Curriculum Vitae Eric M. Friedlander
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Contemporary Mathematics 300
CONTEMPORARY MATHEMATICS 300 Algebraic Number Theory and Algebraic Geometry Papers Dedicated to A. N. Parshin on the Occasion of his Sixtieth Birthday Sergei Vostokov Yuri Zorhin Editors http://dx.doi.org/10.1090/conm/300 Algebraic Number Theory and Algebraic Geometry Aleksey Nikolaevich Parshin CoNTEMPORARY MATHEMATICS 300 Algebraic Number Theory and Algebraic Geometry Papers Dedicated to A. N. Parshin on the Occasion of his Sixtieth Birthday Sergei Vostokov Yuri Zarhin Editors American Mathematical Society Providence, Rhode Island Editorial Board Dennis DeThrck, managing editor Andreas Blass Andy R. Magid Michael Vogelius 2000 Mathematics Subject Classification. Primary 11815, 11831, 14E22, 14F20, 14H30, 14H40, 14K10, 14K99, 14L05. Library of Congress Cataloging-in-Publication Data Algebraic number theory and algebraic geometry : papers dedicated to A. N. Parshin on the occasion of his sixtieth birthday / Sergei Vostokov, Yuri Zarhin, editors. p. em. -(Contemporary mathematics; ISSN 0271-4132; v. 300) Includes bibliographical references. ISBN 0-8218-3267-0 (softcover : alk. paper) 1. Algebraic number theory. 2. Geometry, algebraic. I. Parshin, A. N. II. Vostokov, S. V. III. Zarhin, Yuri, 1951- IV. Contemporary mathematics (American Mathematical Society) ; v. 300. QA247 .A52287 2002 5121.74--dc21 2002074698 Copying and reprinting. Material in this book may be reproduced by any means for edu- cational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents and provided that the customary acknowledg- ment of the source is given. This consent does not extend to other kinds of copying for general distribution, for advertising or promotional purposes, or for resale. Requests for permission for commercial use of material should be addressed to the Acquisitions Department, American Math- ematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. -
Publication List, Dated 2010
References [1] V. A. Voevodski˘ı. Galois group Gal(Q¯ =Q) and Teihmuller modular groups. In Proc. Conf. Constr. Methods and Alg. Number Theory, Minsk, 1989. [2] V. A. Voevodski˘ıand G. B. Shabat. Equilateral triangulations of Riemann surfaces, and curves over algebraic number fields. Dokl. Akad. Nauk SSSR, 304(2):265{268, 1989. [3] G. B. Shabat and V. A. Voevodsky. Drawing curves over number fields. In The Grothendieck Festschrift, Vol. III, volume 88 of Progr. Math., pages 199{227. Birkh¨auser Boston, Boston, MA, 1990. [4] V. A. Voevodski˘ı. Etale´ topologies of schemes over fields of finite type over Q. Izv. Akad. Nauk SSSR Ser. Mat., 54(6):1155{1167, 1990. [5] V. A. Voevodski˘ı. Flags and Grothendieck cartographical group in higher dimensions. CSTARCI Math. Preprints, (05-90), 1990. [6] V. A. Voevodski˘ı.Triangulations of oriented manifolds and ramified coverings of sphere (in Russian). In Proc. Conf. of Young Scientists. Moscow Univ. Press, 1990. [7] V. A. Voevodski˘ı and M. M. Kapranov. 1-groupoids as a model for a homotopy category. Uspekhi Mat. Nauk, 45(5(275)):183{184, 1990. [8] V. A. Voevodski˘ıand M. M. Kapranov. Multidimensional categories (in Russian). In Proc. Conf. of Young Scientists. Moscow Univ. Press, 1990. [9] V. A. Voevodski˘ıand G. B. Shabat. Piece-wise euclidean approximation of Jacobians of algebraic curves. CSTARCI Math. Preprints, (01-90), 1990. [10] M. M. Kapranov and V. A. Voevodsky. Combinatorial-geometric aspects of polycategory theory: pasting schemes and higher Bruhat orders (list of results). Cahiers Topologie G´eom.Diff´erentielle Cat´eg., 32(1):11{27, 1991. -
PROBLEMS in ARITHMETIC TOPOLOGY Three Problem
PROBLEMS IN ARITHMETIC TOPOLOGY CLAUDIO GÓMEZ-GONZÁLES AND JESSE WOLFSON Abstract. We present a list of problems in arithmetic topology posed at the June 2019 PIMS/NSF workshop on "Arithmetic Topology". Three problem sessions were hosted during the workshop in which participants proposed open questions to the audience and engaged in shared discussions from their own perspectives as working mathematicians across various fields of study. Partic- ipants were explicitly asked to provide problems of various levels of difficulty, with the goal of capturing a cross-section of exciting challenges in the field that could help guide future activity. The problems, together with references and brief discussions when appropriate, are collected below into three categories: 1) topological analogues of arithmetic phenomena, 2) point counts, stability phenomena and the Grothendieck ring, and 3) tools, methods and examples. Three problem sessions were hosted during the workshop in which participants proposed open questions to the audience and engaged in shared discussions from their own perspectives as working mathematicians across various fields of study. Participants were explicitly asked to provide problems of various levels of difficulty, with the goal of capturing a cross-section of exciting challenges in the field that could help guide future activity. The problems, together with references and brief discussions when appropriate, are collected below into three categories: 1) topolog- ical analogues of arithmetic phenomena, 2) point counts, stability phenomena and the Grothendieck ring, and 3) tools, methods and examples. Acknowledgements. We thank all of the people who posed problems, both for their original suggestions and for their help clarifying and refining our write-ups of them. -
Algebraic K-Theory (University of Washington, Seattle, 1997) 66 Robert S
http://dx.doi.org/10.1090/pspum/067 Selected Titles in This Series 67 Wayne Raskind and Charles Weibel, Editors, Algebraic K-theory (University of Washington, Seattle, 1997) 66 Robert S. Doran, Ze-Li Dou, and George T. Gilbert, Editors, Automorphic forms, automorphic representations, and arithmetic (Texas Christian University, Fort Worth, 1996) 65 M. Giaquinta, J. Shatah, and S. R. S. Varadhan, Editors, Differential equations: La Pietra 1996 (Villa La Pietra, Florence, Italy, 1996) 64 G. Ferreyra, R. Gardner, H. Hermes, and H. Sussmann, Editors, Differential geometry and control (University of Colorado, Boulder, 1997) 63 Alejandro Adem, Jon Carlson, Stewart Priddy, and Peter Webb, Editors, Group representations: Cohomology, group actions and topology (University of Washington, Seattle, 1996) 62 Janos Kollar, Robert Lazarsfeld, and David R. Morrison, Editors, Algebraic geometry—Santa Cruz 1995 (University of California, Santa Cruz, July 1995) 61 T. N. Bailey and A. W. Knapp, Editors, Representation theory and automorphic forms (International Centre for Mathematical Sciences, Edinburgh, Scotland, March 1996) 60 David Jerison, I. M. Singer, and Daniel W. Stroock, Editors, The legacy of Norbert Wiener: A centennial symposium (Massachusetts Institute of Technology, Cambridge, October 1994) 59 William Arveson, Thomas Branson, and Irving Segal, Editors, Quantization, nonlinear partial differential equations, and operator algebra (Massachusetts Institute of Technology, Cambridge, June 1994) 58 Bill Jacob and Alex Rosenberg, Editors, K-theory and algebraic geometry: Connections with quadratic forms and division algebras (University of California, Santa Barbara, July 1992) 57 Michael C. Cranston and Mark A. Pinsky, Editors, Stochastic analysis (Cornell University, Ithaca, July 1993) 56 William J. Haboush and Brian J. -
Fundamental Groups of Number Fields Farshid Hajir in This Mostly Expository Lecture Aimed at Low-Dimensional Topologists, I
Fundamental groups of number fields Farshid Hajir In this mostly expository lecture aimed at low-dimensional topologists, I out- lined some basic facts and problems of algebraic number theory. My focus was on one particular aspect of the rich set of analogies between number fields and 3-manifolds dubbed Arithmetic Topology. Namely, I discussed the role played in number theory by \fundamental groups" of number fields, and related some of the history of the subject over the past fifty years, since the unexpected discovery by Golod and Shafarevich of number fields with infinite fundamental group; see the monograph of Neukirch, Schmidt, Wingberg [10] for a comprehensive account. A conjecture of Fontaine and Mazur [3] has been influential in stimulating work on the structure of these infinite fundamental groups in recent years. I presented a for- mulation of this conjecture as it relates to the asymptotic growth of discriminants [6]. This discussion then served as motivation for a question about non-compact, finite-volume, 3-manifolds inspired by the following dictionary. Topology Arithmetic M non-compact, finite-volume K a number field hyperbolic 3-manifold or, more precisely, X = SpecOK universal cover Mf Ke = max. unramified extension of K et fundamental group π1(M) Gal(K=Ke ) ≈ π1 (X) Klein-bottle cusps of M Real (\unoriented") places of K Torus cusps of M Complex (\oriented") places of K r1 = # Klein-bottle cusps of M r1 = # Real places of K r2 = # Torus cusps of M r2 = # Complex places of K r = r1 + r2 = # cusps of M r = r1 + r2 = # places of K at 1 n = r1 + 2r2 = weighted # cusps n = r1 + 2r2 = [K : Q] vol(M) = volume of M log jdK j, dK = discriminant of K There are multiple accounts of the dictionary of arithmetic topology; these in- clude Reznikov [12], Ramachandran [11], Deninger [2], Morin [9], and Morishita [8]. -
Knots in Number Theory
T.D. van Mulligen Knots in Number Theory Master thesis, September 2017 Thesis supervisor: Dr. R.I. van der Veen Second supervisor: Dr. G.S. Zalamansky Mathematisch Instituut, Universiteit Leiden Contents 1. Introduction ............................................1 2. Topological preliminaries .....................................5 2.1 Knots............................................5 2.2 Covering spaces......................................7 3. Algebraic preliminaries ...................................... 13 3.1 Profinite groups...................................... 13 3.2 Affine schemes...................................... 15 3.3 Finite étale coverings................................... 17 Interlude on Galois categories................................. 19 3.4 Étale fundamental groups................................ 20 4. The linking number and the Legendre symbol .......................... 23 4.1 The linking number.................................... 23 4.2 The mod 2 linking number for primes......................... 26 5. Decomposition of knots and primes ................................ 31 5.1 Decomposition of knots................................. 31 5.2 Decomposition of primes................................. 37 6. Homology groups and ideal class groups ............................. 43 6.1 Homology groups and the Hurewicz theorem.................... 43 6.2 Ideal class groups and Artin reciprocity........................ 44 ii Contents 7. The Alexander and Iwasawa polynomials ............................. 47 7.1 Differential modules.................................. -
Quillen's Work in Algebraic K-Theory
J. K-Theory 11 (2013), 527–547 ©2013 ISOPP doi:10.1017/is012011011jkt203 Quillen’s work in algebraic K-theory by DANIEL R. GRAYSON Abstract We survey the genesis and development of higher algebraic K-theory by Daniel Quillen. Key Words: higher algebraic K-theory, Quillen. Mathematics Subject Classification 2010: 19D99. Introduction This paper1 is dedicated to the memory of Daniel Quillen. In it, we examine his brilliant discovery of higher algebraic K-theory, including its roots in and genesis from topological K-theory and ideas connected with the proof of the Adams conjecture, and his development of the field into a complete theory in just a few short years. We provide a few references to further developments, including motivic cohomology. Quillen’s main work on algebraic K-theory appears in the following papers: [65, 59, 62, 60, 61, 63, 55, 57, 64]. There are also the papers [34, 36], which are presentations of Quillen’s results based on hand-written notes of his and on communications with him, with perhaps one simplification and several inaccuracies added by the author. Further details of the plus-construction, presented briefly in [57], appear in [7, pp. 84–88] and in [77]. Quillen’s work on Adams operations in higher algebraic K-theory is exposed by Hiller in [45, sections 1-5]. Useful surveys of K-theory and related topics include [81, 46, 38, 39, 67] and any chapter in Handbook of K-theory [27]. I thank Dale Husemoller, Friedhelm Waldhausen, Chuck Weibel, and Lars Hesselholt for useful background information and advice. 1. -
Past Programs I~VIII
Low dimensional topology and number theory March 17-20, 2009 Soft Research Park Center, Fukuoka Program March 17 11:00 { 12:00 Susan Williams (University of South Alabama) Twisted Alexander invariants and two-bridge knots 13:30 { 14:30 Yuichi Kabaya (Tokyo Institute of Technology) A method for finding ideal points from an ideal triangulation and its appli- cation 14:50 { 15:50 Stavros Garoufalidis (Georgia Institute of Technology) Asymptotics of classical spin networks March 18 10:00 { 11:00 Daniel Silver (University of South Alabama) On a theorem of Burde and de Rham 11:20 { 12:20 Takahiro Kitayama (The University of Tokyo) Torsion volume forms and twisted Alexander functions on character varieties of knots 14:00 { 15:00 Kazuo Habiro (RIMS, Kyoto University) On the Witten-Reshetikhin-Turaev invariant and analytic functions on roots of unity 1 15:20 { 16:20 Don Zagier (Max Planck Institute) Modular properties of topological invariants and other q-series March 19 10:00 { 11:00 Jonathan Hillman (University of Sydney) Indecomposable PD3-complexes 11:20 { 12:20 Baptiste Morin (University of Bordeaux) On the Weil-´etalefundamental group of a number field 14:00 { 15:00 Ken-ichi Sugiyama (Chiba University) On a geometric analog of Iwasawa conjecture 15:00 { 15:25 Walter Neumann (Columbia University) Universal abelian covers in geometry and number theory March 20 10:00 { 11:00 Thang Le (Georgia Institute of Technology) Hyperbolic volumes, Mahler measure and homology growth 11:20 { 12:20 Shinya Harada (Kyushu University) Hasse-Weil zeta function -
Report on Birs Workshop 07W5052 ”Low-Dimensional Topology and Number Theory”
REPORT ON BIRS WORKSHOP 07W5052 "LOW-DIMENSIONAL TOPOLOGY AND NUMBER THEORY" DAVID BOYD, PAUL GUNNELLS, WALTER NEUMANN, ADAM S. SIKORA 1. Objectives of the workshop The goal of the workshop was to bring together topologists and number theorists with the intent of exploring connections between low-dimensional topology and number theory, with the special focus on topics described in the section below. We hoped that the balance between the lectures and free time as well as the intimate setting of the Banff Research Station will stimulate many informal discussions and collaborations. We were delighted to see that these objectives were fulfilled. We would like to thank BIRS staff for their hospitality and efficiency. 2. Topics of the workshop 2.1. Arithmetic Topology. Starting from the late 1960's, B. Mazur and others observed the existence of a curious analogy between knots and prime numbers and, more generally, between knots in 3-dimensional manifolds and prime ideals in algebraic number fields, [24,25,25,30{32]. For example, the spectrum of the ring of algebraic integers in any number field has ´etalecohomological dimension 3 (modulo higher 2-torsion), [23]. Moreover, the ´etalecohomology groups of such spectra satisfy Artin-Verdier duality, which is reminiscent of the Poincare duality satisfied by closed, oriented, 3-dimensional manifolds. Furthermore, there are numerous analogies between algebraic class field theory and the theory of abelian covers of 3- manifolds. As an example we mention that the universal abelian cover surprisingly yields complete intersections on both the number-theoretic (de Smit{Lenstra) and topological/geometric (Neumann{Wahl) sides, [12, 26]. -
Emissary | Spring 2021
Spring 2021 EMISSARY M a t h e m a t i c a lSc i e n c e sRe s e a r c hIn s t i t u t e www.msri.org Mathematical Problems in Fluid Dynamics Mihaela Ifrim, Daniel Tataru, and Igor Kukavica The exploration of the mathematical foundations of fluid dynamics began early on in human history. The study of the behavior of fluids dates back to Archimedes, who discovered that any body immersed in a liquid receives a vertical upward thrust, which is equal to the weight of the displaced liquid. Later, Leonardo Da Vinci was fascinated by turbulence, another key feature of fluid flows. But the first advances in the analysis of fluids date from the beginning of the eighteenth century with the birth of differential calculus, which revolutionized the mathematical understanding of the movement of bodies, solids, and fluids. The discovery of the governing equations for the motion of fluids goes back to Euler in 1757; further progress in the nineteenth century was due to Navier and later Stokes, who explored the role of viscosity. In the middle of the twenti- eth century, Kolmogorov’s theory of tur- bulence was another turning point, as it set future directions in the exploration of fluids. More complex geophysical models incorporating temperature, salinity, and ro- tation appeared subsequently, and they play a role in weather prediction and climate modeling. Nowadays, the field of mathematical fluid dynamics is one of the key areas of partial differential equations and has been the fo- cus of extensive research over the years. -
The Mathematics of Andrei Suslin
B U L L E T I N ( N e w Series) O F T H E A M E R I C A N MATHEMATICAL SOCIETY Vo lume 57, N u mb e r 1, J a n u a r y 2020, P a g e s 1–22 https://doi.org/10.1090/bull/1680 Art icle electronically publis hed o n S e p t e mbe r 24, 2019 THE MATHEMATICS OF ANDREI SUSLIN ERIC M. FRIEDLANDER AND ALEXANDER S. MERKURJEV C o n t e n t s 1. Introduction 1 2. Projective modules 2 3. K 2 of fields and the Brauer group 3 4. Milnor K-theory versus algebraic K-theory 7 5. K-theory and cohomology theories 9 6. Motivic cohomology and K-theories 12 7. Modular representation theory 16 Acknowledgments 18 About the authors 18 References 18 0. Introduction Andrei Suslin (1950–2018) was both friend and mentor to us. This article dis- cusses some of his many mathematical achievements, focusing on the role he played in shaping aspects of algebra and algebraic geometry. We mention some of the many important results Andrei proved in his career, proceeding more or less chronolog- ically beginning with Serre’s Conjecture proved by Andrei in 1976 (and simul- taneously by Daniel Quillen). As the reader will quickly ascertain, this article does not do justice to the many mathematicians who contributed to algebraic K- theory and related subjects in recent decades. In particular, work of Hyman Bass, Alexander Be˘ılinson, Spencer Bloch, Alexander Grothendieck, Daniel Quillen, Jean- Pierre Serre, and Christophe Soul`e strongly influenced Andrei’s mathematics and the mathematical developments we discuss. -
On Motivic Spherical Bundles
ON MOTIVIC SPHERICAL BUNDLES FLORIAN STRUNK Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) des Fachbereichs Mathematik/Informatik an der Universit¨atOsnabr¨uck vorgelegt von Florian Strunk aus Lemgo Institut f¨urMathematik Universit¨atOsnabr¨uck Dezember 2012 Contents Introduction 1 1. Unstable motivic homotopy theory 3 1.1. The unstable motivic homotopy category . 5 1.2. Homotopy sheaves and fiber sequences . 15 1.3. Mather's cube theorem and some implications . 24 2. Stable motivic homotopy theory 31 2.1. The stable motivic homotopy category . 31 2.2. A consequence of the motivic Hurewicz theorem . 34 2.3. Motivic connectivity of morphisms . 39 3. The motivic J-homomorphism 44 3.1. Principal bundles and fiber bundles . 44 3.2. Fiber sequences from bundles . 52 3.3. Definition of a motivic J-homomorphism . 53 4. Vanishing results for the J-homomorphism 61 4.1. A relation with Thom classes . 61 4.2. Motivic Atiyah duality and the transfer . 65 4.3. A motivic version of Brown's trick . 67 4.4. Dualizability of GLn=NT ........................71 A. Appendix 74 A.1. Preliminaries on model categories . 74 A.2. Monoidal model categories . 80 A.3. Simplicial model categories . 82 A.4. Pointed model categories . 86 A.5. Stable model categories . 89 A.6. Fiber and cofiber sequences . 93 References . 96 ON MOTIVIC SPHERICAL BUNDLES 1 Introduction This thesis deals with a motivic version of the J-homomorphism from algebraic topology. The classical J-homomorphism was introduced under a different name in 1942 by Whitehead [Whi42] in order to study homotopy groups of the spheres.