Non-Ionic and Zwitterionic Forms of Neutral Arginine ± an Ab Initio Study

Total Page:16

File Type:pdf, Size:1020Kb

Non-Ionic and Zwitterionic Forms of Neutral Arginine ± an Ab Initio Study 30 March 2001 Chemical Physics Letters 337 22001) 143±150 www.elsevier.nl/locate/cplett Non-ionic and zwitterionic forms of neutral arginine ± an ab initio study Piotr Skurski a,b, Maciej Gutowski b,c, Robyn Barrios a, Jack Simons a,* a Henry Eyring Center for Theoretical Chemistry, Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA b Department of Chemistry, University of Gdansk, ul. Sobieskiego 18, 80-952 Gdansk, Poland c Environmental Molecular Sciences Laboratory, Paci®c Northwest National Laboratory Richland, WA99352, USA Received 14 November 2000; in ®nal form 23 January 2001 Abstract Six low-energy structures of arginine were studied at the zero-point corrected CCSD/6-31++G2d,p)+52sp)//MP2/ 6-31++G2d,p)+52sp) level. Two new non-ionic structures were identi®ed, one of which is 1.75 kcal/mol lower than any previously reported structure. Two new zwitterion conformers are lower in energy than any previously reported zwitterion. The lowest non-ionic structure is lower in energy than the lowest zwitterion by 2.8 kcal/mol at our highest level of theory, and for no basis or theory level is a zwitterion structure suggested to be the global minimum. Finally, we also examined, at Koopmans' theorem level, the electron binding energies of the six structures. Ó 2001 Elsevier Science B.V. All rights reserved. 1. Introduction gas phase [3] but these ®ndings were inconclusive [4]. Other recent eorts concentrated on hydrated It is well known that, in aqueous solutions at [5,6], protonated [3,7,8], and alkali cationized [7±9] pH 7, aminoacids exist primarily in their zwit- aminoacids. terionic forms with the carboxyl group deproto- We have recently suggested stabilizing the nated and one of the nitrogen atoms protonated. zwitterion form of an aminoacid in the gas phase In contrast, the zwitterionic forms are usually with an excess electron [10] and it was via this higher in energy in the gas phase than the corre- route that we began our exploration of various sponding non-zwitterion H2N±CHR±COOH tau- arginine isomer energetics. Our reasoning is that tomers. Moreover, for some aminoacids 2e.g., the zwitterion form of an aminoacid would possess glycine), the zwitterionic structure does not even a larger dipole moment than the non-zwitterion correspond to a local minimum on the gas-phase form. It is well established that a molecule with a potential energy surface [1,2]. There have been dipole moment larger than ca. 2.5 D binds an ex- attempts to identify a zwitterionic tautomer of a cess electron [11] with an electron binding energy neutral aminoacid which is globally stable in the roughly correlated with the magnitude of the di- pole moment [12]. Therefore, we anticipated the instability of the zwitterion relative to the non- * Corresponding author. Fax: +1-801-581-8433. zwitterion structure might be reversed by the E-mail address: [email protected] 2J. Simons). excess electron binding energy. It is our plan to 0009-2614/01/$ - see front matter Ó 2001 Elsevier Science B.V. All rights reserved. PII: S 0 0 0 9 - 2 6 1 4 2 0 1 ) 0 0 166-X 144 P. Skurski et al. / Chemical Physics Letters 337 62001) 143±150 report on our arginine anion ®ndings in a future thermodynamically unstable form may have a publication. However, because there is strong suciently long lifetime to be observed experi- current interest in arginine itself, we decided to put mentally. Moreover, the sources of arginine used forth our ®ndings on the neutral species at this in the Williams and Saykally experiments are dif- time. ferent. One employes solution electro spray at 37± In a recent study, we demonstrated that the 149°C; the other employes a heated pulsed beam instability of the zwitterion structure of glycine is source of pure arginine at 170°C. signi®cantly reduced by the attachment of an ex- The geometrical shapes of the protonated, so- cess electron as a result of which a local minimum diated, and cesiated arginine were probed in the develops on the anionic potential energy surface gas phase by using the ion mobility based ion [10]. However, its energy is still higher than that of chromatography method [7,9]. Unfortunately, the the anion based on the non-zwitterion isomer of qualitative structure of the protonated arginine glycine. This outcome may be related to the fact could not be unambiguously determined from that the proton anity of glycine of 211.9 kcal/mol these experiments. It has been suggested that the is the smallest among all 20 common naturally alkali cationized arginine forms a salt bridge occurring amino acids [7]. The largest proton af- structure, related to the zwitterion form of this ®nity of 251.2 kcal/mol is displayed by arginine [7], aminoacid. Results from the collisionally activated which possesses an extremely basic guanidine dissociation experiments of Williams et al. [13] and group. Therefore, we selected arginine for our the kinetic experiments of Cerda and Wesdemiotis study on stabilization through electron binding [14] indicated, however, that the structure of gas- which leads to the results presented here. phase arginine±alkali metal cation complexes de- The question of which tautomeric form of pends on the size of the alkali metal cation. For neutral arginine is dominant in the gas phase has Li and Na, the non-zwitterion arginine solvates recently been addressed in experimental studies the metal ion. For the larger metal ions, a salt [3,4,7,9,13,14]. Williams and co-workers [3] con- bridge is formed in which the arginine exists as a cluded, on the basis of black body infrared radi- zwitterion. ative dissociation plus Fourier transform-mass Maksic and Kovacevic 2MK), inspired by the spectrometry measurements, that protonated di- variety of intriguing experimental ®ndings, per- mers of arginine are bound in a salt-bridge. formed an extensive computational investigation Moreover, the results of their extensive computa- in order to ®nd the global minimum for neutral tional study at the BLYP/6-31GÃ and MP2/6-31GÃ arginine [15]. They concluded from their thorough levels suggested that a zwitterion form of arginine MP2 and B3LYP calculations using several basis is the global minimum on the potential energy sets, that the most stable structure is a non-ionic. surface, lower by 1 kcal/mol than the lowest non- These authors admitted, however, that the energy ionic tautomer. Saykally and co-workers [4], dierence between the lowest non-ionic and a pair however, did not con®rm the dominance of the of low lying zwitterion structures is relatively small zwitterion of arginine in their infrared cavity 2within 1±3 kcal/mol depending on the theoretical ringdown laser absorption spectroscopy experi- model applied) [15]. ments. The observed band at ca. 1700 cmÀ1, which As detailed above, our long-term goal is to de- is associated with the carbonyl stretch mode of a termine whether an excess electron can stabilize a carboxylic acid, implied the presence of a non- zwitterion structure of arginine. This goal requires ionic structure in their gas-phase sample. The ab- extensive knowledge about the potential energy sence of bands in the 1500±1660 cmÀ1 region, surface for the neutral species, and in this contri- which are associated with the carboxylate stretch bution we characterize what we have found to be modes, suggested a small or vanishing population the most promising neutral non-ionic and zwit- of the zwitterion. It was pointed out, however, that terionic structures. In addition to the structures there may be a signi®cant barrier that separates the characterized so far [3,15], we identi®ed two non- neutral and zwitterion forms of arginine and the zwitterion and two zwitterion structures that are P. Skurski et al. / Chemical Physics Letters 337 62001) 143±150 145 promising candidates. Their relative energies have In terms of atomic orbitals, we primarily used been determined at the MP2, B3LYP, and CCSD 6-31++G2d,p) [21,22] basis sets to describe the levels and their dipole moments have been calcu- neutral molecule. We supplemented this basis with lated at the MP2 and B3LYP levels. These dipole diuse functions having lower exponents to: 2i) moments will guide us as to the ability to bind an make our electronic energies consistent with those excess electron. With this goal in mind, the vertical that we are presently calculating for the corre- electron attachment energies are determined at sponding anionic species, and 2ii) estimate prop- Koopmans' theorem 2KT) level. An unexpected erly the vertical electron attachment energies at outcome of the current study on the six low energy Koopmans' theorem level [23]. Thus, we centered tautomers of arginine is that the largest dipole even-tempered [24] ®ve-term s and ®ve-term p sets moment of ca. 9 D is displayed by the lowest en- of diuse functions on the positive end of the ergy zwitterion's structure and by one of the non- molecular dipole of each species. This was either ionic structures. However, their vertical electron the C atom surrounded by three nitrogen atoms or detachment energies, determined at the KT level, one of the N atoms belonging to the ±C2NH2)2 2or dier considerably. C2NH)NH2) functional group. The extra diuse s and p functions share exponent values, the geo- metric progression ratio was equal to 5.0, and we 2. Methods started to build up the exponents from the lowest sp exponent included in the 6-31++G2d,p) basis set The equilibrium geometries of the neutral spe- designed for nitrogen. As a consequence, we cies have been optimized at the second-order achieved lowest exponents of 2:0448 Â 10À5 a.u.
Recommended publications
  • I. Gas Phase Proton Affinity of Zwitterionic Betaine N. High
    I. Gas Phase Proton Affinity of Zwitterionic Betaine n. High Resolution Spectroscopy of Trapped Ions: Concept and Design Thesis by Hak-No Lee In Partial Fulfillment of the Requirements for the Degree o f Doctor of Philosophy California Institute of Technology Pasadena, California 1999 (Submitted September 30, 1998) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Acknowledgements Much gratitude is owed to my thesis advisors, Professors Jack Beauchamp and Dan Weitekamp, for their guidance and support. I feel fortunate to have worked with advisors who value and emphasize the training of their students. I thank them for allowing me to pursue studies of my own interest, without the pressure to produce timely results. Such freedom has enabled me to obtain exposure to a wide variety of areas in physical chemistry and chemical physics: An invaluable training that would be difficult to attain after graduation. There are many people whose support and friendship enriched my years at Caltech, including fellow graduate students and the staff of the chemistry department. Special thanks go to the members of Beauchamp group, past and present: Sherrie Campbell, Elaine Marzluff, Kevin Crellin, Jim Smith, Sang Won Lee, Dmitri Kossakovski, Hyun Sik Kim, Thomas Schindler, Patrick Vogel, and Priscilla Boon. Always willing to help and answer questions, they contributed significantly to my learning and provided companionship for which I am grateful. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Abstract In an ideal experiment, the system being investigated is isolated from the environment. The only external influences allowed on the system are the parameters that the experimenter chooses to vary, in effort to study their effects on the observables.
    [Show full text]
  • Recent Advances in Chiral Analysis of Proteins and Peptides
    separations Review Recent Advances in Chiral Analysis of Proteins and Peptides Marine Morvan 1,2,* and Ivan Mikšík 1,2,* 1 Institute of Physiology of the Czech Academy of Sciences, Vídeˇnská 1083, 142 20 Prague, Czech Republic 2 Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic * Correspondence: [email protected] (M.M.); [email protected] (I.M.) Abstract: Like many biological compounds, proteins are found primarily in their homochiral form. However, homochirality is not guaranteed throughout life. Determining their chiral proteinogenic sequence is a complex analytical challenge. This is because certain D-amino acids contained in proteins play a role in human health and disease. This is the case, for example, with D-Asp in elastin, b-amyloid and a-crystallin which, respectively, have an action on arteriosclerosis, Alzheimer’s disease and cataracts. Sequence-dependent and sequence-independent are the two strategies for detecting the presence and position of D-amino acids in proteins. These methods rely on enzymatic digestion by a site-specific enzyme and acid hydrolysis in a deuterium or tritium environment to limit the natural racemization of amino acids. In this review, chromatographic and electrophoretic techniques, such as LC, SFC, GC and CE, will be recently developed (2018–2020) for the enantioseparation of amino acids and peptides. For future work, the discovery and development of new chiral stationary phases and derivatization reagents could increase the resolution of chiral separations. Keywords: chiral separation; proteins; peptides; D-amino acids Citation: Morvan, M.; Mikšík, I. Recent Advances in Chiral Analysis of Proteins and Peptides.
    [Show full text]
  • Glycine Zwitterion Stabilized by Four Water Molecules
    Glycine Zwitterion Stabilized by Four Water Molecules Byeong June Min Department of Physics, Daegu University, Kyungsan 712-714, Korea We performed plane wave density functional theory calculations to survey the potential energy surface of neutral glycine (GlyNE) and its zwitterion (GlyZW) solvated by up to four water molecules. Our previous conformation study of Gly suggests inadequacy of the commonly used local basis function sets in dealing with a high-energy isomer, such as Gly. We find the potential energy surface of GlyNE and GlyZW smoother than usually was thought and without many local minima. Two water molecules can create a local minimum around GlyZW. With three water molecules, the energy difference between GlyNE and GlyZW is reduced to a mere 27 meV with an energy barrier of 115 meV from GlyNE. GlyZW becomes energetically more stable by 122 meV when solvated by four water molecules. Water molecules become catalysts in the tautomerization and sometimes engage in a switching transfer of a proton over the water bridge. Our results are consistent with experimental findings that the effective hydration number of Gly is 3 ~ 4. PACS numbers: Keywords: Glycine, Glycine Zwitterion, Zwitterionization, Microsolvation, Tautomerization Email: [email protected] Fax: +82-53-850-6439, Tel: +82-53-850-6436 1 I. INTRODUCTION Glycine (Gly) is the simplest amino acid with a side chain of single hydrogen atom. Amino acids in the presence of water favor zwitterionic form (GlyZW) in which the hydrogen in the carboxyl group is transferred to the amine group. This is the preliminary step for the formation of peptide bonds in proteins.
    [Show full text]
  • Multicharge Zwitterionic Molecules: Hydration, Kosmotropicity and Anti-Fouling Potential
    Multicharge Zwitterionic Molecules: Hydration, Kosmotropicity and Anti-fouling Potential Level, G., Zhang, J., Brown, J., Hammond, O., Hannigan, B., Stella, L., Nockemann, P., & Blesic, M. (2019). Multicharge Zwitterionic Molecules: Hydration, Kosmotropicity and Anti-fouling Potential. Journal of Colloid and Interface Science. https://doi.org/10.1016/j.jcis.2019.12.009 Published in: Journal of Colloid and Interface Science Document Version: Peer reviewed version Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights Copyright 2019 Elsevier. This manuscript is distributed under a Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits distribution and reproduction for non-commercial purposes, provided the author and source are cited. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates
    [Show full text]
  • STABILIZED LIPID BILAYER NANODISCS William Michael Penny
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Graduate School Professional Papers 2018 DETERMINATION OF LIPID BILAYER AFFINITIES FOR SMALL MOLECULES USING CAPILLARY ELECTROPHORESIS AND COPOLYMER – STABILIZED LIPID BILAYER NANODISCS William Michael Penny Let us know how access to this document benefits ouy . Follow this and additional works at: https://scholarworks.umt.edu/etd Recommended Citation Penny, William Michael, "DETERMINATION OF LIPID BILAYER AFFINITIES FOR SMALL MOLECULES USING CAPILLARY ELECTROPHORESIS AND COPOLYMER – STABILIZED LIPID BILAYER NANODISCS" (2018). Graduate Student Theses, Dissertations, & Professional Papers. 11255. https://scholarworks.umt.edu/etd/11255 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. DETERMINATION OF LIPID BILAYER AFFINITIES FOR SMALL MOLECULES USING CAPILLARY ELECTROPHORESIS AND COPOLYMER – STABILIZED LIPID BILAYER NANODISCS By William Michael Penny Bachelor of Science with Honors in Chemistry, Seton Hall University, South Orange, New Jersey, 2012 Dissertation Presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Analytical Chemistry The University of Montana Missoula, MT August 2018 Approved by: Scott Whittenburg, Dean of the Graduate School Graduate School Christopher P. Palmer, Ph.D. Department of Chemistry and Biochemistry Orion B. Berryman, Ph.D. Department of Chemistry and Biochemistry Michael D. DeGrandpre, Ph.D. Department of Chemistry and Biochemistry J.B. Alexander Ross, Ph.D. Department of Chemistry and Biochemistry J.
    [Show full text]
  • Gas-Phase Zwitterions in the Absence of a Net Charge
    J. Phys. Chem. A 2004, 108, 10861-10864 10861 Gas-Phase Zwitterions in the Absence of a Net Charge Ryan R. Julian and Martin F. Jarrold* Department of Chemistry, Indiana UniVersity, Bloomington, Indiana 47405 ReceiVed: June 17, 2004; In Final Form: August 10, 2004 The ground state for neutral, isolated molecules in the gas phase can be zwitterionic under appropriate conditions. Quantum chemical calculations show that increasing the basicity of the basic component of a zwitterion leads to enhanced stability for the charge-separated state, which can lead to a ground-state zwitterion. Density functional theory calculations show that methylation of the side chain of arginine is sufficient to induce a ground-state zwitterion. The results for the stepwise methylation of arginine are given, and clearly illustrate enhanced zwitterion stabilization with increasing basicity. In protonated systems, guanidinylation of the N-terminus of arginine yields a salt bridge or charge-stabilized zwitterion structure. The enhanced basicity of guanidino versus amino groups is responsible for the charge separation in this case, which is not observed to be the ground state for protonated arginine itself. These results indicate that charge separation can be favorable in the gas phase and are discussed in light of future experimental efforts. Introduction enhancing the basicity of the base or increasing the acidity of the acid should theoretically lead to greater stabilization of the The study of fundamental molecular properties in the gas zwitterionic state. The central issue then becomes whether the phase is important because the intrinsic nature of a molecule acid/base chemistry of a molecule can be changed sufficiently can be directly probed.1 For example, recent studies have shown to stabilize the charge-separated state.
    [Show full text]
  • 24Amino Acids, Peptides, and Proteins
    WADEMC24_1153-1199hr.qxp 16-12-2008 14:15 Page 1153 CHAPTER COOϪ a -h eli AMINO ACIDS, x ϩ PEPTIDES, AND NH3 PROTEINS Proteins are the most abundant organic molecules 24-1 in animals, playing important roles in all aspects of cell structure and function. Proteins are biopolymers of Introduction 24A-amino acids, so named because the amino group is bonded to the a carbon atom, next to the carbonyl group. The physical and chemical properties of a protein are determined by its constituent amino acids. The individual amino acid subunits are joined by amide linkages called peptide bonds. Figure 24-1 shows the general structure of an a-amino acid and a protein. α carbon atom O H2N CH C OH α-amino group R side chain an α-amino acid O O O O O H2N CH C OH H2N CH C OH H2N CH C OH H2N CH C OH H2N CH C OH CH3 CH2OH H CH2SH CH(CH3)2 alanine serine glycine cysteine valine several individual amino acids peptide bonds O O O O O NH CH C NH CH C NH CH C NH CH C NH CH C CH3 CH2OH H CH2SH CH(CH3)2 a short section of a protein a FIGURE 24-1 Structure of a general protein and its constituent amino acids. The amino acids are joined by amide linkages called peptide bonds. 1153 WADEMC24_1153-1199hr.qxp 16-12-2008 14:15 Page 1154 1154 CHAPTER 24 Amino Acids, Peptides, and Proteins TABLE 24-1 Examples of Protein Functions Class of Protein Example Function of Example structural proteins collagen, keratin strengthen tendons, skin, hair, nails enzymes DNA polymerase replicates and repairs DNA transport proteins hemoglobin transports O2 to the cells contractile proteins actin, myosin cause contraction of muscles protective proteins antibodies complex with foreign proteins hormones insulin regulates glucose metabolism toxins snake venoms incapacitate prey Proteins have an amazing range of structural and catalytic properties as a result of their varying amino acid composition.
    [Show full text]
  • A Proline-Based Neuraminidase Inhibitor: DFT Studies on the Zwitterion Conformation, Stability and Formation
    Int. J. Mol. Sci. 2009, 10, 3918-3930; doi:10.3390/ijms10093918 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article A Proline-Based Neuraminidase Inhibitor: DFT Studies on the Zwitterion Conformation, Stability and Formation Zhi-Wei Yang 1, Xiao-Min Wu 1, Li-Jun Zhou 1 and Gang Yang 1,2,* 1 Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; E-Mails: [email protected] (Z.-W.Y.); [email protected] (X.-M.W.); [email protected] (L.-J.Z.) 2 Institute of Theoretical Chemistry, Shandong University, Jinan 250100, China * Author to whom correspondence should be addressed; E-Mails: [email protected] or [email protected]; Tel. +86-451-82192223; Fax: +86-451-82102082. Received: 6 August 2009 / Accepted: 2 September 2009 / Published: 7 September 2009 Abstract: The designs of potent neuraminidase (NA) inhibitors are an efficient way to deal with the recent “2009 H1N1” influenza epidemic. In this work, density functional calculations were employed to study the conformation, stability and formation of the zwitterions of 5-[(1R,2S)-1-(acetylamino)-2-methoxy-2-methylpentyl]-4-[(1Z)-1- propenyl]-(4S,5R)-D-proline (BL), a proline-based NA inhibitor. Compared to proline, the zwitterion stability of BL is enhanced by 1.76 kcal mol-1 due to the introduction of functional groups. However, the zwitterion of BL will not represent a local minimum on the potential energy surface until the number of water molecules increases up to two (n = 2). With the addition of two and three water molecules, the energy differences between the zwitterions and corresponding canonical isomers were calculated at 3.13 and -1.54 kcal mol-1, respectively.
    [Show full text]
  • Zwitterion Formation in Gas-Phase Cyclodextrin Complexes
    Zwitterion Formation in Gas-Phase Cyclodextrin Complexes Seonghee Ahn, Xin Cong, and Carlito B. Lebrilla Department of Chemistry, Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Davis, California, USA Scott Gronert Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California, USA Protonated complexes of amino acids and underivatized ␤-cyclodextrin, produced by electro- spray ionization and trapped in the Fourier transform mass spectrometer, undergo formation of ternary complexes when reacted with alkyl amine. Based on the reactivities of the protonated amino acid complexes with alkylamines, the reactivities of the corresponding amino acid esters, and partially derivatized ␤-cyclodextrin hosts, we conclude that the ternary complexes are salt-bridge zwitterionic species composed of amino acid zwitterions and protonated alkylamine all interacting with the hydroxyl groups on the narrow rim of the cyclodextrin. Molecular modeling calculations and experimental results suggest that the interactions of the amino acids with the rims contribute greatly to the formation of the zwitterionic species. (J Am Soc Mass Spectrom 2005, 16, 166–175) © 2004 American Society for Mass Spectrometry he formation of zwitterionic structures in amino in the gas phase [15], consistent with much earlier acids is of fundamental importance in biology results using ion/molecule reactions [34]. Infrared (IR) T[1–6]. The resulting electric field plays a crucial cavity ringdown spectroscopy of jet-cooled arginine role in determining the structure of many proteins and (Arg) showed two peaks corresponding to the neutral the reactivity enzymes [7–9]. Amino acids are known to Arg. The absence of a band for a carboxylate asymmet- exist as zwitterions in solution under appropriate pH ric stretch confirmed that the gas-phase zwitterionic conditions.
    [Show full text]
  • Understanding Properties of Zwitterionic Materials from Their Molecular Structures
    Understanding Properties of Zwitterionic Materials from Their Molecular Structures Qing Shao A dissertation Submitted in partial fulfillment of the Requirements for the degree of Doctor of Philosophy University of Washington 2014 Reading Committee: Shaoyi Jiang, Chair Jim Pfaendtner Valerie Daggett Program Authorized to Offer Degree: Chemical Engineering ©Copyright 2014 Qing Shao University of Washington Abstract Understanding Properties of Zwitterionic Materials from Their Molecular Structures Qing Shao Chair of the Supervisory Committee: Professor Shaoyi Jiang Department of Chemical Engineering Materials that resist nonspecific protein adsorption in complex media are important for many biological and chemical applications, such as surface coatings of biosensors, marine coatings, drug delivery, and therapeutic protein protection. Zwitterionic materials have shown unique properties for this purpose. But two critical questions about zwitterionic materials remain unsolved. First, why are zwitterionic materials different from non-ionic materials? Second, what are the differences among zwitterionic materials? This work aims to answer the two questions and design new zwitterionic materials based on the solutions. To study the differences between zwitterionic and non-ionic materials, this work investigated the effects of carboxybetaine (CB) and oligo(ethylene glycol) (OEG) moieties on protein structure and hydrophobic interactions. Non-ionic OEG moieties present amphiphilic features. They mask the hydrophobic domains of protein surfaces and impede hydrophobic associations in aqueous solutions. Zwitterionic CB moieties present superhydrophilic features. They do not influence hydrophobic substrates and hydrophobic associations. To study the differences among zwitterionic materials, this work studied hydration, ionic interactions, and self-associations of CB and sulfobetaine (SB) moieties; and the influences of carbon spacer length on hydration and ionic interactions of CB moieties.
    [Show full text]
  • Calculated Microscopic Stability Constants for Deprotonation of the Zwitterions H2cys and H2pen
    Supporting Information Theoretical and Experimental Sulfur K-edge X-ray Absorption Spectroscopic Study of Cysteine, Cystine, Homocysteine, Penicillamine, Methionine and Methionine Sulfoxide Emiliana Damian Risberg,1 Farideh Jalilehvand,2 Bonnie O. Leung,2 Lars G.M. Pettersson3 and Magnus Sandström1* 1 Department of Physical, Inorganic and Structural Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden. 2 Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada. 3 Department of Physics, Alba Nova, Stockholm University, SE-106 91 Stockholm, Sweden. Supporting Information Available: Tables S1, S3: calculated microscopic stability constants for deprotonation of the zwitterions H2Cys and H2Pen. Tables S2, S4, S5: calculated energies and intensities for the numbered transitions in Figs. S6, 17 and S16 for the Cys2-, 2- [Ni(Cys)2] and Hg((HCys)S)2 species, respectively. Fig. S1 displays the fractions of the major cysteine species at different pH values. Figs. S2; S3; S4; S6; S7; S8; S9; S11; S12; S13; S14; S16 show MO contours for the transitions marked in the calculated XANES spectra for + - - - the following (hydrated) species: H3Cys , H2Cys, HCys : thiol (HCys )N and thiolate (HCys )S, 2- - - - 2- Cys , H2Pen, HPen : thiol (HPen )N and thiolate (HPen )S; Pen , homocysteine HS-CH2-CH2- + - + - CH(NH3) COO , methionine CH3S(CH2)2CH(NH3 )COO , methionine sulfoxide CH3-SO- + - - + + - (CH2)2-CH( NH3)-COO , cystine OOC-CH(NH3 )CH2S-SCH2CH(NH3 )COO , and the trans-Hg((HCys)S)2 complex. Fig. S5 displays the experimental S K-edge XANES spectra for reduced and oxidized glutathione in the solid state and in solutions at different pH values, and Figs.
    [Show full text]
  • Zwitterionic Separation Materials for Liquid Chromatography and Capillary Electrophoresis
    Zwitterionic Separation Materials for Liquid Chromatography and Capillary Electrophoresis Synthesis, Characterization and Application for Inorganic Ion and Biomolecule Separations by Wen Jiang Akademisk Avhandling som med vederbörligt tillstånd av Rektorsämbetet vid Umeå universitet för avläggande av filosofie doktorsexamen framläggs till offentligt granskning vid Kemi Institutionen, sal KBC3A9, Lilla Hörsalen, KBC-huset, Fredag den 5 December 2003, kl.10.00. Fakultetsopponent: Prof. Karin Markides, Analytisk Kemi, Uppsala University, Sweden. Zwitterionic Separation Materials for Liquid Chromatography and Capillary Electrophoresis Synthesis, Characterization and Application for Inorganic Ion and Biomolecule Separations Author Wen Jiang Department of Analytical Chemistry, Umeå University, S-90187 Umeå, Sweden Abstract Liquid Chromatography (LC) and Capillary Electrophoresis (CE) are modern analytical techniques that play very important roles in many areas of modern science such as life science, biotechnology, biomedicine, environmental studies, and development of pharmaceutics. Even though these two techniques have existed and been subjected to studies for several decades, the developments of new separation materials for them are still very important till now in order to meet the different new demands for improvement from other disciplines in science. In this doctoral thesis, several novel covalently bonded sulfobetaine type zwitterionic separation materials are synthesized for the application in LC and CE. These materials carry both positively charged quaternary ammonium groups and negatively charged sulfonic groups, which result in a very low net surface charge compared to conventional separation materials with only anionic or cationic functional groups. Consequently, it is possible to employ these materials for separation of different ionic species under mild conditions. The surface properties have also been characterized, mainly by elemental analysis, sorption isotherm, ζ- potential measurements, and spectroscopic methods.
    [Show full text]