The Preparation of Arsphenamine (Salvarsan).I by Pi~Ilipadolph Kober
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pre-Antibiotic Therapy of Syphilis Charles T
University of Kentucky UKnowledge Microbiology, Immunology, and Molecular Microbiology, Immunology, and Molecular Genetics Faculty Publications Genetics 2016 Pre-Antibiotic Therapy of Syphilis Charles T. Ambrose University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/microbio_facpub Part of the Medical Immunology Commons Repository Citation Ambrose, Charles T., "Pre-Antibiotic Therapy of Syphilis" (2016). Microbiology, Immunology, and Molecular Genetics Faculty Publications. 83. https://uknowledge.uky.edu/microbio_facpub/83 This Article is brought to you for free and open access by the Microbiology, Immunology, and Molecular Genetics at UKnowledge. It has been accepted for inclusion in Microbiology, Immunology, and Molecular Genetics Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Pre-Antibiotic Therapy of Syphilis Notes/Citation Information Published in NESSA Journal of Infectious Diseases and Immunology, v. 1, issue 1, p. 1-20. © 2016 C.T. Ambrose This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This article is available at UKnowledge: https://uknowledge.uky.edu/microbio_facpub/83 Journal of Infectious Diseases and Immunology Volume 1| Issue 1 Review Article Open Access PRE-ANTIBIOTICTHERAPY OF SYPHILIS C.T. Ambrose, M.D1* 1Department of Microbiology, College of Medicine, University of Kentucky *Corresponding author: C.T. Ambrose, M.D, College of Medicine, University of Kentucky Department of Microbiology, E-mail: [email protected] Citation: C.T. -
Arsinothricin, an Arsenic-Containing Non-Proteinogenic Amino Acid Analog of Glutamate, Is a Broad-Spectrum Antibiotic
ARTICLE https://doi.org/10.1038/s42003-019-0365-y OPEN Arsinothricin, an arsenic-containing non-proteinogenic amino acid analog of glutamate, is a broad-spectrum antibiotic Venkadesh Sarkarai Nadar1,7, Jian Chen1,7, Dharmendra S. Dheeman 1,6,7, Adriana Emilce Galván1,2, 1234567890():,; Kunie Yoshinaga-Sakurai1, Palani Kandavelu3, Banumathi Sankaran4, Masato Kuramata5, Satoru Ishikawa5, Barry P. Rosen1 & Masafumi Yoshinaga1 The emergence and spread of antimicrobial resistance highlights the urgent need for new antibiotics. Organoarsenicals have been used as antimicrobials since Paul Ehrlich’s salvarsan. Recently a soil bacterium was shown to produce the organoarsenical arsinothricin. We demonstrate that arsinothricin, a non-proteinogenic analog of glutamate that inhibits gluta- mine synthetase, is an effective broad-spectrum antibiotic against both Gram-positive and Gram-negative bacteria, suggesting that bacteria have evolved the ability to utilize the per- vasive environmental toxic metalloid arsenic to produce a potent antimicrobial. With every new antibiotic, resistance inevitably arises. The arsN1 gene, widely distributed in bacterial arsenic resistance (ars) operons, selectively confers resistance to arsinothricin by acetylation of the α-amino group. Crystal structures of ArsN1 N-acetyltransferase, with or without arsinothricin, shed light on the mechanism of its substrate selectivity. These findings have the potential for development of a new class of organoarsenical antimicrobials and ArsN1 inhibitors. 1 Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199, USA. 2 Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Tucumán T4001MVB, Argentina. 3 SER-CAT and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA. -
Multi-Residue Determination of Organic Arsenical Drugs in Feeds by LC-MS/MS
Multi-Residue Determination of Organic Arsenical Drugs in Feeds by LC-MS/MS Geneviève Grenier, Melanie Titley & Lise-Anne Prescott AAFCO Laboratory Methods and Services Committee meeting 2016-01-18 Background • Animal Feed Division of CFIA identified a high priority need for the determination of three organic arsenicals (arsanilic acid, roxarsone and nitarsone) at residue levels in animal feed • These are withdrawal drugs and are priority food contaminants • Current test methods are at guarantee levels greater than 10% minimum use rate • Therefore, current methods not well suited for residue or traceback testing • Requested feed residue LOQ of 1 mg/kg for all three organic arsenicals 2 Background • UHPLC-PDA Challenges • Extract were very dirty • Tried sample clean-up using Oasis MAX SPE • Still very dirty • HPLC Challenges • Compounds elute too easily • Analytical column must : retain and separate compounds, and give good peak shape • Analytical column : Phenomenex Onyx Monolithic C18 100 X 3.0mm 3 Background • LC/MS/MS method (positive mode) • Column: Phenomenex Onyx Monolithic C18 100 X 3.0mm • Linearity problems with Internal Standard (IS) • Internal standard – 4-hydroxyphenylarsonic acid • Peak area of the internal standard increased with increasing analyte concentration • Cause • 4-hydroxyphenyl arsanic acid co-elute with Arsanilic acid and have similar m/z 4 New method - summary • Liquid chromatography combined with atomic and molecular mass spectrometry for speciation of arsenic in chicken liver. Peng et. al., Journal of Chromatography -
National Center for Toxicological Research (NCTR) Science Advisory Board (SAB)
National Center for Toxicological Research (NCTR) Science Advisory Board (SAB) November 2, 2016 Crowne Plaza 201 S. Shackleford Road Little Rock, AR 72211 TABLE OF CONTENTS FDA Center Perspectives 1 Center for Biologics Evaluation and Research Center for Drug Evaluation and Research Center for Devices and Radiological Health Center for Tobacco Products Center for Veterinary Medicine Office of Regulatory Affairs Discussion of NCTR Research (SAB Members) 120 1 P R O C E E D I N G S Agenda Item: FDA Center Perspectives DR. PHILBERT: Good morning. Our first presentation in a series from our colleagues at FDA is from Carolyn, Center for Biologics Evaluation and Research. DR. WILSON: Good morning. Thank you. I am going to start with an overview of the products we regulate just to orient some of you who may be new on the advisory board. Then I will go into the priorities for our scientific research program, as well as some examples of ongoing and potential future collaborations with NCTR. We regulate what are called complex biologic products, so things like monoclonal antibodies and most recombinant proteins are regulated in the Center for Drugs. But we regulate things like blood, blood components and derivatives, vaccines both preventative and therapeutic, the novel areas like cell and gene therapies, including stem cells, and that does include things like CRISPR modification of cells. Certain human tissues, live biotherapeutics and, yes, that includes fetal transplantation, allergenic products which actually, although that is a single line, represents over 1200 different extracts that are used both for diagnosis 2 and treatment of allergies, and then certain related devices, as well. -
Of Rabbits and Men: the Tale of Paul Ehrlich in Our Modern World Of
Of Rabbits and Men: The Tale of Paul Ehrlich In our modern world of chemotherapy, antibiotics and antivirals, it might come as a surprise to find that the origin of all these treatments can be traced back to rabbits; the cute and fluffy kind. To understand why, we need to go all the way back to 1882 Berlin. A talented, if aimless, young German doctor, Paul Ehrlich, had just met the great microbiologist Robert Koch. Koch was giving a lecture in which he identified the pathogen responsible for tuberculosis. Ehrlich was instantly fascinated by Koch and microbiology. Unknown to himself, he had just taken the first step on a path that would help change the way disease is tackled forever1. The late 1800’s were a time of dynamic change in the sciences. Charles Darwin had proposed his Theory of Natural Selection and Thomas Edison had given us the light bulb. Amongst the many fashionable topics of the time, some biologists were fascinated by dyes; specifically the staining of living tissue. Spending all day bent over a microscope looking at the pretty colours might not seem like worthwhile science by modern standards, but these dyes had interesting properties. Dyes displayed a high level of specificity; they would only stain certain structures and pass through others. Ehrlich noticed this and soon started to think of applications for these properties. These were times when catching a chill could kill. Many well-known individuals of the time were killed in their prime due to infectious disease. Emily Brontë died from tuberculosis2, René Descartes from pneumonia3 and Pyotr Tchaikovsky died from cholera4. -
UNIVERSITY of CALIFORNIA the Role of United States Public Health Service in the Control of Syphilis During the Early 20Th Centu
UNIVERSITY OF CALIFORNIA Los Angeles The Role of United States Public Health Service in the Control of Syphilis during the Early 20th Century A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Public Health by George Sarka 2013 ABSTRACT OF THE DISSERTATION The Role of United States Public Health Service in the Control of Syphilis during the Early 20th Century by George Sarka Doctor of Public Health University of California, Los Angeles, 2013 Professor Paul Torrens, Chair Statement of the Problem: To historians, the word syphilis usually evokes images of a bygone era where lapses in moral turpitude led to venereal disease and its eventual sequelae of medical and moral stigmata. It is considered by many, a disease of the past and simply another point of interest in the timeline of medical, military or public health history. However, the relationship of syphilis to the United States Public Health Service is more than just a fleeting moment in time. In fact, the control of syphilis in the United States during the early 20th century remains relatively unknown to most individuals including historians, medical professionals and public health specialists. This dissertation will explore following question: What was the role of the United States Public Health Service in the control of syphilis during the first half of the 20th century? This era was a fertile period to study the control of syphilis due to a plethora of factors including the following: epidemic proportions in the U.S. population and military with syphilis; the ii emergence of tools to define, recognize and treat syphilis; the occurrence of two world wars with a rise in the incidence and prevalence of syphilis, the economic ramifications of the disease; and the emergence of the U.S. -
Syphilis - Its Early History and Treatment Until Penicillin, and the Debate on Its Origins
History Syphilis - Its Early History and Treatment Until Penicillin, and the Debate on its Origins John Frith, RFD Introduction well as other factors such as education, prophylaxis, training of health personnel and adequate and rapid “If I were asked which is the most access to treatment. destructive of all diseases I should unhesitatingly reply, it is that which Up until the early 20th century it was believed that for some years has been raging with syphilis had been brought from America and the New impunity ... What contagion does World to the Old World by Christopher Columbus in thus invade the whole body, so much 1493. In 1934 a new hypothesis was put forward, resist medical art, becomes inoculated that syphilis had previously existed in the Old World so readily, and so cruelly tortures the before Columbus. I In the 1980’s palaeopathological patient ?” Desiderius Erasmus, 1520.1 studies found possible evidence that supported this hypothesis and that syphilis was an old treponeal In 1495 an epidemic of a new and terrible disease broke disease which in the late 15th century had suddenly out among the soldiers of Charles VIII of France when evolved to become different and more virulent. Some he invaded Naples in the first of the Italian Wars, and recent studies however have indicated that this is not its subsequent impact on the peoples of Europe was the case and it still may be a new epidemic venereal devastating – this was syphilis, or grande verole, the disease introduced by Columbus from America. “great pox”. Although it didn’t have the horrendous mortality of the bubonic plague, its symptoms were The first epidemic of the ‘Disease of Naples’ or the painful and repulsive – the appearance of genital ‘French disease’ in Naples 1495 sores, followed by foul abscesses and ulcers over the rest of the body and severe pains. -
Bacterial Mechanisms of Toxicity and Resistance to Organoarsenicals
Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 11-13-2020 Bacterial Mechanisms of Toxicity and Resistance to Organoarsenicals Luis D. Garbinski Florida International University, [email protected] Follow this and additional works at: https://digitalcommons.fiu.edu/etd Part of the Biochemistry Commons, Environmental Microbiology and Microbial Ecology Commons, and the Molecular Biology Commons Recommended Citation Garbinski, Luis D., "Bacterial Mechanisms of Toxicity and Resistance to Organoarsenicals" (2020). FIU Electronic Theses and Dissertations. 4549. https://digitalcommons.fiu.edu/etd/4549 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida BACTERIAL MECHANISMS OF TOXICITY AND RESISTANCE TO ORGANOARSENICALS A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in BIOMEDICAL SCIENCES by Luis D Garbinski 2020 To: Dean Robert Sackstein Herbert Wertheim College of Medicine This dissertation, written by Luis D Garbinski, and entitled Bacterial Mechanisms of Toxicity and Resistance to Organoarsenicals, having been approved in respect to style and intellectual content, is referred to you for judgement. We have read this dissertation and recommend that it be approved. _______________________________________ Irina Agoulnik _______________________________________ Jun-yong Choe _______________________________________ Krishnaswamy Jayachandran _______________________________________ Masafumi Yoshinaga, Co-Major Professor _______________________________________ Barry Rosen, Co-Major Professor Date of Defense: November 11, 2020 The dissertation of Luis D Garbinski is approved. -
Photooxidation of P-Arsanilic Acid in Aqueous Solution by UV/Persulfate Process
applied sciences Communication Photooxidation of p-Arsanilic Acid in Aqueous Solution by UV/Persulfate Process Xiangyi Shen 1, Jing Xu 2,*, Ivan P. Pozdnyakov 3,4 and Zizheng Liu 5,* ID 1 Department of Environmental Science, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China; [email protected] 2 State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China 3 Institute of Chemical Kinetics and Combustion, Institutskaya 3, 630090 Novosibirsk, Russia; [email protected] 4 Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk, Russia 5 School of Civil Engineering, Wuhan University, Wuhan 430072, China * Correspondence: [email protected] (J.X.); [email protected] (Z.L.) Received: 26 February 2018; Accepted: 4 April 2018; Published: 13 April 2018 Abstract: Used as a kind of feed additive, p-arsanilic acid can pose a potential risk to organisms when abandoned in the environment. The photodegradation of p-ASA was investigated under UV-C irradiation in the presence of persulfate (PS) in this work. The addition of PS facilitated the decomposition of p-ASA and notably, the presence of 50 mmol PS brought about a nearly complete mineralization after 3 h, while an insignificant total organic carbon (TOC) removal was observed − under UV irradiation (λ = 254 nm) only. Experimental results proved that sulfate radical (SO4• ) was responsible for the promotion effect. The cleavage of As-C bond released inorganic arsenic and caused the occurrence of various organic products, for example, hydroxybenzaldehyde, nitrobenzene, benzenediol sulfate, and biphenylarsinic acid. The application of PS with UV-C light may throw a light on thorough treatment for p-ASA containing wastewater. -
Transformation of Para Arsanilic Acid by Manganese Oxide: Adsorption, Oxidation, and Influencing Factors
Water Research 116 (2017) 126e134 Contents lists available at ScienceDirect Water Research journal homepage: www.elsevier.com/locate/watres Transformation of para arsanilic acid by manganese oxide: Adsorption, oxidation, and influencing factors * Tista Prasai Joshi a, c, Gong Zhang b, Hanyang Cheng a, c, Ruiping Liu a, c, , Huijuan Liu b, c, Jiuhui Qu a, c a Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China b State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China c University of Chinese Academy of Sciences, Beijing 100049, China article info abstract Article history: Aromatic organoarsenic compounds tend to transform into more mobile toxic inorganic arsenic via Received 19 December 2016 several processes, and can inadvertently spread toxic inorganic arsenic through the environment to Received in revised form water sources. To gain insight into the transformation mechanisms, we herein investigated how the 8 March 2017 process of para arsanilic acid (p-ASA) transformation works in detail on the surface of adsorbents by Accepted 11 March 2017 comparing it with phenylarsonic acid (PA) and aniline, which have similar chemical structures. In Available online 18 March 2017 À À contrast to the values of 0.23 mmol g 1 and 0.68 mmol g 1 for PA and aniline, the maximum adsorption À capacity was determined to be 0.40 mmol g 1 for p-ASA at pH 4.0. The results of FTIR and XPS spectra Keywords: Para arsanilic acid supported the presence of a protonated amine, resulting in a suitable condition for the oxidation of p- fi Phenylarsonic acid ASA. -
Might Become 'A Framework for Study
DOCUMENT RESUME ED 028 940 SE 006 545 By-Busch. PhyNis S. Venereal Disease. A Teaching Reference Guide. New Jersey State Dept. of Education, Trenton.; New Jersey State Dept. of Health. Trenton. Pub Date 64 Note-90p. EDRS Price Mr-S0.50 HC-S4.60 Descriptors-AudiovisualAids,Bibliographies, Disease Control,*Diseases, *Health Education, Resource Materials, *Secondary School Science, *Teaching Guides, Youth Problems This guide developed for use in the secondary schools of New Jersey makes suggestions for venereal disease education which have been tested in a wide variety of classroorti situations. The document focuses on the kinds of questions for which young people are seeking answers. An attempt is made to illustrate problems which might become 'a framework for study. Many suggestions are made for motivating students and teaching the topic. Appendixed is teacher background information which indudes article reprints, research data, a film list, and a wide variety of references. (DS) U.S. DEPARTMENT OF HEALTH, EDUCATION & WELFARE OFFICE OF EDUCATION THIS DOCUMENT HAS BEEN REPRODUCED EXACTLYAS RECEIVED, FROM THE PERSON OR ORGANIZATION ORIGINATING IT.POINTS OF VIEW OR OPINIONS STATED DO NOT NECESSARILY REPRESENT OFFICIALOFFICE OF EDUCATION POSITION OR POLICY. ateaching reference guitk VENEREAL DISEASE DIVISION OF CURRICULUM AND INSTRUCTION DEPARTMENT OF EDUCATION STATE OF NEW JERSEY is cporstin with NEW JERSEY STATE DEPARTMENT OF HEALTH 1 Venereal Disease A TEACHING REFERENCE GUIDE Compiled by Phyllis S. Busch, Consultant Division of Curriculum and Instruction Department of Education State of New Jersey in cooperation with the New Jersey State of Department of Health TABLE OF CONTENTS PAGE A Letter from the Commissioner Foreword by Robert S. -
Extended Spectrum Β-Lactamase (ESBL) Producing Escherichia Coli in Pigs and Pork Meat in the European Union
antibiotics Review Extended Spectrum β-Lactamase (ESBL) Producing Escherichia coli in Pigs and Pork Meat in the European Union Ieva Bergšpica 1,2,*, Georgia Kaprou 1 , Elena A. Alexa 1 , Miguel Prieto 1,3 and Avelino Alvarez-Ordóñez 1,3,* 1 Department of Food Hygiene and Technology, Universidad de León, 24007 León, Spain; [email protected] (G.K.); [email protected] (E.A.A.); [email protected] (M.P.) 2 Institute of Food Safety, Animal Health and Environment BIOR, LV-1076 Riga, Latvia 3 Institute of Food Science and Technology, Universidad de León, 24007 León, Spain * Correspondence: [email protected] (I.B.); [email protected] (A.A.-O.) Received: 10 September 2020; Accepted: 3 October 2020; Published: 7 October 2020 Abstract: The aim of this article is to review the fast and worldwide distribution of ESBL enzymes and to describe the role of the pork production chain as a reservoir and transmission route of ESBL-producing Escherichia coli and ESBLs in the European Union (EU). The use of β-lactam antibiotics in swine production and the prevalence of ESBL producing E. coli in fattening pigs and pork meat across Europe is analyzed. Overall, an increasing trend in the prevalence of presumptive ESBL producing E. coli in fattening pigs in the EU has been observed in the last decade, although with major differences among countries, linked to different approaches in the use of antimicrobials in pork production within the EU. Moreover, the various dissemination pathways of these bacteria along the pork production chain are described, along with factors at farm and slaughterhouse level influencing the risk of introducing or spreading ESBL producing bacteria throughout the food chain.