.08 17.13 17.69 h1 Th σ (abs.) / 208 Pb .0043.4 1.4 1.1 0.001004 1.2 0.001089 1.4 0.001090 1.3 0.001036 2.6 0.001030 2.6 0.001039 2.8 0.000879 2.9 0.000883 2.7 0.000959 3.3 0.000938 4.1 0.000958 0.000843 1.1 0.000877 2.7 2.6 0.001002 2.6 0.000851 2.6 0.000986 2.6 0.000899 2.6 0.000906 2.6 0.000908 2.6 0.000967 2.7 0.000932 2.6 0.000913 2.6 0.000960 2.6 0.000977 0.000970 1.1 0.000959 1.4 1.2 0.001015 1.2 0.000893 1.4 0.001025 1.3 0.000997 1.6 0.000969 1.5 0.001034 1.6 0.001011 1.7 0.001042 1.1 0.001011 1.4 0.001119 2.6 0.001124 3.3 0.000714 3.8 0.000899 2.7 0.000859 2.8 0.000890 3.3 0.000879 0.000869 0.000915 / 232 207-corr h1 Th σ (%) 208 Pb 0-orso ages spot 207-corr g (Ma) Age / 232 02 0.68 0.32 0.25 20.28 0.26 22.01 0.30 22.03 0.28 20.93 0.46 20.80 0.47 20.99 0.54 17.76 0.54 17.85 0.51 19.38 0.56 18.96 0.73 19.34 0.23 17.03 0.46 17.72 0.52 20.24 0.47 17.19 0.47 19.92 0.47 18.16 0.50 18.30 0.48 18.35 0.48 19.53 0.51 18.83 0.52 18.45 0.51 19.40 0.50 19.73 0.23 19.60 0.25 19.37 0.25 20.51 0.23 18.03 0.28 20.72 0.28 20.15 0.32 19.58 0.32 20.89 0.32 20.43 0.37 21.06 0.24 20.43 0.21 22.61 0.47 22.70 0.57 14.42 0.68 18.15 0.48 17.36 0.48 17.99 0.61 17.75 17.55 18.48 h1 Th σ (abs.)

Solid Earth, 11, 437–467, 2020 www.solid-earth.net/11/437/2020/ E. Ricchi et al.: Cenozoic deformation in the Tauern Window 453 (abs.) σ Th 1 0.263.76 0.66 2.86 16.5617.0117.34 0.72 17.63 0.60 17.41 0.47 15.81 0.54 14.66 0.48 20.62 0.88 15.17 0.96 13.41 1.78 11.30 1.01 11.68 1.17 20.49 1.47 20.59 1.61 17.30 1.39 17.27 1.91 20.74 1.76 0.21 0.58 24.5420.9516.28 1.39 15.93 1.84 15.36 0.44 15.74 0.37 15.33 0.39 17.44 0.66 17.48 0.42 16.05 0.45 15.27 0.56 17.01 0.52 16.03 0.58 16.13 0.45 17.81 0.61 13.27 0.46 13.71 0.63 14.25 0.55 13.66 0.56 13.45 0.87 14.88 0.63 10.26 0.84 5.15 1.19 232 − / Age (Ma) 207-corr spot ages Pb 208 76 (%) − σ / Th 1 207-corr 232 / 0.0008200.0008420.000858 4.4 0.000873 3.5 0.000862 2.7 0.000783 3.0 0.000725 2.8 0.001021 5.5 0.000751 6.5 0.000664 8.6 0.000559 6.7 0.000578 8.7 0.001014 13.0 0.001019 13.8 0.000856 6.8 0.000855 9.3 0.001027 10.2 0.000013 1.2 2.8 0.001215 251 0.001037 5.7 0.000806 8.8 0.0007880.000760 2.7 0.000779 2.3 0.000759 2.5 0.000863 4.2 0.000865 2.8 0.000794 2.6 0.000756 3.2 0.000842 3.2 0.000793 3.8 0.000798 2.7 0.000881 3.8 2.9 0.000657 3.6 0.0006790.000705 4.1 0.000676 4.1 0.000666 6.1 0.000736 4.6 0.000508 6.2 34.6 11.6 Pb 208 / / / / / 0.49 (abs.) − σ Th 1 6.516.56 0.54 0.81 0.43 4.49 16.6114.8016.79 0.81 16.95 0.81 15.57 0.63 11.67 0.67 14.77 0.81 18.36 0.97 1.36 12.36 1.56 14.98 1.25 14.7218.88 1.86 30.39 3.43 17.73 3.78 22.84 11.80 26.73 26.11 15.3915.8115.99 0.88 16.37 0.45 15.36 0.59 16.94 1.24 17.48 0.68 16.08 0.45 15.57 0.90 17.21 0.86 16.54 1.04 17.59 0.59 17.54 0.78 14.87 0.49 15.08 0.82 15.12 0.66 14.38 0.72 14.90 1.11 16.45 0.59 15.79 0.89 0.95 1.69 232 − / Age (Ma) 204-corr spot ages Pb 208 / / / / / (%) σ // Th 1 204-corr 232 / Pb 208 207 (%) (%) f208 from σ Th 1 232 / Pb 208 (%) σ Pb 1 206 / Pb 207 00 0.112 0.0690 10.5 7.7 0.000878 0.067 0.001130 11.3 1.2 1.0 0.001293 3 1.9 9 0.000878 0.001130 20 0.001293 00 0.035 0.057 18.9 12.0 0.000222 0.001323 13.7 2.2 184 8 0.000222 0.001323 3247 0.051 0.075 2.3 4.5 0.000979 0.000867 2.77 3.41 25 41 0.000814 0.000781 5.8 10.7 (%) σ / / / / / 924959 1646 1154 15 15 0.217 17 0.307 0.307 3.1 0.312 2.4 0.305 2.8 0.001572 2.9 0.001476 3.0 0.001752 8.4 0.002061 6.1 0.002238 6.7 8.4 35 7.9 49 62 0.000909 73 0.000322 74 0.000612 8.5 0.000324 8.3 0.000741 10.1 12.4 12.4 Pb 1 204 / Pb 208 4 5 3 2 2 01 229 199 U / Continued. SAND1@10SAND1@12SAND1@13 646SAND1@14 729SAND1@18 628SAND1@19 2420 966SAND1@11 3802 278SAND1@15 2842 277SAND1@16 4 3518 659SAND1@17 5 1247 189SAND1@20 5 811 228SAND1@29 4 2325 202SAND1@30 4 109 964 233SAND1@31 3 203 601 493SAND1@23 170 401 640SAND1@27 14 124 376 636SAND1@32 16 448 299 67 14 398 284 16 70 404 573 0.176SAND1@36 5895 14 1 0.150 1 679 0.136 16 2.7REIS1@28 1 501 20 935 0.194 2.8REIS1@29 0.309 2.3REIS1@31 2 0.001136 112 3.1REIS1@32 1 288 0.321 512 0.001027 186REIS1@33 185 2.9 0.001072 3.3 95REIS1@35 141 67 0.001118 3.0 1516 2.6REIS1@36 1 306 95 0.001372 3.0REIS1@23 697 762 67 2.6 33REIS1@17 763 195 0.001620 26 5 2964 0.056REIS1@19 153 5.0 16 4 0.060REIS1@20 737 236 19 96 5.1 5REIS1@21 11.1 0.000732 618 10 437 0.061 23 11.3 0.000831 668 384 43 1 601 0.000839 324 353 10.6 5.5 REIS1@24 0.001114 3 0.000771 738 288 55 530 0.017 3.8 REIS1@25 0.001180 4 454 226 0.000578 260 3.9 REIS1@30 30 1 0.001085 2.4 562 17.8 5.2 REIS1@34 218 0.000731 2 42 3.8 433 874REIS1@22 189 1 8.4 42 26 290 3.4REIS1@26 297 2 0.000118 222 9.2 0.077 398 560 2 24 9 326 225 14 881 0.093 32 15.8 515 441 201 0.121 3.8 0.059 27 21 318 2 505 0.000729 1500 47 4.6 0.000935 1 386 0.050 33 3.8 336 3.6 0.000836 1 89 0.001505 23.3 197 0.083 33 20.0 1 67 0.125 0.000853 2.7 2.25 38.9 0.053 0.000977 689 36 0.000893 4.3 0.055 321 2.24 4.0 0.062 0.000877 778 2.60 2.48 5.0 0.062 67 0.000966 437 2.9 6 55 0.060 0.000963 2.56 3.2 11 47 3.3 0.000821 2.95 20 47 15 0.000903 2.87 0.000783 3.4 0.064 0.000932 2.56 0.000791 0.061 0.000894 2 2.26 0.000810 0.000760 0.083 10 2.8 4.9 0.000981 2.69 0.044 18 2.24 3.7 5.0 0.000839 7.6 4.4 5.2 8 2.54 0.000865 0.000791 3.3 7 0.000796 0.000851 15 2.7 11 0.000749 3.13 0.000771 5.2 0.000773 3.74 10 0.000852 5.3 0.000819 3.54 0.000870 6.7 3.93 3.4 14 0.000868 4.7 17 2.8 10 4.7 0.000747 14 0.000748 0.000712 4.8 0.000738 7.4 4.1 6.0 SAND1@33SAND1@35 919 1160 304 691 0 1 Groups Analysis IDEastern U Tauern (ppm) Window ThB (ppm) Th SAND1@09 483 2027 4 137 14A 0.176 2.2 REIS1@27 0.001145 166 4.2 541 28 3B 0.000822 188 4.9 REIS1@18 25 328 486 0.088 4.1 1 0.000926 2.32 467 42 13 0.000762 0.061 5.7 3.3 0.000802 2.96 18 0.000736 4.4 Table 3. www.solid-earth.net/11/437/2020/ Solid Earth, 11, 437–467, 2020 454 E. Ricchi et al.: Cenozoic deformation in the Tauern Window

Figure 2. (a) Two generations of late fissures visible in a road outcrop located between monazite locality (46◦59.4360 N, 011◦39.2400 E) and Pfitscherjoch. Steeply oriented fissures (C2: ∼ 090/65) are older and deformed (green ellipses), and seem related to a flatter lineation (L2: ∼ 250/30, green arrows) visible on some of the foliation planes. Younger and flatter oriented fissures (C3: ∼ 085/30) are straight (blue ellipses) and seem related to a steeper lineation (L3: 270/70, blue arrows). These observations indicate that a fissure can be deformed during its existence. The length of the hammer handle is 60 cm. (b) Enlargement of panel (a). (c) Schematic illustration of the three fissure generations observed in this study (C1,C2 and C3), together with respective orientation, foliation (S1,S2 and S3) and lineation (L1,L2 and L3). The first fissure generation (C1) is related to E–W extension, the second fissure generation (C2) is linked to strike-slip movements and the third fissure generation (C3) is related to the oblique-slip movements.

lated to flat foliation (S1) and E–W-stretching lineation (L1); is associated with a subvertical E–W-striking foliation (S3). these are oriented perpendicular to the main fold axes (and Stretching lineation related to the BNF activity is subpar- lineation) of the TW and are associated with E–W extension allel to C3 lineation; however, its foliation is striking N–S (e.g. Gnos et al., 2015; Rosenberg et al., 2018; Schneider et (Fig. 2c). We suggest that C3 fissures are related to oblique- al., 2013). (ii) Younger subvertical fissures (C2, Fig. 2c) are slip movements, in line with the observed E–W-striking foli- associated with subvertical E–W-oriented foliation (S2) and ation and not the BNF activity. flat to inclined lineation (L2), and are oriented perpendicular to strike-slip faults (mainly in the western part of the TW; 4.2 Monazite dating and composition Fig. 2c). At Pfitscherjoch, the shape of C2 fissures, indicat- ing overprinting by sinistral sense of shear, is in agreement The monazite grains selected for in situ Th-Pb dating are mil- with the larger-scale sinistral shearing of the GSZ shear zone. limetre sized and, when BSE zoning is visible, they show (iii) A third generation of fissures (C3, Fig. 2c) is locally two distinct textures: regular and patchy (Figs. 3, 4 and observed, for example, in the Pfitscherjoch locality (Fig. 2a 5; Table 4). The term “regular” refers to crystals showing and b) and is at a high angle with C1 and C2 fissures. This growth zonation, whereas a patchy texture is interpreted as third fissure generation observed in the Pfitscherjoch locality a replacement by secondary dissolution–reprecipitation pro- cesses (e.g. Ayers et al., 1999; Bergemann et al., 2018, 2019,

Solid Earth, 11, 437–467, 2020 www.solid-earth.net/11/437/2020/ E. Ricchi et al.: Cenozoic deformation in the Tauern Window 455

Table 4. Summary of weighted mean ages of monazite growth domains and spot age ranges of each grain from the TW.

Sample domain ID no. Figure Table Zoning of Weighted mean MSWD Number of Spot 208Pb / 232Th age Reference the grains domain 208Pb / 232Th analyses range of entire grain ages (Ma, ±1σ) (Ma, ±1σ ) Western Tauern Window INNB1 1 3a 3 Regular − − − 11.5 ± 0.2–10.4 ± 0.2 This study ZEI1 – A 2 3b 3 Regular 10.0 ± 0.2 1.8 20 10.8 ± 0.3–7.2 ± 0.2 This study SCHR1 – A 3 3c 3 Regular 20.9 ± 0.6 1.7 6 21.9 ± 0.5–19.3 ± 0.5 This study SCHR1 – B 20.3 ± 0.2 0.98 16 SCHR1 – C 19.7 ± 0.4 1.00 6 MAYR4 3 3d 3 Regular – – – 11.8 ± 0.2–8.9 ± 0.2 This study PFIT1 – A 5 3e 3 Patchy core 17.3 ± 0.3 1.2 9 17.8 ± 0.4–12.9 ± 0.3 This study PFIT1 – B 13.2 ± 0.3 0.38 5 BURG2 6 3f 3 Regular – – – 17.1 ± 0.4–12.1 ± 0.3 This study PLAN1 – A 7 3g 3 Patchy core 11.9 ± 0.2 2.2 37 12.6 ± 0.3–7.8 ± 0.2 This study Central Tauern Window SCHEI1 – A 8 4a 3 Regular 18.3 ± 1.1 2.0 4 18.9 ± 0.5–15.9 ± 0.4 This study SCHEI1 – B 17.4 ± 0.4 1.5 5 SCHEI1 – C 16.6 ± 0.2 1.9 23 HOPF2 – B 9 4b 3 Regular 12.2 ± 0.4 2.6 8 13.7 ± 0.4–11.0 ± 0.3 This study HOPF2 – C 12.2 ± 0.5 2.9 6 GART1 – A 10 4c 3 Regular 16.3 ± 0.2 0.69 10 16.9 ± 0.3–14.5 ± 0.4 This study NOWA3 – B 11 4d 3 Regular 15.8 ± 0.5 0.27 5 17.0 ± 0.2–13.8 ± 0.8 This study NOWA3 – C 14.9 ± 1.1 2.4 5 GART3 – B 12 4e 3 Regular 15.0 ± 0.5 2.3 11 16.1 ± 0.4–12.0 ± 0.4 This study STEI2 13 4f 3 Regular/patchy tail 17.2 ± 0.2 0.24 20 17.5 ± 0.4–16.8 ± 0.4 This study KNOR1 – A 14 4g 3 Regular 10.8 ± 0.3 1.02 5 11.6 ± 0.4–10.8 ± 0.3 This study KNOR1 – B 10.6 ± 0.3 1.6 8 KNOR1 – C 10.4 ± 0.2 1.4 8 Eastern Tauern Window KAIS6 – A 15 5a 3 Patchy border 21.2 ± 0.5 0.64 6 22.1 ± 0.6–17.6 ± 0.6 This study KAIS6 – B 20.9 ± 0.2 0.53 24 KAIS6 – C 20.6 ± 0.5 0.34 7 KAIS6 – D 18.8 ± 0.5 1.5 10 SALZ18 – A 16a 5b 3 Regular 18.3 ± 0.4 2.6 14 19.5 ± 0.5–15.8 ± 0.4 This study T3 16b − Regular 18.1 ± 0.4 0.51 4 18.5 ± 0.4–14.8 ± 0.4 Gnos et al. (2015) 17.2 ± 0.5 3.4 10 16.0 ± 0.3 0.51 8 15.5 ± 0.2 0.74 24 LOHN4 – A 17 5c 3 Patchy core 21.1 ± 0.2 1.4 50 22.9 ± 0.6–17.3 ± 0.6 This study LOHN4 – B 18.4 ± 0.6 1.3 7 ORT1 18 5d 3 Regular 18.4 ± 0.3 1.07 13 19.0 ± 0.6–17.0 ± 0.7 This study EUKL2 19a 5e 3 Regular 21.7 ± 0.4 0.56 7 22.3 ± 0.5–21.2 ± 0.5 This study T2 19b – Patchy 15.1 ± 0.5 0.26 4 15.4 ± 0.4–15.0 ± 0.7 Gnos et al. (2015) HOAR1 – A 20 5f 3 Patchy 20.4 ± 0.2 0.80 6 21.2 ± 0.7–19.0 ± 0.9 This study HOAR1 – B 19.9 ± 0.3 0.95 25 T1 21 − Regular 19.0 ± 0.5 0.51 5 19.2 ± 0.5–14.3 ± 0.5 Gnos et al. (2015) 17.6 ± 0.6 1.6 8 16.3 ± 0.6 3.0 12 15.0 ± 0.5 1.7 8 T4 22 – Patchy 15.6 ± 0.7 9.1 21 18.3 ± 1.1–13.1 ± 0.8 Gnos et al. (2015) MOKR1 – B 23 5g 3 Regular 18.8 ± 0.5 2.9 12 22.6 ± 0.4–14.4 ± 0.2 This study SAND1 – B 24 5h 3 Regular 17.0 ± 0.8 1.8 7 22.0 ± 0.3–14.7 ± 1.0 This study REIS1 – A 25 5i 3 Regular 16.2 ± 0.5 2.9 13 17.8 ± 0.6–13.5 ± 0.8 This study REIS1 – B 13.6 ± 0.6 0.25 5 www.solid-earth.net/11/437/2020/ Solid Earth, 11, 437–467, 2020 456 E. Ricchi et al.: Cenozoic deformation in the Tauern Window

2020; Gnos et al., 2015). Thorium and uranium (U) con- are common in the eastern TW but can also be found in tents of the dated fissure monazites display a large variability, the western area (Fig. 7a, c and d, red symbols). This in ranging from ∼ 200 to 63 000 ppm Th and ∼ 2 to 2000 ppm line with regional fault activity recorded at ∼ 21 Ma based U, with variations in Th/U ratio from 1 up to ∼ 7000 (Figs. 3, on Pleuger et al. (2012) (Fig. 8a) which corresponds to the 4 and 5; Table 3). 232Th-208Pb ages presented on the right- main indentation phase (Favaro et al., 2017). We interpret hand panel of Figs. 3, 4 and 5 are arranged according to these as a first monazite crystallization event during E–W ex- the order established in Table 3. A detailed description of tension in association with the dome formation (N–S short- each monazite grain is provided in the Supplement. Aver- ening) when the existing clefts reached P –T conditions at age ages are reported for groups of dates on texturally and/or which fissure monazite starts to grow (phase 1, red symbols chemically similar domains. In order to ensure that a group in Fig. 7). When comparing an assumed fissure formation of dates from a domain is internally consistent, rare out- temperature of 450 ◦C (typically obtained in quartz fluid in- liers have been excluded to bring the mean square weighted clusion studies on early alpine fissures (e.g. Mullis, 1996) deviation (MSWD) within acceptable values (MSWD < 3; with thermochronological data of the eastern TW (com- Spencer et al., 2016). In a few cases, the dates for specific piled in Wölfler et al., 2012), the onset of fissure formation, monazite domains have a scatter above analytical uncertainty predating primary monazite crystallization, is estimated at (e.g. grains 6, 9 and 24), which probably reflects the complex around 25 Ma. Based on a comparison with thermochrono- formation process of fissure monazite. logical data, monazite crystallization recorded between 19 The investigated grains from the western part of the west- and 15 Ma was estimated to have occurred at ∼ 200–300 ◦C ern TW subdome come from the Venediger Duplex, with in the eastern TW (Gnos et al., 2015). New monazite ages the exception of sample 6, which comes from the Glockner from this study in the eastern TW are up to ∼ 22 Ma (sam- nappe system (Fig. 1; Table 1). Samples 2, 4 and 6 were col- ple 19 in Fig. 1), suggesting that early monazite crystalliza- lected near the major Brenner normal fault, which delimits tion in the area may have occurred at higher temperatures of the TW to the west, and samples 1, 3, 5 and 7 were collected 350–400 ◦C. in the vicinity of sinistral strike-slip faults (Fig. 1). Average While early fissure formation is related to E–W exten- growth domain ages range from 20.9 ± 0.6 to 10.0 ± 0.2 Ma sion (leading to flat foliation and E–W mineral lineations; (samples 3 and 2), with the youngest ages recorded in the Fig. 2c), we suggest that monazite formation also occurred western TW (Figs. 1, 3 and 6a; Tables 3 and 4). along the sinistral strike-slip to oblique-slip movements (ver- The central part of the TW displays growth domain ages tical foliation and flat to inclined lineation; Fig. 2), particu- between 18.3 ± 1.1 and 10.4 ± 0.2 (samples 8 and 14; Figs. 1 larly developed in the central and western parts of the TW and 4; Tables 3 and 4), but the majority of the dated crystals (e.g. Rosenberg et al., 2018; Schneider et al., 2013). These in this area record ages around 17 Ma (Fig. 6b). Samples 8, 9 shear zones developed as a result of bending of the E–W- and 10 were collected between the eastern and western termi- oriented upright folds around a vertical axis (leading edge nation of the ASZ and the SEMP fault (Fig. 1). Another three of the Dolomite indenter) (Fig. 1). This occurred when N– samples (11, 12 and 13; Table 1) were collected in the north- S shortening could no longer be accommodated by folding ern prolongation of the AhSZ, and a seventh monazite (grain and doming within the TW. Associated with these move- 14) was sampled near the southern border of the eastern part ments is the formation of a younger generation of fissures of the western subdome (Fig. 1). (see Pfitscherjoch example above), the peak activity of which The oldest ages are principally recorded in the eastern is recorded at ∼ 17 Ma (phase 2, green symbols in Fig. 7). part of the TW at around 21 Ma (Fig. 6c). Average ages This fissure generation is associated with a steep foliation of growth domains range from 21.7 ± 0.4 to 13.6 ± 0.6 Ma and a flat lineation (Fig. 2) but subparallel in orientation to (samples 19a and 25; Figs. 1, 4 and 6c; Tables 3 and 4). The the earlier fissure formation. The monazite ages at ∼ 17 Ma samples were mainly collected at the western border of the found in the western and central TW (Figs. 1, 6 and 7; sam- eastern subdome, in the Venediger Duplex or near the bound- ples 5, 8, 13; Table 4) are associated with sinistral fault zones, ary with the Glockner–Modereck nappe systems (Fig. 1). as in the Pfitscherjoch region or near the eastern termination Sample 25 was taken at some distance from the other sam- of the ASZ and AhSZ faults (see above). Unfortunately, we ples, near the southeastern border of the eastern subdome do not have structural information on the westernmost and (Fig. 1). easternmost analysed samples (6 and 25; Figs. 1, 6 and 7), but they can be speculated to also have formed in associa- tion with a strike-slip shear zone or the BNF and KNF in 5 Discussion the case of samples 6 and 25, respectively. At larger scale, these movements seem to have been associated with the de- 5.1 Fissure monazite ages velopment of the sinistral Giudicarie fault (GF, located at the southwestern corner of the TW), offsetting the Periadri- The oldest monazite ages of 21.7 ± 0.4 to 19.9 ± 0.3 Ma atic fault (PF; Fig. 8b, e.g. Pleuger et al., 2012). Ages of (found in samples 19a and 20; Figs. 1, 6c and 7a and d) ∼ 17 Ma are also recorded in the eastern part of the TW,

Solid Earth, 11, 437–467, 2020 www.solid-earth.net/11/437/2020/ E. Ricchi et al.: Cenozoic deformation in the Tauern Window 457

Figure 3. Chemical, textural and geochronological information of monazite grains from the western TW. On BSE images, colour-filled circles correspond to ion probe spot locations. Note that the square-shape shading in grain 4 is due to an artefact of composing BSE images with diverse contrast.

www.solid-earth.net/11/437/2020/ Solid Earth, 11, 437–467, 2020 458 E. Ricchi et al.: Cenozoic deformation in the Tauern Window

Figure 4. Chemical, textural and geochronological information of monazite grains from the central TW. On BSE images, colour-filled circles correspond to ion probe spot locations. Note that the square-shape shading in grains 10 and 11 is due to an artefact of composing BSE images with diverse contrast.

Solid Earth, 11, 437–467, 2020 www.solid-earth.net/11/437/2020/ E. Ricchi et al.: Cenozoic deformation in the Tauern Window 459

Figure 5. www.solid-earth.net/11/437/2020/ Solid Earth, 11, 437–467, 2020 460 E. Ricchi et al.: Cenozoic deformation in the Tauern Window

Figure 5. Chemical, textural and geochronological information of monazite grains from the eastern TW. On BSE images, colour-filled circles correspond to ion probe spot locations. Note that the square-shape shading in grains 15, 17, 18 and 20 is due to an artefact of composing BSE images with diverse contrast.

Figure 6. Cross sections of (a) the western part of the western subdome, (b) the central part of the western subdome and (c) the western end of the eastern subdome, modified after (Schmid et al., 2013). See Fig. 1 for locations and legend. Sample locations are indicated by yellow stars and identified by sample numbers listed in Table 1. Monazite crystallization ages are present in the lower part of the figure and are linked to each sample by light-grey dashed lines. Weighted mean ages from this study and from Gnos et al. (2015) are presented by yellow diamonds and yellow circles, respectively, and blue bars correspond to the range of single spot dates. likely linked to the KNF and Mölltal fault (MöF) activity These ages date the latest known activity of this shear zone (samples 16, 21, 24 and 25; Fig. 7a and d; e.g. Favaro et to ∼ 15 Ma. Whereas younger ages, associated with reactiva- al., 2017). In grains located in the western part of the east- tion of fault zones are widespread in the central and western ern subdome, in the prolongation of the MöF (e.g. Kurz TW, tectonic movements seem to cease in the eastern TW and Neubauer, 1996) (Fig. 1), numerous monazite growth after this time (Fig. 8c). domains yield ages between 15.6 ± 0.7 and 15.0 ± 0.5 Ma The youngest monazite growth domain ages, principally (bracketed by samples 22 and 21 from Gnos et al., 2015; recorded in the western subdome, range from 13.2 ± 0.3 to Figs. 1, 6c, 7a and d; green circles in Fig. 7d; Table 4). 10.0 ± 0.2 Ma (samples 5 and 2; Table 4), indicating steps

Solid Earth, 11, 437–467, 2020 www.solid-earth.net/11/437/2020/ E. Ricchi et al.: Cenozoic deformation in the Tauern Window 461

Figure 7. (a) Map of the TW from Fig. 1 with sample locations coloured as function of deformation episodes (coloured stars). See Fig. 1 for legend. (b) DD’ NE–SW cross section across the BNF, (c) AA’ NW–SE cross section perpendicular to the axial plane of the western subdome and (d) EE’ longitudinal cross section parallel to the main axial plane of the TW metamorphic dome, modified after Bertrand et al. (2017). In the upper part, coloured and numbered stars correspond to sample locations and are linked to corresponding Th-Pb monazite ages by dashed vertical lines. Sample numbers refer to Table 1. In the lower part, monazite weighted mean ages from this study and from Gnos et al. (2015) are labelled by coloured diamond and circles, respectively, and the range of single spot dates is depicted by blue bars. The colour code used for diamonds and circles follows deformation episodes explained in the discussion. Note that most error bars are smaller than the size of the diamonds and circles. Zircon and apatite fission track ages are from the Bertrand et al. (2017) compilation; light- and dark-grey dots with error bars are displayed for comparison. Square brackets shown to the right delimit the main periods of monazite growth discussed in the text: (1) early record of N–S shortening and associated E–W extension, (2) contemporaneous N–S shortening and strike slip, (3) reactivation of strike slip to oblique slip. www.solid-earth.net/11/437/2020/ Solid Earth, 11, 437–467, 2020 462 E. Ricchi et al.: Cenozoic deformation in the Tauern Window of reactivation of the different sinistral strike-slip to oblique- slip movements along different faults (phase 3 and blue sym- bols in Fig. 7). Based on our monazite crystallization data, the oldest activities of this younger phase are recorded near the GSZ (sample 5) and in the prolongation of the AhSZ (samples 7 and 9). The youngest activities are recorded in association with the ASZ, OSZ and TSZ in Fig. 7a–c (sam- ples 1, 2 and 4), and in the central TW in an area located south of the main fault systems (sample 14; Fig. 7a). In ad- dition to faults activity at ∼ 12 Ma (Fig. 8), coeval strike-slip activity has also been documented in many areas of the cen- tral and western Alps (e.g. Bergemann et al., 2017, 2019; Berger et al., 2013; Gasquet et al., 2010; Grand’Homme et al., 2016a; Pleuger et al., 2012; Ricchi et al., 2019). In summary, in the western TW, monazite ages (Fig. 1) constrain the activities of the ASZ (18–12 Ma, samples 8 and 9), AhSZ (17–12 Ma, samples 13 and 7), TSZ/OSZ (11.5– 10 Ma, samples 1 and 2; older ages of sample 3 are probably related to extensional unroofing) and GSZ (17–13 Ma). In the eastern part, the MöF is active between 19 and 15 Ma.

5.2 Comparison with shear zone dating

A number of attempts to date shear zone activity in the TW using Ar-Ar, Rb-Sr and Sm-Nd techniques have been made in the past, which were, however, based on mineral separa- tion techniques without a clear structural control on the dated grains (e.g. Blanckenburg et al., 1989; Glodny et al., 2008; Pollington and Baxter, 2010, 2011; Urbanek et al., 2002). An exception to this is the 40Ar / 39Ar study of Schneider et al. (2013) on syn-kinematic phengite and K-feldspar which will be used in the following as a comparison (Table 2). Fis- sure monazite ages largely corroborate this work, similarly showing the longevity of different shear zones in the TW. The ages confirm that even though most of the dated monazite samples are only located in the damage zone in the vicin- ity of the core of the shear zones, fluid-filled fissures pro- vide a sensitive system where tectonic activity triggers fluid- enhanced dissolution–precipitation reactions at lower green- schist to sub-greenschist facies conditions. While Schneider et al. (2013) obtained crystallization age ranges of 33–15 Ma for the ASZ, 24–12 Ma for the TSZ and 20–7 Ma for the GSZ (Table 2), our data confirm fluid ac- tivity, and thus possible tectonic activity, at 18–12, 11.5– 10 and 17–13 Ma, respectively (Fig. 7). However, the oldest dates from Schneider et al. (2013) might also be interpreted as older grains that have been aligned in the new foliation Figure 8. Tectonic map of the Alps based on Pleuger et al. (2012) (Fig. 8). The data presented here indicate that all of the shear showing active Cenozoic faults at ∼ 21 (in red), 17 (in green) and zones where potentially active at least until ∼ 13–12 Ma, and 12 Ma (in blue), respectively. Note that after 17 Ma the Giudicarie the Tuxer and/or Olperer shear zones even until ∼ 7 Ma, as fault (GF) becomes active and hence the Periadriatic fault (PF) and suggested by younger dates observed in grain 2 (Figs. 3b, the Mölltal fault (MöF, dextral fault at the southeastern corner of 6a and 7, Tables 3 and 4). However, the fissure monazite the TW) become inactive. Sinistral strike-slip faulting starts at ∼ data do not date the initiation of the GSZ (Selverstone et al., 19 Ma and is affecting the western and central parts of the TW until at least 7 Ma. Future active faults are depicted in grey and inactive 1991) nor the earliest activity of the TSZ (greenschist to am- faults in black. phibolite facies; Selverstone et al., 1984, 1991) or the ASZ

Solid Earth, 11, 437–467, 2020 www.solid-earth.net/11/437/2020/ E. Ricchi et al.: Cenozoic deformation in the Tauern Window 463

Figure 9. Th as function of U content obtained for all the monazite grains analysed in this study. Samples indicated by an asterisk are from Gnos et al. (2015). Fissure monazite grains associated with hematite (oxidizing conditions) are labelled in red, whereas grains hosted in graphite-bearing rocks (reducing conditions) are labelled in blue. Samples with intermediate composition and/or for which we have no information on the presence of hematite or graphite in the fissure environment are labelled in grey.

(greenschist facies; Cole et al., 2007), since their formation Foeken et al., 2007; Fügenschuh et al., 1997; Grundmann and already started at amphibolite facies conditions. As Alpine Morteani, 1985; Hejl, 1997; Mancktelow et al., 2001; Most, fissures only form under greenschist facies conditions, the 2003; Pomella et al., 2011; Staufenberg, 1987; Steenken et oldest monazite crystallization ages are younger than the data al., 2002; Viola et al., 2001; Wölfler et al., 2008, 2012). obtained by Schneider et al. (2013). This indicates that shear Three cross sections, DD’ (perpendicular to the BNF), AA’ zone activity started earlier than the fissure monazite record. (perpendicular to the western limb of the western subdome) As the monazite age range of the younger fault activity is and EE’ (parallel to the main axial plane of the TW), are comparable to the data of Schneider et al. (2013) but is not presented in Fig. 7, redrawn after Bertrand et al. (2017) and the same for individual shear zones, it seems likely that all Schmid et al. (2013). Zircon and apatite fission track data shear zones of the western TW were active as recently as 8– compiled by Bertrand et al. (2017) are displayed in the lower 7 Ma. part of Fig. 7b–d and compared to fissure monazite ages. As described in Bertrand et al. (2017) (first model), fission 5.3 Comparison with fission track data track data along the AA’ cross section (Fig. 7c) nicely dis- play a dome-like shape, with younger ages recorded near the subdome axial plane, where cooling was slower. By con- There is a wealth of zircon fission track (ZFT) data that can trast, along the EE’ longitudinal cross section (Fig. 7d), ZFT assist in describing the exhumation and low-grade tectonic and AFT are younger on the western and eastern borders activity in the TW (Bertrand, 2014; Bertrand et al., 2017; of the TW where the two major extensional faults, the BNF Dunkl et al., 2003; Fügenschuh et al., 1997; Mancktelow and KNF, are respectively located. Perpendicular to the BNF et al., 2001; Most, 2003; Pomella et al., 2011; Steenken et (DD’ cross section, Fig. 7b), the fission tracks record cool- al., 2002; Stöckhert et al., 1999; Viola et al., 2001; Wölfler ing ages younging from the footwall toward the plane of et al., 2008) and apatite fission track (AFT) data (Bertrand, the normal fault (from 10 to 4 Ma for AFT; second model 2014; Bertrand et al., 2017; Coyle, 1994; Di Fiore, 2013; www.solid-earth.net/11/437/2020/ Solid Earth, 11, 437–467, 2020 464 E. Ricchi et al.: Cenozoic deformation in the Tauern Window of Bertrand et al., 2017). Along the EE’ cross section, the and reactivation of strike-slip/normal faulting (14–10 Ma). youngest monazite ages (15–10 Ma) lie between zircon and Overall, fissure monazite age recording indicates that in the apatite fission track data (grey and blue symbols), whereas TW Cenozoic faults show increased activity at ∼ 21, ∼ 17 the older ages (> 17 Ma) do not follow the cooling trend and and ∼ 12 Ma, probably due to reorganization of plate move- are equal to or older than the ZFT data. This means that ments occurring at those times. Comparison of Th-Pb fis- at least the fissure monazites recording older ages crystal- sure monazite crystallization ages with existing crystalliza- lized somewhere above ZFT closure temperatures of ∼ 240– tion and cooling ages (e.g. AFT, ZFT, white mica from fault 280 ◦C (Bernet, 2009; Bernet and Garver, 2005; Reiners, zones) shows that the latest stages of monazite crystallization 2005; Yamada et al., 1995) (Fig. 7d). occurred at temperatures between apatite and zircon fission track “closure” temperatures. This enlarged dataset also sup- 5.4 Monazite Th/U as monitor of oxidizing and ports previous observations on fissure monazite chemistry reducing conditions displaying extremely high Th/U ratios (∼ 1200) under ox- idizing conditions in association with hematite. Extreme low and high Th/U ratios described in fissure mon- azite by Gnos et al. (2015) (T1, T2 and T3 samples in Fig. 9) are also observed in some grains from this study (red and Data availability. The data used in this study are available in Ta- blue labels in Fig. 9). Hydrothermal monazite from the TW bles 3 and 4. associated with hematite in fissure typically displays very high Th/U ratios of around 1200 (Fig. 9, red labels; Ta- ble 1), whereas grains obtained from graphite-bearing host Supplement. The supplement related to this article is available on- rocks show very low Th/U ratios around 8 (Fig. 9, blue la- line at: https://doi.org/10.5194/se-11-437-2020-supplement. bels; Table 1). This attests for oxidizing and reducing fluid conditions in the fissure environment, respectively. The Th/U in monazite grains PFIT1 and MOKR1 would Author contributions. Fissure monazite samples were organized by instead record a dynamic oxidation environment due to vari- EG and FW. Monazite samples for dating were selected by ER, CAB, EG and AB according to tectonic settings and fault activ- able fluid conditions. In PFIT1 monazite, the Th/U decreases ity of the study area. ER prepared the manuscript during her PhD from core to rim, whereas within MOKR1 the opposite evo- project under the supervision of EG, with contributions from all co- lution is observed (Fig. 9). Thus, in the first case, the fissure authors. Sample preparation and BSE imaging were performed by environment evolves toward reducing conditions, whereas in ER and CAB. Data acquisition and reduction at the SwissSIMS and the second case there is an evolution towards more oxidizing NordSIMS facility was, respectively, carried out by ER and CAB conditions. Many of the other grains indicate intermediate under the supervision of DR and MJW. oxidizing conditions and they could not be assigned to one of the two categories defined above, as the presence of either hematite or graphite is uncertain (Fig. 9; grey labels). Competing interests. The authors declare that they have no conflict of interest.

6 Conclusions Acknowledgements. We thank Sepp Brugger, Kurt Novak, Franz Th-Pb ages of fissure monazite provide an extended record Gartner, Peter Hellweger, Adolf Meyer, Sebastian Planken-Steiner, Johann Rappold, Josef Rathgeb, Alexandre Salzmann, Maria of exhumation of the TW during the Miocene. The investi- ◦ Schaffhauser, Andreas Steiner, and Ermin Welzl for providing sam- gated monazites crystallized at temperatures < 400 C in the ples for this study. Urs Klötzli and Jan Pleuger are thanked for their presence of hydrothermal fluids that circulated in open fis- helpful comments. sures formed through tectonic movements. The Th-Pb ages recorded by fissure monazites are in general agreement with previously published geochronological data and range be- Financial support. This research has been supported by the Swiss tween 21.7 ± 0.4 and 10.0 ± 0.2 Ma. Spot dates suggests that National Science Foundation (grant no. 200020-165513). The monazite crystallization in the metamorphic and structural NordSIMS facility received funding from the Swedish Research TW dome occurred over a period of ∼ 16 Myr. The com- Council (infrastructure grant no. 2014-06375) and the Swedish Mu- bination of structural and geochronological information al- seum of Natural History; this is NordSIMS publication no. 636. lows relating monazite growth to tectonic movements that affected the TW. The three major growth episodes identi- fied in this study, by dating monazite growth domains, are Review statement. This paper was edited by Bernhard Grasemann interpreted to be associated with N–S shortening associated and reviewed by Jan Pleuger and Urs Klötzli. with the E–W extension (22–20 Ma), contemporaneous N– S shortening and sinistral strike-slip movements (19–15 Ma)

Solid Earth, 11, 437–467, 2020 www.solid-earth.net/11/437/2020/ E. Ricchi et al.: Cenozoic deformation in the Tauern Window 465

References closure temperatures, Contrib. Mineral. Petrol., 101, 1–11, https://doi.org/10.1007/BF00387196, 1989. Aleinikoff, J. N., Schenck, W. S., Plank, M. O., Srogi, L. A., Cherniak, D. J., Watson, E. B., Grove, M., and Harri- Fanning, C. M., Kamo, S. L., and Bosbyshell, H.: Decipher- son, T. M.: Pb diffusion in monazite: A combined ing igneous and metamorphic events in high-grade rocks of the RBS/SIMS study, Geochim. Cosmochim. Ac., 68, 829–840, Wilmington complex, Delaware: Morphology, cathodolumines- https://doi.org/10.1016/j.gca.2003.07.012, 2004. cence and backscattered electron zoning, and SHRIMP U-Pb Cole, J., Hacker, B., Ratschbacher, L., Dolan, J., Seward, G., geochronology of zircon and monazite, Bull. Geol. Soc. Am., Frost, E., and Frank, W.: Localized ductile shear below the 118, 39–64, https://doi.org/10.1130/B25659.1, 2006. seismogenic zone: Structural analysis of an exhumed strike- Ayers, J. C., Miller, C., Gorisch, B., and Milleman, J.: slip fault, Austrian Alps, J. Geophys. Res.-Sol. Ea., 112, 1–15, Textural development of monazite during high-grade meta- https://doi.org/10.1029/2007JB004975, 2007. morphism: Hydrothermal growth kinetics, with implications Coyle, D. A.: The application of apatite fission-track analysis to for U,Th-Pb geochronology, Am. Mineral., 84, 1766–1780, problem in tectonics, PhD thesis, La Trobe Univ. Bundoora, Vic- https://doi.org/10.2138/am-1999-11-1206, 1999. toria, Australia, 1994. Bergemann, C. A., Gnos, E., Berger, A., Whitehouse, M., Di Fiore, G.: Evoluzione Morfotettonica delle aree alpine “Sem- Mullis, J., Wehrens, P., Pettke, T., and Janots, E.: Th-Pb pione” e “Brennero” attraverso studi termocronologici di bassa ion probe dating of zoned hydrothermal monazite and its temperatura, PhD thesis, Università di Bologna, 2013. implications for repeated shear zone activity: An example Dunkl, I., Frisch, W., and Grundmann, G.: Zircon fission-track ther- from the Central Alps, Switzerland, Tectonics, 36, 671–689, mochronology of the south-eastern part of the TW and the adja- https://doi.org/10.1002/2016TC004407, 2017. cent Austroalpine margin, Eastern Alps, Eclogae Geol. Helv., 96, Bergemann, C. A., Gnos, E., Berger, A., Whitehouse, M. J., 209–217, 2003. Mullis, J., Walter, F., and Bojar, H. P.: Constraining long- Favaro, S., Handy, M. R., Scharf, A., and Schuster, R.: Changing term fault activity in the brittle domain through in situ patterns of exhumation and denudation in front of an advancing dating of hydrothermal monazite, Terra Nov., 30, 440–446, crustal indenter, Tauern Window (Eastern Alps), Tectonics, 36, https://doi.org/10.1111/ter.12360, 2018. 1053–1071, https://doi.org/10.1002/2016TC004448, 2017. Bergemann, C. A., Gnos, E., and Whitehouse, M. J.: Insights Fitz-Diaz, E., Cottle, J. M., Vidal-Reyes, M. I., and van der into the tectonic history of the Western Alps through Pluijm, B.: In situ Th/Pb dating of monazite in fibrous veins: dating of fissure monazite in the Mont Blanc and Aigu- Direct dating of veins and deformation in the shallow upper illes Rouges Massifs, Tectonophysics, 750, 203–212, crust of the Mexican Orogen, J. Struct. Geol., 124, 136–142, https://doi.org/10.1016/j.tecto.2018.11.013, 2019. https://doi.org/10.1016/j.jsg.2019.04.004, 2019. Bergemann, C. A., Gnos, E., Berger, A., Janots, E., and White- Foeken, J. P. T., Persano, C., Stuart, F. M., and ter Voorde, M.: Role house, M. J.: Dating tectonic activity in the Lepontine Dome and of topography in isotherm perturbation: Apatite (U−Th)/He and Rhone-Simplon Fault regions through hydrothermal monazite- fission track results from the Malta tunnel, Tauern Window, (Ce), Solid Earth, 11, 199–222, https://doi.org/10.5194/se-11- Austria, Tectonics, 26, https://doi.org/10.1029/2006TC002049, 199-2020, 2020. 2007. Berger, A., Gnos, E., Janots, E., Whitehouse, M., Soom, Fügenschuh, B., Seward, D., and Mancktelow, N.: Exhuma- M., Frei, R., and Waight, T. E.: Dating brittle tectonic tion in a convergent orogen: the western Tauern Win- movements with cleft monazite: Fluid-rock interaction and dow, Terra Nov., 9, 213–217, https://doi.org/10.1111/j.1365- formation of REE minerals, Tectonics, 32, 1176–1189, 3121.1997.tb00015.x, 1997. https://doi.org/10.1002/tect.20071, 2013. Gardés, E., Jaoul, O., Montel, J. M., Seydoux-Guillaume, Bernet, M.: A field-based estimate of the zircon fission- A. M., and Wirth, R.: Pb diffusion in monazite: An track closure temperature, Chem. Geol., 259, 181–189, experimental study of Pb2+ + Th4+ < = > 2Nd3+ inter- https://doi.org/10.1016/j.chemgeo.2008.10.043, 2009. diffusion, Geochim. Cosmochim. Ac., 70, 2325–2336, Bernet, M. and Garver, J. I.: Fission-track analysis of detrital zircon, https://doi.org/10.1016/j.gca.2006.01.018, 2006. Rev. Mineral. Geochem., 58, 205–237, 2005. Gardés, E., Montel, J. M., Seydoux-Guillaume, A. M., and Bertrand, A.: Exhuming the core of collisional orogens, the Tauern Wirth, R.: Pb diffusion in monazite: New constraints Window (Eastern-Alps), A geochronological, modelling and from the experimental study of Pb2+ < = > Ca2+ inter- structural study, PhD tesis, Freie Univ. Berlin, 2014. diffusion, Geochim. Cosmochim. Ac., 71, 4036–4043, Bertrand, A., Rosenberg, C., and Garcia, S.: Fault slip analysis and https://doi.org/10.1016/j.gca.2007.06.036, 2007. late exhumation of the Tauern Window, Eastern Alps, Tectono- Gasquet, D., Bertrand, J. M., Paquette, J. L., Lehmann, J., Ratzov, physics, 649, 1–17, https://doi.org/10.1016/j.tecto.2015.01.002, G., Ascenção De Guedes, R. A., Tiepolo, M., Boullier, A. M., 2015. Scaillet, S., and Nomade, S.: Miocene to Messinian deforma- Bertrand, A., Rosenberg, C., Rabaute, A., Herman, F., and tion and hydrothermal activity in a pre-Alpine basement mas- Fügenschuh, B.: Exhumation mechanisms of the Tauern sif of the French western Alps: New U-Th-Pb and argon ages Window (Eastern Alps) inferred from apatite and zir- from the Lauzière massif, Bull. Soc. Geol. Fr., 181, 227–241, con fission track thermochronology, Tectonics, 36, 207–228, https://doi.org/10.2113/gssgfbull.181.3.227, 2010. https://doi.org/10.1002/2016TC004133, 2017. Glodny, J., Ring, U., and Kühn, A.: Coeval high-pressure Blanckenburg, F. v., Villa, I. M., Baur, H., Morteani, G., metamorphism, thrusting, strike-slip, and extensional shear- and Steiger, R. H.: Time calibration of a PT-path from the Western Tauern Window, Eastern Alps: the problem of www.solid-earth.net/11/437/2020/ Solid Earth, 11, 437–467, 2020 466 E. Ricchi et al.: Cenozoic deformation in the Tauern Window

ing in the Tauern Window, Eastern Alps, Tectonics, 27, straints from geochronology, PhD thesis, University of Tübingen, https://doi.org/10.1029/2007TC002193, 2008. p. 97, 2003. Gnos, E., Janots, E., Berger, A., Whitehouse, M., Walter, F., Pet- Mullis, J.: P-T-t path of quartz formation in extensional veins of tke, T., and Bergemann, C. A.: Age of cleft monazites in the the Central Alps, Schweiz. Miner. Petrogr. Mitt, 76, 159–164, eastern Tauern Window: constraints on crystallization condi- https://doi.org/10.5169/seals-57694, 1996. tions of hydrothermal monazite, Swiss J. Geosci., 108, 55–74, Mullis, J., Dubessy, J., Poty, B., and O’Neil, J.: Fluid regimes dur- https://doi.org/10.1007/s00015-015-0178-z, 2015. ing late stages of a continental collision: physical, chemical, Grand’Homme, A., Janots, E., Bosse, V., Seydoux-Guillaume, and stable isotope measurements of fluid inclusions in fissure A. M., and Ascenção De Guedes, R. A.: Interpretation of quartz from a geotraverse through the Central Alps, Switzerland, U-Th-Pb in-situ ages of hydrothermal monazite-(Ce) and Geochim. Cosmochim. Ac., 58, 2239–2267, 1994. xenotime-(Y): evidence from a large-scale regional study in Pleuger, J., Mancktelow, N., Zwingmann, H., and Manser, M.: K-Ar clefts from the western alps, Mineral. Petrol., 110, 787–807, dating of synkinematic clay gouges from Neoalpine faults of the https://doi.org/10.1007/s00710-016-0451-5, 2016a. Central, Western and Eastern Alps, Tectonophysics, 550, 1–16, Grand’Homme, A., Janots, E., Seydoux-Guillaume, A. M., Guil- https://doi.org/10.1016/j.tecto.2012.05.001, 2012. laume, D., Bosse, V., and Magnin, V.: Partial resetting of the Pollington, A. D. and Baxter, E. F.: High resolution Sm-Nd gar- U-Th-Pb systems in experimentally altered monazite: Nanoscale net geochronology reveals the uneven pace of tectonometa- evidence of incomplete replacement, Geology, 44, 431–434, morphic processes, Earth Planet. Sc. Lett., 293, 63–71, https://doi.org/10.1130/G37770.1, 2016b. https://doi.org/10.1016/j.epsl.2010.02.019, 2010. Grand’Homme, A., Janots, E., Seydoux-Guillaume, A. M., Guil- Pollington, A. D. and Baxter, E. F.: High precision mi- laume, D., Magnin, V., Hövelmann, J., Höschen, C., and Bo- crosampling and preparation of zoned garnet porphyrob- iron, M. C.: Mass transport and fractionation during monazite lasts for Sm-Nd geochronology, Chem. Geol., 281, 270–282, alteration by anisotropic replacement, Chem. Geol., 484, 51–68, https://doi.org/10.1016/j.chemgeo.2010.12.014, 2011. https://doi.org/10.1016/j.chemgeo.2017.10.008, 2018. Pomella, H., Klötzli, U., Scholger, R., Stipp, M., and Fügenschuh, Grundmann, G. and Morteani, G.: The young uplift and thermal B.: The Northern Giudicarie and the Meran-Mauls fault (Alps, history of the (Austria/Italy), evidence from Northern Italy) in the light of new paleomagnetic and geochrono- apatite fission track ages, Jahrb. Geol. Bundesanst, 128, 197–216, logical data from boudinaged Eo-/Oligocene tonalites, Int. J. 1985. Earth Sci., 100, 1827–1850, https://doi.org/10.1007/s00531-010- Hejl, E.: “Cold spots” during the Cenozoic evolution of 0612-4, 2011. the Eastern Alps: Thermochronological interpretation of Putnis, A.: Mineral Replacement Reactions, Rev. Miner. Geochem., apatite fission-track data, Tectonophysics, 272, 159–173, 70, 87–124, https://doi.org/10.2138/rmg.2009.70.3, 2009. https://doi.org/10.1016/S0040-1951(96)00256-9, 1997. Reiners, P. W.: Zircon (U−Th)/He Thermochronometry, in: Re- Janots, E., Berger, A., Gnos, E., Whitehouse, M., Lewin, E., and views in Mineralogy and Geochemistry, vol. 58, 151–179, 2005. Pettke, T.: Constraints on fluid evolution during metamorphism Ricchi, E., Bergemann, C. A., Gnos, E., Berger, A., Rubatto, D., and from U–Th–Pb systematics in Alpine hydrothermal monazite, Whitehouse, M. J.: Constraining deformation phases in the Aar Chem. Geol., 326, 61–71, 2012. Massif and the Gotthard Nappe (Switzerland) using Th-Pb crys- Janots, E., Grand’Homme, A., Bernet, M., Guillaume, D., Gnos, tallization ages of fissure monazite-(Ce), Lithos, 342/343, 223– E., Boiron, M.-C., Rossi, M., Seydoux-Guillaume, A.-M., and 238, https://doi.org/10.1016/j.lithos.2019.04.014, 2019. De Ascenção Guedes, R.: Geochronological and thermometric Rosenberg, C. L. and Berger, A.: On the causes and modes evidence of unusually hot fluids in an Alpine fissure of Lauzière of exhumation and lateral growth of the Alps, Tectonics, 28, granite (Belledonne, Western Alps), Solid Earth, 10, 211–223, https://doi.org/10.1029/2008TC002442, 2009. https://doi.org/10.5194/se-10-211-2019, 2019. Rosenberg, C. L. and Garcia, S.: Estimating displacement Kurz, W. and Neubauer, F.: Deformation partitioning during along the Brenner Fault and orogen-parallel extension in updoming of the Sonnblick area in the Tauern Window the Eastern Alps, Int. J. Earth Sci., 100, 1129–1145, (Eastern Alps, Austria), J. Struct. Geol., 18, 1327–1337, https://doi.org/10.1007/s00531-011-0645-3, 2011. https://doi.org/10.1016/S0191-8141(96)00057-0, 1996. Rosenberg, C. L. and Schneider, S.: The western termination of the Ludwig, K. R.: User’s manual for a geochronological toolkit for SEMP Fault (eastern Alps) and its bearing on the exhumation of Microsoft Excel (Isoplot/Ex version 3.0), Berkeley Geochronol. the Tauern Window, Geol. Soc. Lond. Spec. Publ., 298, 197–218, Cent. Spec. Publ., 4, 1–70, 2003. 2008. Luth, S. W. and Willingshofer, E.: Mapping of the post-collisional Rosenberg, C. L., Schneider, S., Scharf, A., Bertrand, A., cooling history of the Eastern Alps, Swiss J. Geosci., 101, 207– Hammerschmidt, K., Rabaute, A., and Brun, J. P.: Re- 223, https://doi.org/10.1007/s00015-008-1294-9, 2008. lating collisional kinematics to exhumation processes Mancktelow, N. S., Stöckli, D. F., Grollimund, B., Müller, W., in the Eastern Alps, Earth-Sci. Rev., 176, 311–344, Fügenschuh, B., Viola, G., Seward, D., and Villa, I. M.: https://doi.org/10.1016/j.earscirev.2017.10.013, 2018. The DAV and Pediatriatic fault systems in the Eastern Alps Scharf, A., Handy, M. R., Favaro, S., Schmid, S. M., and Bertrand, South of the Tauern window, Int. J. Earth Sci., 90, 593–622, A.: Modes of orogen-parallel stretching and extensional exhuma- https://doi.org/10.1007/s005310000190, 2001. tion in response to microplate indentation and roll-back sub- Most, P.: Late Alpine cooling histories of tectonic blocks along duction (Tauern Window, Eastern Alps), Int. J. Earth Sci., 102, the central part of the Transalp-Traverse (Inntal-Gadertal): Con- 1627–1654, https://doi.org/10.1007/s00531-013-0894-4, 2013.

Solid Earth, 11, 437–467, 2020 www.solid-earth.net/11/437/2020/ E. Ricchi et al.: Cenozoic deformation in the Tauern Window 467

Schmid, S. M., Fügenschuh, B., Kissling, E., and Schuster, R.: Tec- Stacey, J. S. and Kramers, J. D.: Approximation of terrestrial lead tonic map and overall architecture of the Alpine orogen, Eclo- isotope evolution by a two-staged model, Earth Planet. Sc. Lett., gae Geol. Helv., 97, 93–117, https://doi.org/10.1007/s00015- 26, 207–221, 1975. 004-1113-x, 2004. Staufenberg, H.: Apatite fission-track evidence for postmetamor- Schmid, S. M., Scharf, A., Handy, M. R., and Rosenberg, C. L.: phic uplift and cooling history of the Eastern Tauern Window The Tauern Window (Eastern Alps, Austria): a new tectonic map, and the surrounding Austroalpine (Central Eastern Alps, Aus- with cross-sections and a tectonometamorphic synthesis, Swiss J. tria), Jahrb. Geol. Bundesanst, 130, 571–586, 1987. Geosci., 106, 1–32, https://doi.org/10.1007/s00015-013-0123-y, Steenken, A., Siegesmund, S., Heinrichs, T., and Fügenschuh, 2013. B.: Cooling and exhumation of the Rieserferner Pluton (East- Schneider, S., Hammerschmidt, K., and Rosenberg, C. L.: Dating ern Alps, Italy/Austria), Int. J. Earth Sci., 91, 799–817, the longevity of ductile shear zones: Insight from 40Ar/39Ar https://doi.org/10.1007/s00531-002-0260-4, 2002. in situ analyses, Earth Planet. Sc. Lett., 369–370, 43–58, Stöckhert, B., Brix, M. R., Kleinschrodt, R., Hurford, A. J., and https://doi.org/10.1016/j.epsl.2013.03.002, 2013. Wirth, R.: Thermochronometry and microstructures of quartz- Selverstone, J.: Evidence for east-west crustal extension in the East- a comparison with experimental flow laws and predictions on ern Alps: Implications for the unroofing history of the Tauern the temperature of the brittle-plastic transition, J. Struct. Geol., Window, Tectonics, 7, 87–105, 1988. 21, 351–369, https://doi.org/10.1016/S0191-8141(98)00114-X, Selverstone, J., Spear, F. S., Franz, G., and Morteani, G.: High- 1999. pressure metamorphism in the SW tauern window, Austria: P-T Urbanek, C., Frank, W., Grasemann, B., and Decker, K.: Eoalpine paths from hornblende-kyanite-staurolite schists, J. Petrol., 25, versus Tertiary deformation: dating of heterogeneously parti- 501–531, https://doi.org/10.1093/petrology/25.2.501, 1984. tioned strain (Tauern Window, Austria), in Abstract volume, Selverstone, J., Morteani, G., and Staude J.-M: Fluid channelling edited by: PanGeo Austria, 183–184, 2002. during ductile shearing: transformation of granodiorite into alu- Viola, G., Mancktelow, N. S., and Seward, D.: Late oligocene- minous schist in the Tauern Window, Eastern Alps, J. Meta- neogene evolution of Europe-Adria collision: New struc- morph. Geol., 9, 419–431, 1991. tural and geochronological evidence from the Giudicarie Seydoux-Guillaume, A. M., Montel, J. M., Bingen, B., Bosse, fault system (Italian Eastern Alps), Tectonics, 20, 999–1020, V., de Parseval, P., Paquette, J. L., Janots, E., and Wirth, R.: https://doi.org/10.1029/2001TC900021, 2001. Low-temperature alteration of monazite: Fluid mediated coupled Wölfler, A., Dekant, C., Danišík, M., Kurz, W., Dunkl, I., Putiš, dissolution-precipitation, irradiation damage, and disturbance of M., and Frisch, W.: Late stage differential exhumation of crustal the U-Pb and Th-Pb chronometers, Chem. Geol., 330/331, 140– blocks in the central Eastern Alps: Evidence from fission track 158, https://doi.org/10.1016/j.chemgeo.2012.07.031, 2012. and (U-Th)/He thermochronology, Terra Nov., 20, 378–384, Sharp, Z. D., Masson, H., and Lucchini, R.: Stable isotope geo- https://doi.org/10.1111/j.1365-3121.2008.00831.x, 2008. chemistry and formation mechanisms of quartz veins; extreme Wölfler, A., Stüwe, K., Danišík, M., and Evans, N. J.: Low tem- paleoaltitudes of the Central Alps in the Neogene, Am. J. Sci., perature thermochronology in the Eastern Alps: Implications for 305, 187–219, 2005. structural and topographic evolution, Tectonophysics, 541, 1–18, Spencer, C. J., Kirkland, C. L., and Taylor, R. J. M.: Geoscience https://doi.org/10.1016/j.tecto.2012.03.016, 2012. Frontiers Strategies towards statistically robust interpretations of Yamada, R., Tagami, T., Nishimura, S., and Ito, H.: Annealing ki- in situ U e Pb zircon geochronology, Geosci. Front., 7, 581–589, netics of fission tracks in zircon?: an experimental study, Chem. https://doi.org/10.1016/j.gsf.2015.11.006, 2016. Geol., 122, 249–258, 1995.

www.solid-earth.net/11/437/2020/ Solid Earth, 11, 437–467, 2020