Microwave Transmission Through Atmospheric Densities Maturaarbeit/Extended Essay

Total Page:16

File Type:pdf, Size:1020Kb

Microwave Transmission Through Atmospheric Densities Maturaarbeit/Extended Essay Microwave Transmission through Atmospheric Densities Maturaarbeit/Extended Essay Author: Michael Krebs Supervisor: Heinz Anklin Co-Reader:[DATUM] Lukas Kaufmann [FIRMENNAME] [Firmenadresse] Wettingen, 11th November 2019 Table of Contents Introduction ............................................................................................................................................ 2 Theory ..................................................................................................................................................... 3 Concept of Microwave Transmission .................................................................................................. 3 Propagation in the Atmosphere .......................................................................................................... 5 Barometric Formula ............................................................................................................................ 7 Risk Assessment ...................................................................................................................................... 7 Experimental Method ............................................................................................................................. 8 Sender ................................................................................................................................................. 9 Problems with the Sender ............................................................................................................. 12 Receiver ............................................................................................................................................. 13 Requirements for the Measurements ............................................................................................... 14 Method of the Measurements .......................................................................................................... 14 Data Presentation ................................................................................................................................. 15 Radiation Field ................................................................................................................................... 15 Pressure Dependent Measurements ................................................................................................ 16 Discussion.............................................................................................................................................. 18 Data Interpretation ........................................................................................................................... 18 Data Uncertainties ............................................................................................................................. 20 Data Limitations ................................................................................................................................ 21 Conclusion ............................................................................................................................................. 22 Evaluation ............................................................................................................................................. 23 Bibliography .......................................................................................................................................... 24 Appendix ............................................................................................................................................... 27 Risk Assessment ................................................................................................................................ 27 Material List ....................................................................................................................................... 28 Raw Data ........................................................................................................................................... 28 1 Introduction This essay is based on revising the concept of an orbital solar power station (OSPS) and therefore in- vestigating into the research question; “To what extent does the atmospheric density on earth influence the energy loss of microwave transmission? “. The concept of such a station can be traced back to the year 1968.1 An OSPS would harvest the energy, produced by the sunlight, and convert it into electrical power. Due to atmospheric propagation the efficiency of collecting the sunlight outside earth’s atmos- phere is higher than on its surface. Out of the 1367 W/m2 which reaches earth’s atmosphere, only 1000 W/m2 actually make it through.2 Therefore it is interesting in the first place, to investigate for an alternative to exploit a greater amount of the sun’s energy, before it penetrates the atmosphere. In this work, the focus lies on the advantages and disadvantages of energy transmission from the sta- tion to the earth’s surface using microwaves by conducting a simplified experiment with a sender and receiver at three locations differentiated by their altitude. 1 „Space Based Solar Power“, Wikipedia, https://en.wikipedia.org/wiki/Space-based_solar_power#target- Text=In%201941%2C%20science%20fiction%20writer,first%20described%20in%20November%201968, Last accessed 5 November 2019. 2 „The sun as a source of energy“, Itacanet, https://www.itacanet.org/the-sun-as-a-source-of-energy/part-2- solar-energy-reaching-the-earths-surface/, Last accessed 5 November 2019. 2 Theory Concept of Microwave Transmission The concept of microwave transmission has been around since World War II, when the need for data transmission and radar became more prominent. Many countries have invested time and money into researching the characteristics of microwave-based data links, which is one of the main applications nowadays. By cutting the complexity of the system down to a minimum, the ultimate idea revolves around a mi- crowave transmitter and a microwave receiver. The transmitter consists of a power source, connected to a magnetron, where electrons begin to oscillate due to a magnetic field produced around them. This oscillation results in the creation of an electromagnetic wave, which is the combined wave front, as shown in Figure 1, of several waves traveling away from the magnetron. Figure 1; Illustration of an electromagnetic wave front The emitted energy needs to be converted from wave into electricity, for the concept of an OSPS. This process can be achieved by capturing the electromagnetic waves using a rectenna. A rectenna consists of two elements, being a dipole antenna and a radio frequency (RF) diode.3 The distance between the endings of the dipole antenna depends on the frequency being used. 3 „Rectenna“, Wikipedia, https://en.wikipedia.org/wiki/Rectenna, Last accessed 5 November 2019. 3 The RF get emitted radially and therefore decrease in power density by the formula shown below. In order to increase this density, the RF can be guided. This guidance can be evoked by the different types of transmitters in the form of an antenna, or in the case of this paper, a physical guidance using the effect of reflection by specific materials. 푃푡 푃 = 4휋푟2 The radial power intensity decline of waves can be described by the formula above, which divides the 4 initial power (푃푡) by the quadratic distance (푟) times 4휋. In the broad picture, microwave transmission serves as a dense and efficient energy transfer method between earth orbit and the ground, therefore cancelling the cosine-effect.5 This effect increases the amount of atmosphere the radiation has to penetrate through, depending on where on the planet the ground base is positioned. The origin of this effect is illustrated in Figure 2, which indicates the differ- ence between the area of plane B and plane C. Therefore, with increasing volume to be penetrated, the amount of propagation also increases. This leads to a greater loss of energy if a ground station is located anywhere remote from the equator. Figure 2; Illustration of the cosine-effect 4 Manning, Trevor, Microwave Radio Transmission Design Guide, Norwood: Artech House, 2009, p. 10. 5 M. Ewert & O. Fuentes, Modelling and simulation of a solar tower power plant, Achen: Achen University, p. 4. 4 Propagation in the Atmosphere The atmospheric propagation of electromagnetic waves plays a large role in microwave transmission. There are specifically three effects, which will be discussed due to their significance. Since any matter absorbs energy, the first effect in focus will be the absorption. As already mentioned, every atom absorbs waves. According to the Lambert-Beer law, every matter has its own absorption coefficient (α) which influences the initial energy intensity (퐼0) of a wave expo- nentially by the distance (푑) penetrated. This can be seen in the formula below, describing the Lam- bert-Beer law. −α푑 퐼(푑) = 퐼0푒 Furthermore, the formula of the absorption coefficient itself can be described by the product of the molar attenuation coefficient (n′′) of a material, times the angular frequency (푤) divided by the speed of light (푐).6 푤 α = 2n′′ 푐 This law therefore describes the exponential decline of the energy intensity of electromagnetic waves the further it gets penetrated. Looking at this law on the molecular basis, moisture in the atmosphere has a big effect. Though moisture only affects waves with a frequency higher than 11 GHz, it is nevertheless worth mentioning that this can have a great
Recommended publications
  • Newsgathering Transmission Techniques
    NEWSGATHERING TRANSMISSION TECHNIQUES Ennes Workshop – Miami, FL March 8, 2013 Kevin Dennis Regional Sales Manager 2 Vislink is Built on a Firm Foundation 3 Presentation Outline • Advancements in video encoding technology – H.264 versus MPEG-2 • Advancements in licensed microwave technology – Implementing HD/SD H.264 encoding – Modulation, FEC, high power Linear Amps • Advancements in bandwidth capacity of public access networks (Cellular and Wi-Fi) – 3G, 4G, LTE, WiMax – HD/SD Bonded Cellular Video Transmission • Comparison of strengths and weaknesses of licensed microwave transmission versus public network transmissions Newsgathering Transmission Techniques • Advancements in video encoding technology • Advancements in licensed microwave technology • Advancements in bandwidth capacity of public access networks (Cellular and Wi-Fi) • Comparison of strengths and weaknesses of licensed microwave transmission versus public network transmissions H.264 (MPEG-4 AVC / Part10) versus MPEG-2 • H.264/MPEG-4 AVC is a block-oriented motion-compensation based codec standard • First version of the standard was completed in 2003 • H.264 video compression is significantly more efficient than MPEG-2 encoding providing two-fold improvement as compared to MPEG-2 • H.264 HD encoding not excessively expensive to implement as compared to first MPEG-2 encoders H.264 (MPEG-4 AVC) vs. MPEG-2 H.264 is approximately twice as efficient as MPEG-2 Video quality comparison of H.264 (solid blue line with squares) and MPEG-2 (dotted red line with circles) as a function of bit rate compared to 100 Mbps source material. H.264 (MPEG-4 AVC) vs. MPEG-2 Low Motion Video - there is very little video quality difference between H.264 and MPEG-2 Video Images posted by Jan Ozer, Video Technology Instructor H.264 (MPEG-4 AVC) vs.
    [Show full text]
  • Overcoming Barriers to Providing Mobile Coverage Everywhere
    WHITE PAPER Overcoming Barriers to Providing Mobile Coverage Everywhere Published by © 2018 Introduction New international efforts to tackle digital While connecting the unconnected is an inequality have made expanding broadband important driver for expanding coverage, it’s not infrastructure a global priority. The United the only one. Operators in developing and Nations’ Broadband Commission for Sustainable developed countries are under pressure to build Development recently set ambitious targets for out infrastructure for a variety of business and 2025 to connect the remaining half of the regulatory reasons. Depending on the market, world’s population to the Internet. The goals operator requirements include meeting coverage include a mandate for all countries to establish obligations attached to spectrum licenses, funded national broadband plans, or broadband providing national emergency or disaster universal service requirements, as well as making recovery services, reducing roaming and leased affordable broadband services available in line costs and growing their customer base. developing countries (costing less than 2% of monthly gross national income per capita) by 2025. Mobile Internet connectivity will be key to “Mobile Internet achieving these broadband sustainable development goals that will bring economic and connectivity is key to social benefits to billions of people worldwide. There are two categories of unconnected achieving sustainable people: those that are covered by mobile broadband, 3G or 4G, infrastructure but do not development goals that use Internet services and those with no access to mobile networks at all. According to the will bring economic and GSMA, about 3.3 billion people are covered but not connected, while 1 billion people are not social benefits to billions covered.
    [Show full text]
  • A Review Paper on Microwave Transmission Using Reflector Antennas
    International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017 ISSN 2229-5518 251 A Review Paper on Microwave Transmission using Reflector Antennas Sandeep Kumar Singh [1],Sumi Kumari[2] Sr. Lecturer, Dept. of ECE, JBIT, Dehradun [1], Asst. Professor, Dept. of ECE, VGIET, Jaipur[2] [email protected][1] [email protected][2] Abstract: The conventional optimization problem of the beamed microwave energy transmission system is considered. The criterion of maximum efficiency of power intercept is parabolic function of distribution on the transmitting antenna. It is shown that under such a condition of amplitude distribution becomes more uniform than as the unconditional optimization. In this case, we can substantially increase the power radiated by the transmitting antenna losing the power intercept no more than 2%. Keywords: Parabolic Reflector Antenna, Radio Relay, Antenna Gain, Cassegrain Feed. I.INTRODUCTION limited to line of sight propagation; they cannot pass around hills or mountains as lower frequency radio waves can. Microwave radiation is generally defined as that electromagnetic radiation having wavelengths between radio waves and infrared III.ANTENNA radiation. Microwave radiation can be forced to travel in specially designed waveguides. Microwave radiation can be transmitted An antenna (or aerial) is an electrical device which converts through space or through the atmosphere in a microwave beam electric currents into radio waves, and vice versa. It is usually used from a microwave antenna and the microwave energy can be with a radio transmitter or radio receiver. In transmission, a radio collected with a microwave antenna. Microwave antennas are used transmitter applies an oscillating radio frequency electric current to for transmitting and receiving microwave radiation.
    [Show full text]
  • Applications of 2-D Moiré Deflectometry to Atmospheric Turbulence
    Journal of Applied Fluid Mechanics, Vol. 7, No. 4, pp. 651-657, 2014. Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645. DOI: 10.36884/jafm.7.04.21420 Applications of 2-D Moiré Deflectometry to Atmospheric Turbulence S. Rasouli1, 2†, M. D. Niry1, Y. Rajabi1, A. A. Panahi1 and J. J. Niemela3 1 Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran 2 Optics Research Center, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran 3The Abdus Salam ICTP, Strada Costiera 11, 34151 Trieste, Italy †Corresponding Author Email: [email protected] (Received August 23, 2013; accepted December 1, 2013) ABSTRACT We report on applications of a moiré deflectometry to observations of anisotropy in the statistical properties of atmospheric turbulence. Specifically, combining the use of a telescope with moiré deflectometry allows enhanced sensitivity to fluctuations in the wave-front phase, which reflect fluctuations in the fluid density. Such phase fluctuations in the aperture of the telescope are imaged on the first grating of the moiré deflectometer, giving high spatial resolution. In particular, we have measured the covariance of the angle of arrival (AA) between pairs of points displaced spatially on the telescope aperture which allows a quantitative measure of anisotropy in the atmospheric surface layer. Importantly, the telescope-based moiré deflectometry measures directly in the spatial domain and, besides being a non-intrusive method for studying turbulent flows, has the advantage of being relatively simple and inexpensive. Keywords: Boundary layers: turbulence; Electromagnetic waves: atmospheric propagation; Turbulence: atmospheric; Diffraction gratings: optical; Interferometers.
    [Show full text]
  • CRIRES User Manual
    EUROPEAN SOUTHERN OBSERVATORY Organisation Europ´eene pour des Recherches Astronomiques dans l’H´emisph`ere Austral Europ¨aische Organisation f¨urastronomische Forschung in der s¨udlichen Hemisph¨are ESO - European Southern Observatory Karl-Schwarzschild Str. 2, D-85748 Garching bei M¨unchen Instrumentation Division CRIRES User Manual Doc. No. VLT-MAN-ESO-14500-3486 Issue 1, Date 06/01/2006 Prepared for Review - INTERNAL USE ONLY Ralf Siebenmorgen 06.01.2006 Prepared .......................................... Date Signature CRIRES User Manual VLT-MAN-ESO-14500-3486 ii Change Record Issue/Rev. Date Section/Parag. affected Reason/Initiation/Documents/Remarks Issue 0.5 06/12/04 RSI First draft CRIRES User Manual VLT-MAN-ESO-14500-3486 iii Abbreviations and Acronyms AO Adaptive optics APD Avalanche photo-diode CRIRES High-resolution infrared echelle spectrometer of the VLT DM Deformable mirror DMD Data management division ESO European Southern Observatory ETC Exposure time calculator FC Finding chart FoV Field of view FWHM Full width at half maximum NIR Near infrared OB Observing block P2PP Phase II proposal preparation PSF Point spread function QC Quality control RTC Real time computer SM Service mode SR Strehl ratio TIO Telescope and instrument operator USG User support group VLT Very large telescope VM Visitor mode WF Wave front WFS Wave front sensor CRIRES User Manual VLT-MAN-ESO-14500-3486 iv Wavelength range 1 − 5µm Resolving power (2 pixels) 105 Slit width 0.200 − 100 Slit length 5000 Pixel scale 0.100 Adaptive optics 60 actuator curvature
    [Show full text]
  • Microwave Receivers with Direct Digitization
    Microwave Receivers with Direct Digitization Dmitri E. Kirichenko, Timur V. Filippov, and Deepnarayan Gupta HYPRES, Elmsford, NY, 10532, U.S.A. Abstract — Superconductor analog-to-digital converters integrated circuit (IC) technology with Niobium (Nb) (ADCs) and ultrafast digital circuitry enable processing of Josephson junctions (JJs), currently offer the best solution. microwave signals entirely in the digital domain. We have Superconductor ICs combine high-linearity, wideband ADCs designed and demonstrated a wide variety of continuous-time bandpass delta-sigma modulators using Josephson junction [2] and ultrafast digital logic, called rapid single flux quantum comparators. Featuring sampling frequencies up to 30 GHz, (RSFQ). A family of superconductor digital-RF receiver single-chip digital receivers have been demonstrated by (called ADR) chips (Fig. 1), comprising an ADC and a digital connecting a rapid single flux quantum (RSFQ) digital circuitry channelizer circuit, performing digital down-conversion and with these ADCs. These receiver chips, cooled to 4 K by cryogen- filtering, have been demonstrated. Notably, a digital-RF free refrigerators, have been used with room-temperature digital processors to demonstrate reception of microwave signals for X- receiver system, comprising a cryocooled ADR chip, was band satellite communications and Link-16 data links. To date, demonstrated reception of live satellite communication signals the highest frequency of direct digitization is 21 GHz for satellite in the X-band (7.25-7.75 GHz) [3]. In this paper, we focus on communication. We report recent advances in ADC design to ADCs for various microwave frequency bands ranging from 1 obtain higher dynamic range. GHz to 21 GHz. Index Terms — Analog-to-digital converter, RSFQ, cryogenic, Digital Output (I) SATCOM.
    [Show full text]
  • Evaluation of Clear Sky Models for Satellite-Based Irradiance Estimates Manajit Sengupta and Peter Gotseff National Renewable Energy Laboratory
    Evaluation of Clear Sky Models for Satellite-Based Irradiance Estimates Manajit Sengupta and Peter Gotseff National Renewable Energy Laboratory NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Technical Report NREL/TP-5D00-60735 December 2013 Contract No. DE-AC36-08GO28308 Evaluation of Clear Sky Models for Satellite-Based Irradiance Estimates Manajit Sengupta and Peter Gotseff National Renewable Energy Laboratory Prepared under Task No. SS13.8041 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. National Renewable Energy Laboratory Technical Report 15013 Denver West Parkway NREL/TP-5D00-60735 Golden, CO 80401 December 2013 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof.
    [Show full text]
  • Satellite Backhaul Vs Terrestrial Backhaul: a Cost Comparison
    Satellite Backhaul vs Terrestrial Backhaul: A Cost Comparison A perfect storm 3 Network deployment comparison 4 Semi-rural terrestrial backhaul deployment 4 Rural terrestrial backhaul deployment 5 TCO Comparison 6 July 2015 LTE Backhaul over Satellite p. 2 ©2015 Gilat Satellite Networks Ltd. All rights reserved. A perfect storm The mobile industry and the satellite industry have worked in parallel for decades, occasionally targeting the same market but mostly not. While mobile operators satisfied the vast demand for personalized on- the-move connectivity in population centers, satellite focused on connectivity in remote regions. But then - two phenomena converged. One was that mobile traffic became increasingly data-driven. This meant that the throughput requirements for mobile networks would need to grow exponentially. As the diagram below shows, using the United States as an example, mobile network traffic is expected to double between 2015 and 2017. Figure 1: Mobile Traffic Forecasts The proliferation of data over mobile has spurred the adaption of higher communications standards such as 4G/LTE. While these standards have not yet been implemented everywhere, they are surely on their way, and standards with even higher capacity – 5G and beyond – will follow. At the same time, advances in the satellite industry have slashed the cost of bandwidth. High-Throughput Satellites (HTS) offer significantly increased capacity, reducing bandwidth costs by as much as 70 July 2015 LTE Backhaul over Satellite p. 3 ©2015 Gilat Satellite Networks Ltd. All rights reserved. percent. This breakthrough has helped position satellite communication as a cost-effective alternative for delivering broadband while reducing operating expenses.
    [Show full text]
  • Unit I Microwave Transmission Lines
    UNIT I MICROWAVE TRANSMISSION LINES INTRODUCTION Microwaves are electromagnetic waves with wavelengths ranging from 1 mm to 1 m, or frequencies between 300 MHz and 300 GHz. Apparatus and techniques may be described qualitatively as "microwave" when the wavelengths of signals are roughly the same as the dimensions of the equipment, so that lumped-element circuit theory is inaccurate. As a consequence, practical microwave technique tends to move away from the discrete resistors, capacitors, and inductors used with lower frequency radio waves. Instead, distributed circuit elements and transmission-line theory are more useful methods for design, analysis. Open-wire and coaxial transmission lines give way to waveguides, and lumped-element tuned circuits are replaced by cavity resonators or resonant lines. Effects of reflection, polarization, scattering, diffraction, and atmospheric absorption usually associated with visible light are of practical significance in the study of microwave propagation. The same equations of electromagnetic theory apply at all frequencies. While the name may suggest a micrometer wavelength, it is better understood as indicating wavelengths very much smaller than those used in radio broadcasting. The boundaries between far infrared light, terahertz radiation, microwaves, and ultra-high-frequency radio waves are fairly arbitrary and are used variously between different fields of study. The term microwave generally refers to "alternating current signals with frequencies between 300 MHz (3×108 Hz) and 300 GHz (3×1011 Hz)."[1] Both IEC standard 60050 and IEEE standard 100 define "microwave" frequencies starting at 1 GHz (30 cm wavelength). Electromagnetic waves longer (lower frequency) than microwaves are called "radio waves". Electromagnetic radiation with shorter wavelengths may be called "millimeter waves", terahertz radiation or even T-rays.
    [Show full text]
  • Where's the Interference? Finding out Helps Improve Wi-Fi Performance
    Newsletter Article Where’s the Interference? Finding Out Helps Improve Wi-Fi Performance and Security What do microwave ovens, cordless phones, and wireless video surveillance cameras have in common? They all can create interference that affects the performance, reliability, and security of a school’s wireless network. “When schools limited their use of Wi-Fi to the library and administration areas, an occasional dropped connection caused by interference from a 2.4 GHz phone or a microwave oven wasn’t much of a problem,” says Sylvia Hooks, senior manager for mobility solutions at Cisco.. “It’s a different story when schools provide campuswide wireless connectivity for students, faculty, and staff.” In fact, many K-12 districts are in the process of expanding their wireless networks to provide high-performance 802.11n wireless for high-speed Internet access, web-based student information systems, and video for classroom learning and district meetings. Quickly Find Interference Sources The complication is that Wi-Fi operates in an unlicensed spectrum, shared by equipment ranging from cordless phones to baby monitors. Until recently, if teachers or students complained about wireless network performance, school IT teams could not readily identify the types and locations of the devices causing the interference, especially if the interference was intermittent. And when IT teams did find the source, which could be as benign as a neighboring building’s wireless network, mitigating the problem took specialized skills and time, both in short supply within school IT teams stretched thin. Easily Visualize Wireless Air Quality Now school IT teams have an easy way to visualize the wireless spectrum.
    [Show full text]
  • UNIT -1 Microwave Spectrum and Bands-Characteristics Of
    UNIT -1 Microwave spectrum and bands-characteristics of microwaves-a typical microwave system. Traditional, industrial and biomedical applications of microwaves. Microwave hazards.S-matrix – significance, formulation and properties.S-matrix representation of a multi port network, S-matrix of a two port network with mismatched load. 1.1 INTRODUCTION Microwaves are electromagnetic waves (EM) with wavelengths ranging from 10cm to 1mm. The corresponding frequency range is 30Ghz (=109 Hz) to 300Ghz (=1011 Hz) . This means microwave frequencies are upto infrared and visible-light regions. The microwaves frequencies span the following three major bands at the highest end of RF spectrum. i) Ultra high frequency (UHF) 0.3 to 3 Ghz ii) Super high frequency (SHF) 3 to 30 Ghz iii) Extra high frequency (EHF) 30 to 300 Ghz Most application of microwave technology make use of frequencies in the 1 to 40 Ghz range. During world war II , microwave engineering became a very essential consideration for the development of high resolution radars capable of detecting and locating enemy planes and ships through a Narrow beam of EM energy. The common characteristics of microwave device are the negative resistance that can be used for microwave oscillation and amplification. Fig 1.1 Electromagnetic spectrum 1.2 MICROWAVE SYSTEM A microwave system normally consists of a transmitter subsystems, including a microwave oscillator, wave guides and a transmitting antenna, and a receiver subsystem that includes a receiving antenna, transmission line or wave guide, a microwave amplifier, and a receiver. Reflex Klystron, gunn diode, Traveling wave tube, and magnetron are used as a microwave sources.
    [Show full text]
  • Uvic Thesis Template
    On the Modelling of Solar Radiation in Urban Environments – Applications of Geomatics and Climatology Towards Climate Action in Victoria by Christopher B. Krasowski B.Sc., University of Victoria, 2012 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in the Department of Geography Christopher B. Krasowski 2019 All rights reserved. This Thesis may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author. ii On the Modelling of Solar Radiation in Urban Environments – Applications of Geomatics and Climatology Towards Climate Action by Christopher B. Krasowski B.Sc., University of Victoria, 2012 Supervisory Committee Dr. David E. Atkinson, Department of Geography Supervisor Dr. Johannes Feddema, Department of Geography Member iii Abstract Modelling solar radiation data at a high spatiotemporal resolution for an urban environment can inform many different applications related to climate action, such as urban agriculture, forest, building, and renewable energy studies. However, the complexity of urban form, vastness of city-wide coverage, and general dearth of climatological information pose unique challenges doing so. To address some climate action goals related to reducing building emissions in the City of Victoria, British Columbia, Canada, applied geomatics and climatology were used to model solar radiation data suitable for informing renewable energy feasibility studies, including photovoltaic system sizing, costing, carbon offsets, and financial payback. The research presents a comprehensive review of solar radiation attenuates, as well as methods of accounting for them, specifically in urban environments. A novel methodology is derived from the review and integrates existing models, data, and tools – those typically available to a local government.
    [Show full text]