Dissertationsschrift

Total Page:16

File Type:pdf, Size:1020Kb

Dissertationsschrift Dissertationsschrift zur Erlangung des akademischen Grades Doktor der Naturwissenschaften (Dr. rer. nat.) Angefertigt am Fachbereich Umweltwissen- schaften der Universität Lüneburg Thema: Die Carabiden-Fauna auf unterschied- lich intensiv bewirtschafteten Obstan- bauflächen im Alten Land bei Hamburg. Abbildung 1: Carabus coriaceus L. Vorgelegt von: Dipl.-Biol. Olaf Anderßon Erstgutachter: Prof. Dr. T. Aßmann Zweitgutachter: Prof. Dr. W. Härdtle Tag der Promotion: 04. Oktober 2005 »Die Baumzucht verschafft denjenigen, die sich damit bemühen, einen angenehmen Teil ihrer Nahrung. Sie gereichet zur Zierde eines Landes, zur Reinigung der Luft, zum Schutz und Schatten und hat überhaupt in vielen anderen Dingen ih- ren trefflichen Nutzen, zur Nothdurft, Lust und Bequemlichkeit des Lebens für Menschen und Thiere.« Johann Kaspar Schiller Schöpfer der herzoglichen Baumschule auf der Solitude aus „Betrachtungen über land- wirtschaftliche Dinge im Herzogtum Würt- temberg 1767/68“. Inhaltsverzeichnis Inhaltsverzeichnis 1. Einleitung.............................................................................................................................................1 2. Der Untersuchungsraum...................................................................................................................... 4 2.1. Naturraumlage und Geomorphologie........................................................................................... 4 2.2. Zur Geschichte und Entwicklung des Alten Landes ................................................................... 5 2.2.1. Die Geschichte des Obstbaus im Alten Land.......................................................................5 2.3. Klima............................................................................................................................................ 6 2.3.1. Das Wetter im Untersuchungszeitraum................................................................................8 2.4. Die Geschichte der Landwirtschaft............................................................................................11 2.4.1. Der konventionelle Anbau..................................................................................................13 2.4.2. Der integrierte Anbau.........................................................................................................13 2.4.3. Der ökologische Anbau......................................................................................................14 2.4.3.1. Der ökologische Anbau nach NATURLAND-Richtlinien................................................15 2.4.3.2. Der biologisch-dynamische Anbau nach Demeter-Richtlinien................................. 17 2.5. Die Untersuchungsflächen......................................................................................................... 18 2.5.1. Die Probenfläche A (integriert)..........................................................................................19 2.5.2. Die Probenfläche B (ökologisch)....................................................................................... 20 2.5.3. Fläche C (ökologisch)........................................................................................................ 20 2.5.4. Fläche D (ökologisch)........................................................................................................ 20 2.5.5. Fläche E (ökologisch).........................................................................................................21 2.6. Vegetationsaufbau...................................................................................................................... 21 3. Material und Methode........................................................................................................................ 23 3.1. Die Datenaufnahme.................................................................................................................... 23 3.1.1. Die Barberfalle................................................................................................................... 23 3.1.2. Das Fangprinzip................................................................................................................. 23 3.1.3. Fallenparameter und Installation .......................................................................................23 3.1.4. Fangzeiten, Leerungen und weitere Bearbeitung...............................................................24 3.1.5. Methodenkritik................................................................................................................... 26 3.2. Determination, Nomenklatur, Präparation................................................................................. 26 3.3. Analyse der Daten...................................................................................................................... 27 3.3.1. Dominanzklassifizierung....................................................................................................27 3.3.2. Diversität............................................................................................................................ 28 Inhaltsverzeichnis 3.3.2.1. SHANNON-WIENER-Index............................................................................................... 28 3.3.2.2. SIMPSON-Index..............................................................................................................29 3.3.2.3. Eveness.......................................................................................................................30 3.3.3. Chi-Quadrat-Mehrfelder-Test............................................................................................ 30 3.3.4. Artenidentität nach JACCARD und SØRENSEN......................................................................... 31 3.3.5. Dominanzidentität ............................................................................................................. 31 3.3.6. Rarefaction-Methode..........................................................................................................33 3.3.6.1. HURLBERT-Kurve zur Abschätzung der α-Diversität................................................... 33 3.3.6.2. SHINOZAKI-Kurve zur Abschätzung der β-Diversität................................................... 34 4. Ergebnisse..........................................................................................................................................35 4.1. Das Artenspektrum.....................................................................................................................35 4.1.1. Laufkäfer (Carabidae)........................................................................................................ 35 4.1.2. Die Untersuchungsflächen................................................................................................. 39 4.1.2.1. Fläche A..................................................................................................................... 39 4.1.2.2. Fläche B......................................................................................................................40 4.1.2.3. Fläche C......................................................................................................................40 4.1.2.4. Fläche D..................................................................................................................... 41 4.1.2.5. Fläche E......................................................................................................................41 4.2. Schwerpunktvorkommen der Arten und ihre Phänologie.......................................................... 42 4.2.1. Pterostichus melanarius (ILL., 1798)..................................................................................44 4.2.2. Nebria brevicollis (F., 1792)..............................................................................................45 4.2.3. Patrobus atrorufus (STRÖM, 1768)......................................................................................46 4.2.4. Notiophilus biguttatus (F., 1797)....................................................................................... 47 4.2.5. Clivinia fossor (L., 1758)................................................................................................... 48 4.2.6. Pterostichus strenuus (PANZ., 1797)................................................................................... 49 4.2.7. Loricera pilicornis (F., 1775).............................................................................................50 4.2.8. Bembidion properans (STEPH., 1828)..................................................................................51 4.2.9. Pterostichus niger (SCHALL., 1783)..................................................................................... 52 4.2.10. Asaphidion flavipes (L., 1761).........................................................................................53 4.2.11. Trechus quadristriatus (SCHRK., 1781)............................................................................. 54 4.2.12. Amara similata (GYLL., 1810)...........................................................................................55 4.2.13. Harpalus rufipes (DEG. 1774)...........................................................................................56 4.2.14. Amara familiaris (DUFT., 1812)........................................................................................57 4.2.15. Trechus obtusus (ER., 1837).............................................................................................58
Recommended publications
  • Coleoptera: Carabidae) Assemblages in a North American Sub-Boreal Forest
    Forest Ecology and Management 256 (2008) 1104–1123 Contents lists available at ScienceDirect Forest Ecology and Management journal homepage: www.elsevier.com/locate/foreco Catastrophic windstorm and fuel-reduction treatments alter ground beetle (Coleoptera: Carabidae) assemblages in a North American sub-boreal forest Kamal J.K. Gandhi a,b,1, Daniel W. Gilmore b,2, Steven A. Katovich c, William J. Mattson d, John C. Zasada e,3, Steven J. Seybold a,b,* a Department of Entomology, 219 Hodson Hall, 1980 Folwell Avenue, University of Minnesota, St. Paul, MN 55108, USA b Department of Forest Resources, 115 Green Hall, University of Minnesota, St. Paul, MN 55108, USA c USDA Forest Service, State and Private Forestry, 1992 Folwell Avenue, St. Paul, MN 55108, USA d USDA Forest Service, Northern Research Station, Forestry Sciences Laboratory, 5985 Hwy K, Rhinelander, WI 54501, USA e USDA Forest Service, Northern Research Station, 1831 Hwy 169E, Grand Rapids, MN 55744, USA ARTICLE INFO ABSTRACT Article history: We studied the short-term effects of a catastrophic windstorm and subsequent salvage-logging and Received 9 September 2007 prescribed-burning fuel-reduction treatments on ground beetle (Coleoptera: Carabidae) assemblages in a Received in revised form 8 June 2008 sub-borealforestinnortheasternMinnesota,USA. During2000–2003, 29,873groundbeetlesrepresentedby Accepted 9 June 2008 71 species were caught in unbaited and baited pitfall traps in aspen/birch/conifer (ABC) and jack pine (JP) cover types. At the family level, both land-area treatment and cover type had significant effects on ground Keywords: beetle trap catches, but there were no effects of pinenes and ethanol as baits.
    [Show full text]
  • Mitochondrial Genomes Resolve the Phylogeny of Adephaga
    1 Mitochondrial genomes resolve the phylogeny 2 of Adephaga (Coleoptera) and confirm tiger 3 beetles (Cicindelidae) as an independent family 4 Alejandro López-López1,2,3 and Alfried P. Vogler1,2 5 1: Department of Life Sciences, Natural History Museum, London SW7 5BD, UK 6 2: Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot SL5 7PY, UK 7 3: Departamento de Zoología y Antropología Física, Facultad de Veterinaria, Universidad de Murcia, Campus 8 Mare Nostrum, 30100, Murcia, Spain 9 10 Corresponding author: Alejandro López-López ([email protected]) 11 12 Abstract 13 The beetle suborder Adephaga consists of several aquatic (‘Hydradephaga’) and terrestrial 14 (‘Geadephaga’) families whose relationships remain poorly known. In particular, the position 15 of Cicindelidae (tiger beetles) appears problematic, as recent studies have found them either 16 within the Hydradephaga based on mitogenomes, or together with several unlikely relatives 17 in Geadeadephaga based on 18S rRNA genes. We newly sequenced nine mitogenomes of 18 representatives of Cicindelidae and three ground beetles (Carabidae), and conducted 19 phylogenetic analyses together with 29 existing mitogenomes of Adephaga. Our results 20 support a basal split of Geadephaga and Hydradephaga, and reveal Cicindelidae, together 21 with Trachypachidae, as sister to all other Geadephaga, supporting their status as Family. We 22 show that alternative arrangements of basal adephagan relationships coincide with increased 23 rates of evolutionary change and with nucleotide compositional bias, but these confounding 24 factors were overcome by the CAT-Poisson model of PhyloBayes. The mitogenome + 18S 25 rRNA combined matrix supports the same topology only after removal of the hypervariable 26 expansion segments.
    [Show full text]
  • DNA Metabarcoding Diet Analysis Reveals Dynamic Feeding Behaviour and Biological Control Potential of Carabid Farmland Co
    bioRxiv preprint doi: https://doi.org/10.1101/332312; this version posted May 27, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Title: DNA metabarcoding diet analysis reveals dynamic feeding behaviour and biological 2 control potential of carabid farmland communities 3 4 5 STEFANIYA KAMENOVA1,2,3, VINCENT BRETAGNOLLE2, MANUEL 6 PLANTEGENEST1 & ELSA CANARD1 7 8 1UMR 1349 IGEPP, INRA, Université de Rennes 1, Agrocampus Ouest Rennes, Domaine de 9 la Motte, 35650 Le Rheu, France 10 2Centre d'Etudes Biologiques de Chizé, 79360 Villiers-en-Bois, France 11 3CEES, University of Oslo, 1066 Blindern, 0316 Oslo, Norway 12 13 Corresponding author: Stefaniya Kamenova 14 CEES, University of Oslo, 1066 Blindern, 0316 Oslo, Norway 15 [email protected] 16 17 18 Key-words: DNA metabarcoding diet analysis, carabid beetles, agroecosystems, biological 19 control, food webs 20 21 Running title: Dynamic feeding behaviour of carabid beetles revealed by DNA 22 metabarcoding 23 24 25 Abstract 26 27 Maximizing the delivery of key ecosystem services such as biological control through the 28 management of natural enemy communities is one of the major challenges for modern 29 agriculture. The main obstacle lies in our yet limited capacity of identifying the factors that 30 drive the dynamics of trophic interactions within multi-species assemblages. Invertebrate 31 generalist predators like carabid beetles are known for their dynamic feeding behaviour.
    [Show full text]
  • Disturbance and Recovery of Litter Fauna: a Contribution to Environmental Conservation
    Disturbance and recovery of litter fauna: a contribution to environmental conservation Vincent Comor Disturbance and recovery of litter fauna: a contribution to environmental conservation Vincent Comor Thesis committee PhD promotors Prof. dr. Herbert H.T. Prins Professor of Resource Ecology Wageningen University Prof. dr. Steven de Bie Professor of Sustainable Use of Living Resources Wageningen University PhD supervisor Dr. Frank van Langevelde Assistant Professor, Resource Ecology Group Wageningen University Other members Prof. dr. Lijbert Brussaard, Wageningen University Prof. dr. Peter C. de Ruiter, Wageningen University Prof. dr. Nico M. van Straalen, Vrije Universiteit, Amsterdam Prof. dr. Wim H. van der Putten, Nederlands Instituut voor Ecologie, Wageningen This research was conducted under the auspices of the C.T. de Wit Graduate School of Production Ecology & Resource Conservation Disturbance and recovery of litter fauna: a contribution to environmental conservation Vincent Comor Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Monday 21 October 2013 at 11 a.m. in the Aula Vincent Comor Disturbance and recovery of litter fauna: a contribution to environmental conservation 114 pages Thesis, Wageningen University, Wageningen, The Netherlands (2013) With references, with summaries in English and Dutch ISBN 978-94-6173-749-6 Propositions 1. The environmental filters created by constraining environmental conditions may influence a species assembly to be driven by deterministic processes rather than stochastic ones. (this thesis) 2. High species richness promotes the resistance of communities to disturbance, but high species abundance does not.
    [Show full text]
  • PCR-Based Gut Content Analysis to Identify Arthropod Predators of Haplodiplosis Marginata by Rowley, C., Cherrill, A.J., Leather, S.R., Mccormack, A., Skarp, J.E
    PCR-based gut content analysis to identify arthropod predators of Haplodiplosis marginata by Rowley, C., Cherrill, A.J., Leather, S.R., McCormack, A., Skarp, J.E. and Pope, T.W. Copyright, Publisher and Additional Information: This is the author accepted manuscript. The final published version (version of record) is available online via Elsevier Please refer to any applicable terms of use of the publisher. DOI: https://doi.org/10.1016/j.biocontrol.2017.10.003 Rowley, C., Cherrill, A.J., Leather, S.R., McCormack, A., Skarp, J.E. and Pope, T.W. 2017. PCR‐based gut content analysis to identify arthropod predators of Haplodiplosis marginata, 115, pp.112‐118. 1 PCR-based gut content analysis to identify arthropod predators of Haplodiplosis 2 marginata 3 4 Charlotte Rowley1*, Andrew J. Cherrill1, Simon R. Leather1, Alexander W. McCormack1, 5 Janetta E. Skarp2, & Tom W. Pope1 6 7 1Centre for Integrated Pest Management, Harper Adams University, Newport, Shropshire 8 TF10 8NB, UK 9 2Imperial College London, Kensington, London SW7 2AZ, UK 10 11 *Correspondence: Charlotte Rowley, Centre for Integrated Pest Management, Harper Adams 12 University, Newport, Shropshire TF10 8NB, UK. E-mail: [email protected] 13 14 Keywords Natural enemies, IPM, cereals, primers, Cecidomyiidae 15 Running Title PCR-based H. marginata gut content analysis 16 17 Abstract 18 Saddle gall midge (Haplodiplosis marginata) is a cereal pest exhibiting sporadic outbreaks 19 for which chemical control options are limited. Integrated Pest Management programs may 20 offer a means of suppressing H. marginata outbreaks, reducing pesticide input. Many IPM 21 programs benefit from the natural population suppression inflicted through predation and 22 parasitism.
    [Show full text]
  • Arthropods in Linear Elements
    Arthropods in linear elements Occurrence, behaviour and conservation management Thesis committee Thesis supervisor: Prof. dr. Karlè V. Sýkora Professor of Ecological Construction and Management of Infrastructure Nature Conservation and Plant Ecology Group Wageningen University Thesis co‐supervisor: Dr. ir. André P. Schaffers Scientific researcher Nature Conservation and Plant Ecology Group Wageningen University Other members: Prof. dr. Dries Bonte Ghent University, Belgium Prof. dr. Hans Van Dyck Université catholique de Louvain, Belgium Prof. dr. Paul F.M. Opdam Wageningen University Prof. dr. Menno Schilthuizen University of Groningen This research was conducted under the auspices of SENSE (School for the Socio‐Economic and Natural Sciences of the Environment) Arthropods in linear elements Occurrence, behaviour and conservation management Jinze Noordijk Thesis submitted in partial fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Doctorate Board to be defended in public on Tuesday 3 November 2009 at 1.30 PM in the Aula Noordijk J (2009) Arthropods in linear elements – occurrence, behaviour and conservation management Thesis, Wageningen University, Wageningen NL with references, with summaries in English and Dutch ISBN 978‐90‐8585‐492‐0 C’est une prairie au petit jour, quelque part sur la Terre. Caché sous cette prairie s’étend un monde démesuré, grand comme une planète. Les herbes folles s’y transforment en jungles impénétrables, les cailloux deviennent montagnes et le plus modeste trou d’eau prend les dimensions d’un océan. Nuridsany C & Pérennou M 1996.
    [Show full text]
  • Morphological and Micromorphological Description of the Larvae of Two Endemic Species of Duvalius (Coleoptera, Carabidae, Trechini)
    biology Article Morphological and Micromorphological Description of the Larvae of Two Endemic Species of Duvalius (Coleoptera, Carabidae, Trechini) Cristian Sitar 1,2,* , Lucian Barbu-Tudoran 3,4 and Oana Teodora Moldovan 1,5,* 1 Romanian Institute of Science and Technology, Saturn 24-26, 400504 Cluj-Napoca, Romania 2 Zoological Museum, Babes, Bolyai University, Clinicilor 5, 400006 Cluj-Napoca, Romania 3 Faculty of Biology and Geology, Babes, Bolyai University, Clinicilor 5, 400006 Cluj-Napoca, Romania; [email protected] 4 INCDTIM Cluj-Napoca, Str. Donath 67-103, 400293 Cluj-Napoca, Romania 5 Department of Cluj, Emil Racovita Institute of Speleology, Clinicilor 5, 400006 Cluj-Napoca, Romania * Correspondence: [email protected] (C.S.); [email protected] (O.T.M.) Simple Summary: The Duvalius cave beetles have a wide distribution in the Palearctic region. They have distinct adaptations to life in soil and subterranean habitats. Our present study intends to extend the knowledge on the morphology of cave Carabidae by describing two larvae belonging to different species of Duvalius and the ultrastructural details with possible implications in taxonomy and ecology. These two species are endemic for limited areas in the northern and north-western Romanian Carpathians. Our study provides knowledge on the biology and ecology of the narrow endemic cave beetles and their larvae are important in conservation and to establish management measures. Endemic species are vulnerable to extinction and, at the same time, an important target of Citation: Sitar, C.; Barbu-Tudoran, L.; global conservation efforts. Moldovan, O.T. Morphological and Micromorphological Description of Abstract: The morphological and ultrastructural descriptions of the larvae of two cave species of the Larvae of Two Endemic Species of Trechini—Duvalius (Hungarotrechus) subterraneus (L.
    [Show full text]
  • Comparison of Body Size and Wing Type in Beetles Found on Green Roofs and Adjacent Ground Sites in Portland, Oregon
    Portland State University PDXScholar University Honors Theses University Honors College 2016 Comparison of Body Size and Wing Type in Beetles Found on Green Roofs and Adjacent Ground Sites in Portland, Oregon Maggie Gardner Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/honorstheses Let us know how access to this document benefits ou.y Recommended Citation Gardner, Maggie, "Comparison of Body Size and Wing Type in Beetles Found on Green Roofs and Adjacent Ground Sites in Portland, Oregon" (2016). University Honors Theses. Paper 332. https://doi.org/10.15760/honors.332 This Thesis is brought to you for free and open access. It has been accepted for inclusion in University Honors Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Comparison of body size and wing type in beetles found on green roofs and adjacent ground sites in Portland, Oregon. By Maggie Gardner An undergraduate honors thesis submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in University Honors and Biology Thesis Adviser Olyssa Starry Portland State University 2016 1 Table of Contents Abstract 3 Introduction 3-6 Methods 6-8 Results 8-14 Discussion 14-16 Conclusion 16-17 Acknowledgements 17 References 17-19 Appendix 19-23 2 Abstract Green roofs and nearby ground habitats provide an arena to study invasion and compare dispersal ability between beetles. Invasive species can create a host of problems and to better prevent their spread it is vital to understand what traits allow for extensive colonization.
    [Show full text]
  • The Ground Beetles (Coleoptera: Carabidae) of Stillfork Swamp Nature Preserve, Carroll County, Ohio1
    The Ground Beetles (Coleoptera: Carabidae) of Stillfork Swamp Nature Preserve, Carroll County, Ohio1 JOHN D. USIS AND DAVID B. MACLKAN, Department of Biological Sciences, Youngstown State University, Youngstown, OH 44555 ABSTRACT. One hundred and one species of Carabidae, including Bembidion incrematum LeConte, Pter- ostichus caribou Ball, Amara lunicollis Schi0dte, Stenolophus rotundatus LeConte, and Lebia tnoesta LeConte, new state records, representing 32 genera were identified from light trap collections operated during 1984 and 1986-1988 in the open wetland, and from barrier pitfall traps placed in an adjacent swamp oak—hawthorn forest in 1992. Most species are hygrophilous. Species richness was highest in Agonum and Bembidion. Pterostichus hamiltoni Horn, P. permundus (Say), Bembidion graciliforme Hayward were the most abundant species collected by pitfall traps and Stenolophus ochropezus (Say), Agonum tenue (LeConte) and Clivina impressefrons LeConte were the most abundant in light trap collections. Differences in the number and abundance of species collected by light traps and pitfalls suggest both methods be used to survey wetlands. OHIO J SCI 98 (4/5): 66-68, 1998 INTRODUCTION of three 8-watt ultraviolet light traps operated in the Recent publications have documented the occurrence open wetland approximately 250 m east of where of at least 462 species of Carabidae in Ohio. Most surveys Carroll County Road 10 crosses Still Fork Creek. A map of carabids have been conducted in forest (Purrington of the site is presented in Usis and MacLean (1986). and Stanton, 1996; MacLean and Usis 1992, Purrington Beetles were collected during the same period in 1992 and others 1989) or agricultural ecosystems (for ex- by means of 5 barrier pitfall traps placed in a swamp ample, Allen 1979).
    [Show full text]
  • 11 Hristovski 1-2007.Xp
    ©Slovenian Entomological Society, download unter www.biologiezentrum.at ACTA ENTOMOLOGICA SLOVENICA LJUBLJANA, JULIJ 2007 Vol. 15, øt. 1: 95-100 NEW RECORDS OF GROUND BEETLES (COLEOPTERA, CARABIDAE) FOR THE FAUNA OF THE REPUBLIC OF MACEDONIA Slavcho HRISTOVSKI Institute of Biology, Faculty of Natural Sciences and Mathematics, Skopje, Republic of Macedonia. e-mail: [email protected] Abstract - First records of 15 ground beetle species (Coleoptera: Carabidae) for the fauna of the Republic of Macedonia are presented. These species are Loricera pilicornis, Tachyta nana, Pterostichus elongatus, Pterostichus quadrifoveolatus, Abax carinatus, Amara convexiuscula, Harpalus modestus, Harpalus metallinus, Ophonus schaubergerianus, Ophonus puncticollis, Stenolophus proximus, Stenolophus skrimshiranus, Oodes helopioides, Demetrias imperialis and Cymindis miliaris. Three genera (Loricera, Tachyta and Oodes) are new to the Macedonian fauna as well. KEY WORDS: Coleoptera, Carabidae, fauna, Republic of Macedonia Izvleœek – NOVI PODATKI O KREØIŒIH (COLEOPTERA: CARABIDAE) V REPUBLIKI MAKEDONIJI Predstavljeni so prvi podatki o 15 vrstah kreøiœev (Coleoptera: Carabidae) v favni Republike Makedonije. Te vrste so Loricera pilicornis, Tachyta nana, Pterostichus elongatus, Pterostichus quadrifoveolatus, Abax carinatus, Amara convexiuscula, Harpalus modestus, Harpalus metallinus, Ophonus schaubergerianus, Ophonus puncticollis, Stenolophus proximus, Stenolophus skrimshiranus, Oodes helopioides, Demetrias imperialis in Cymindis miliaris. Tudi trije rodovi (Loricera, Tachyta in Oodes) so novi za makedonsko favno. KLJUŒNE BESEDE: Coleoptera, Carabidae, favna, Republika Makedonija Introduction The most comprehensive, but still incomplete publication dealing with Macedonian ground beetles (Coleoptera, Carabidae) is the catalogue by Drovenik & Peks (1994) 95 ©Slovenian Entomological Society, download unter www.biologiezentrum.at Acta entomologica slovenica, 15 (1), 2007 and its 2nd edition (Drovenik & Peks 1999). This catalogue was supplemented by the works of Hristovski et al.
    [Show full text]
  • ~~- ~~ 7.8. Carabidae Latreille, 1802
    Carabidae Latreille, 1802 119 ~ ~/.A' .~..A ---:: o,,~ ~~~ ~ ~~- ~~ I ~ A B Fig. 7.7.4. Larval head structures. A, nasale and adnasalia, Systolosoma lateritium, S. breve, Trachypachus IlOlmbergi; B, antennae, S. lateritium, T.holmbergi;C- E, S. lateritium.C, mandible; D, maxilla, E, labium; F- H, tergite IX. F. S. lateri- tium; G, T. holmbergi; H, S. breve. From Beutel & Arndt (1995), redrawn. morphies (Arndt & Beutel 1995): sensorial ap- Hlavac, T. F. (1975): The prothorax of Coleoptera (ex- pendage on lateral side of antennomere III ab- cept Bostrichiformia - Cucujiformia). - Bulletin sent, replaced by ventral sensorial field, apical of the Museum of Comparative Zoology 147 (4): 137-183. part of maxillary palpomere 3 with additional se- tae, number of nasal teeth increased (6-8), uro- Lindroth, C. H. (1960): The larva of Trachypachus Mtsch., Gehringia Darl., and Opisthius Kirby (Col. gomphi fixed, horn-shaped (groundplan), eight Carabidae). - OpusculaEntomologica25: 30-42. long setae on tergite IX (including those on uro- (1961- 69): The ground beetles (Carabidae, excl. gomphi). The specific shape of the parameres Cicindelinae) of Canada and Alaska. Parts 1-6. - (Lindroth 1961-69; Beutel 1994) is an autapo- Opuscula Entomologica XlVIII + 1192 pp. 1961, morphy of adults. The absence of the katas- Part 2, Suppl. 20: 1- 20; 1963, Part 3, Suppl. 24: tigma, the specific sculpture of the elytra, the 201-408; 1966, Part 4, Suppl. 29: 409-648; 1968, kidney-shaped sensorial field of the larval anten- Part 5, Suppl. 33: 649-944; 1969 Part 6, Suppl. 34: nomere 3 and the large, ventral sensorial field 945-1192; 1969 Part I, Suppl.
    [Show full text]
  • Leeds Thesis Template
    Impacts of intensive agriculture on soil fauna and ecosystem function Trading function for dependence? Tiffany Jade Aslam Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds School of Biology April 2015 - ii - The candidate confirms that the work submitted is her own, except where work which has formed part of jointly-authored publications has been included. The contribution of the candidate and the other authors to this work has been explicitly indicated below. The candidate confirms that appropriate credit has been given within the thesis where reference has been made to the work of others. Chapter 3 is based on the following jointly-authored publication: Aslam, T.J., Benton, T.G., Nielsen, U.N., Johnson, S.N., 2015. Impacts of eucalypt plantation management on soil faunal communities and nutrient bioavailability: trading function for dependence? Biology and Fertility of Soils 51(5): 637-64. DOI: 10.1007/s00374-015-1003-6. Scott Johnson (SNJ) designed the experiment based on knowledge of the existing experimental setup at the Hawkesbury Institute for the Environment (HIE), University of Western Sydney, with input from the candidate (Tiffany Aslam; TJA) and Uffe Nielsen. TJA collected the data with assistance from two research technicians at the HIE. TJA analysed the data, with input from Tim Benton (TGB). TJA wrote and revised the manuscript. SNJ produced Figure 3.1. All co-authors made suggestions to the manuscript and subsequent revisions. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.
    [Show full text]