For the Book on Imaginary Media, Ed. Eric Kluitenberg, Publ. De Balie Publishing, Expected Holland 2006
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Optical Machines, Pr
INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. Bell & Howell Information and Learning 300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA UMI800-521-0600 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. NOTE TO USERS Copyrighted materials in this document have not been filmed at the request of the author. They are available for consultation at the author’s university library. -
A Computational Study of Gabor Zone Plate Gamma Ray Holography
A COMPUTATIONAL STUDY OF GABOR ZONE PLATE GAMMA RAY HOLOGRAPHY by CLARE ESTELLE JACKSON A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY Scho ol of Physics and Astronomy The University of Birmingham Decemb er University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Gamma ray zone plate holography is a new technique with applications to Nuclear Medicine Unlike other tomographic techniques threedimensional images can b e recon structed from just one pro jection The history of zone plate holography is reviewed and the dierences b etween this technique and conventional holography are outlined Sources of error in the recorded hologram are reviewed and metho ds for the assessment of image quality are given Three image reconstruction techniques are describ ed and compared These techniques are convolution deconvolution and the CLEAN algorithm Simulated diraction is the main image reconstruction metho d which has previously b een used to reconstruct images from -
Gallery Text That Accompanies This Exhibition In
Steeped in the classical training of an English gentleman, Edward Dodwell (1777/78– 1832) first traveled through Greece in 1801. He returned in 1805 in the company of an Italian artist, Simone Pomardi (1757–1830), and together they toured the country for fourteen months, drawing and documenting the landscape with exacting detail. They produced around a thousand illustrations, most of which are now in the collection of the Packard Humanities Institute in Los Altos, California. A selection from this rich archive is presented here for the first time in the United States. Dodwell and Pomardi frequently used a camera obscura, an optical device that made it easier to create accurate images. Beyond providing evidence for the appearance of monuments and vistas, their illustrations manifest the ideal of the picturesque that enraptured so many European travelers. The sight of ancient temples lying in ruin, or of the Greek people under Turkish rule as part of the Ottoman Empire, prompted meditation on the transience of human accomplishments. As Dodwell himself wrote: “When we contemplated the scene around us, and beheld the sites of ruined states, and kingdoms, and cities, which were once elevated to a high pitch of prosperity and renown, but which have now vanished like a dream . we could not but forcibly feel that nations perish as well as individuals.” Dodwell’s own words accompany the majority of images in this exhibition. His descriptions are drawn from his Classical and Topographical Tour through Greece, during the Years 1801, 1805, and 1806 (London, 1819). The author’s original spelling, capitalization, and punctuation have been retained. -
Elements of Screenology: Toward an Archaeology of the Screen 2006
Repositorium für die Medienwissenschaft Erkki Huhtamo Elements of screenology: Toward an Archaeology of the Screen 2006 https://doi.org/10.25969/mediarep/1958 Veröffentlichungsversion / published version Zeitschriftenartikel / journal article Empfohlene Zitierung / Suggested Citation: Huhtamo, Erkki: Elements of screenology: Toward an Archaeology of the Screen. In: Navigationen - Zeitschrift für Medien- und Kulturwissenschaften, Jg. 6 (2006), Nr. 2, S. 31–64. DOI: https://doi.org/10.25969/mediarep/1958. Nutzungsbedingungen: Terms of use: Dieser Text wird unter einer Deposit-Lizenz (Keine This document is made available under a Deposit License (No Weiterverbreitung - keine Bearbeitung) zur Verfügung gestellt. Redistribution - no modifications). We grant a non-exclusive, Gewährt wird ein nicht exklusives, nicht übertragbares, non-transferable, individual, and limited right for using this persönliches und beschränktes Recht auf Nutzung dieses document. This document is solely intended for your personal, Dokuments. Dieses Dokument ist ausschließlich für non-commercial use. All copies of this documents must retain den persönlichen, nicht-kommerziellen Gebrauch bestimmt. all copyright information and other information regarding legal Auf sämtlichen Kopien dieses Dokuments müssen alle protection. You are not allowed to alter this document in any Urheberrechtshinweise und sonstigen Hinweise auf gesetzlichen way, to copy it for public or commercial purposes, to exhibit the Schutz beibehalten werden. Sie dürfen dieses Dokument document in public, to perform, distribute, or otherwise use the nicht in irgendeiner Weise abändern, noch dürfen Sie document in public. dieses Dokument für öffentliche oder kommerzielle Zwecke By using this particular document, you accept the conditions of vervielfältigen, öffentlich ausstellen, aufführen, vertreiben oder use stated above. anderweitig nutzen. Mit der Verwendung dieses Dokuments erkennen Sie die Nutzungsbedingungen an. -
Animation: Types
Animation: Animation is a dynamic medium in which images or objects are manipulated to appear as moving images. In traditional animation, images are drawn or painted by hand on transparent celluloid sheets to be photographed and exhibited on film. Today most animations are made with computer generated (CGI). Commonly the effect of animation is achieved by a rapid succession of sequential images that minimally differ from each other. Apart from short films, feature films, animated gifs and other media dedicated to the display moving images, animation is also heavily used for video games, motion graphics and special effects. The history of animation started long before the development of cinematography. Humans have probably attempted to depict motion as far back as the Paleolithic period. Shadow play and the magic lantern offered popular shows with moving images as the result of manipulation by hand and/or some minor mechanics Computer animation has become popular since toy story (1995), the first feature-length animated film completely made using this technique. Types: Traditional animation (also called cel animation or hand-drawn animation) was the process used for most animated films of the 20th century. The individual frames of a traditionally animated film are photographs of drawings, first drawn on paper. To create the illusion of movement, each drawing differs slightly from the one before it. The animators' drawings are traced or photocopied onto transparent acetate sheets called cels which are filled in with paints in assigned colors or tones on the side opposite the line drawings. The completed character cels are photographed one-by-one against a painted background by rostrum camera onto motion picture film. -
Colour Relationships Using Traditional, Analogue and Digital Technology
Colour Relationships Using Traditional, Analogue and Digital Technology Peter Burke Skills Victoria (TAFE)/Italy (Veneto) ISS Institute Fellowship Fellowship funded by Skills Victoria, Department of Innovation, Industry and Regional Development, Victorian Government ISS Institute Inc MAY 2011 © ISS Institute T 03 9347 4583 Level 1 F 03 9348 1474 189 Faraday Street [email protected] Carlton Vic E AUSTRALIA 3053 W www.issinstitute.org.au Published by International Specialised Skills Institute, Melbourne Extract published on www.issinstitute.org.au © Copyright ISS Institute May 2011 This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968. Whilst this report has been accepted by ISS Institute, ISS Institute cannot provide expert peer review of the report, and except as may be required by law no responsibility can be accepted by ISS Institute for the content of the report or any links therein, or omissions, typographical, print or photographic errors, or inaccuracies that may occur after publication or otherwise. ISS Institute do not accept responsibility for the consequences of any action taken or omitted to be taken by any person as a consequence of anything contained in, or omitted from, this report. Executive Summary This Fellowship study explored the use of analogue and digital technologies to create colour surfaces and sound experiences. The research focused on art and design activities that combine traditional analogue techniques (such as drawing or painting) with print and electronic media (from simple LED lighting to large-scale video projections on buildings). The Fellow’s rich and varied self-directed research was centred in Venice, Italy, with visits to France, Sweden, Scotland and the Netherlands to attend large public events such as the Biennale de Venezia and the Edinburgh Festival, and more intimate moments where one-on-one interviews were conducted with renown artists in their studios. -
Introduction Examples of Early Animation
Sabine Fox, 21101363 Introduction Animation first started out as still drawings, such as in cave paintings, which depicted animals or humans with multiple sets of legs, giving the illusion of movement. There has also been an ancient bowl found in Iran which features sequential images of a goat leaping to a tree. When putting animation into context of portraying actual movement by using mechanisms and sequential images, the earliest known animation was created for devices of Chinese inventor Ting Huan in 180 AD. The device was an earlier version of the zoetrope, where it held a series of drawings that rotated when the device was suspended over a lamp. When rotated at the right speed, it created an illusion of movement. Examples of early animation Thaumatrope, 1826, created by English physician John Ayrton Paris. -- It consisted of a disc with two images on opposite sides that merged together when the disc was quickly spun using strings. An example is a bird on one side and a cage on the other. In 1831 Joseph Plateau created the phenakistiscope -- a wheel that had slits around the edge. Under each slit were images on a paper slip that are almost similar to one another, and when the wheel is spun facing the mirror, the images appear to move. The zoetrope, designed by William George Homer in 1834 but wasn’t widely used until 1867. The device was similar to how the phenakistiscope worked -- did not require a mirror to see the images and was moved by turning the cylinder around. It also allowed for the images to be changed, which wasn’t possible with the phenakistiscope. -
The Historian's Toybox
THE HISTORIAN’S TOYBOX Children’s Toys from the Past you can Make Yourself. EUGENE F. PROVENZO, JR. ASTERIE BAKER PROVENZO Illustrations by Peter A. Zorn, Jr. EUGENE F. PROVENZO, JR., an associate professor in the School of Education and Allied Professions, University of Miami, is a specialist in the history of childhood and the history of education. Not only is he interested in toy design as a historian, but he has also designed award-winning toys. ASTERIE BAKER PROVENZO is currently working on a history of American school architecture at the University of Miami. Her interest in toys is an outgrowth of research she has conducted on the history of childhood and the history of education. PETER A. ZORN, JR., an assistant professor of graphic design at the University of Miami, has wide-ranging experience in the development and design of toys. INTRODUCTION Toys play an important part in the lives of children. They are vehicles for the imagination of children, as well as tools with which to instruct them about the world in which they live. Unfortunately, too many of the toys that are available to children today do not encourage them to discover or invent things for themselves. Historically, this has not always been the case. Many of the toys that were popular during the eighteenth and nineteenth centuries required the imagination and inventiveness of the child. The Historian’s Toy-box: Children’s Toys from the Past You Can Make Yourself is about these toys and how to make them. Children have always made toys for themselves. -
Teachers Guide
Teachers Guide Exhibit partially funded by: and 2006 Cartoon Network. All rights reserved. TEACHERS GUIDE TABLE OF CONTENTS PAGE HOW TO USE THIS GUIDE 3 EXHIBIT OVERVIEW 4 CORRELATION TO EDUCATIONAL STANDARDS 9 EDUCATIONAL STANDARDS CHARTS 11 EXHIBIT EDUCATIONAL OBJECTIVES 13 BACKGROUND INFORMATION FOR TEACHERS 15 FREQUENTLY ASKED QUESTIONS 23 CLASSROOM ACTIVITIES • BUILD YOUR OWN ZOETROPE 26 • PLAN OF ACTION 33 • SEEING SPOTS 36 • FOOLING THE BRAIN 43 ACTIVE LEARNING LOG • WITH ANSWERS 51 • WITHOUT ANSWERS 55 GLOSSARY 58 BIBLIOGRAPHY 59 This guide was developed at OMSI in conjunction with Animation, an OMSI exhibit. 2006 Oregon Museum of Science and Industry Animation was developed by the Oregon Museum of Science and Industry in collaboration with Cartoon Network and partially funded by The Paul G. Allen Family Foundation. and 2006 Cartoon Network. All rights reserved. Animation Teachers Guide 2 © OMSI 2006 HOW TO USE THIS TEACHER’S GUIDE The Teacher’s Guide to Animation has been written for teachers bringing students to see the Animation exhibit. These materials have been developed as a resource for the educator to use in the classroom before and after the museum visit, and to enhance the visit itself. There is background information, several classroom activities, and the Active Learning Log – an open-ended worksheet students can fill out while exploring the exhibit. Animation web site: The exhibit website, www.omsi.edu/visit/featured/animationsite/index.cfm, features the Animation Teacher’s Guide, online activities, and additional resources. Animation Teachers Guide 3 © OMSI 2006 EXHIBIT OVERVIEW Animation is a 6,000 square-foot, highly interactive traveling exhibition that brings together art, math, science and technology by exploring the exciting world of animation. -
Applications of the Fresnel Diffraction of Neutrons
f\u-*•? 0 *o •? ^- UM-P-78/43 APPLICATIONS OF THE FRESNEL DIFFRACTION OF NEUTRONS A. G. Klein and G. I. Opat School of Physics, University of Melbourne, Parkville, Victoria, Australia 3052 ABSTRACT The place of Fresnel diffraction in the overall scheme of neutron interference experiments is outlined and possible applications are discussed in the areas of: magnetic domain visualisation; measurement of nuclear scattering lengths with ver/ small specimens; focussing of long wavelength neutron beams using zone plates. 1. INTRODUCTION In classical optics, two principal types of interference experiment are distinguished: interference by amplitude division and interference by division of wavefront. The first of these, typified by the Michelson and Mach-Zehnder interferometers and by various thin film interference situations, relies on partial reflection, i.e. beam-splitters. They find their realisation in the case of neutron optics in the highly successful single crystal interferometers , in which the dynamical Bragg diffraction of neutrons provides the beam-splitting. Another situation of inter ference by amplitude division has been manifested in thin film 2 experiments with neutrons . Interference by division of the wavefront has as its paradigm Young's two-slit experiment, in which spatially separated parts of a coherent wavefront are recombir.ed. One of the classical variants of this scheme is the Fresnel bi-prism experiment which has also been demonstrated in the case of electrons by X A Mollenstedt and, in the case of neutrons by Maier-Leibnitz et al. An even simpler set-up was used by us in 1976 : Naufron b«om from cold Moneehrofflotor Cryttol. o« 200 mm. -
Nineteenth-Century Major Lives and Letters
Reading Popular Culture in Victorian Print 9780230615212ts01.indd i 9/2/2009 5:45:29 AM Nineteenth-Century Major Lives and Letters Series Editor: Marilyn Gaull The nineteenth century invented major figures: gifted, productive, and influential writers and artists in English, European, and American public life who captured and expressed what Hazlitt called “The Spirit of the Age.” Their achievements summarize, reflect, and shape the cultural traditions they inherited and influence the quality of life that followed. Before radio, film, and journalism deflected the energies of authors and audiences alike, literary forms such as popular verse, song lyrics, biographies, memoirs, letters, novels, reviews, essays, children’s books, and drama generated a golden age of letters incompara- ble in Western history. Nineteenth-Century Major Lives and Letters presents a series of original biographical, critical, and scholarly stud- ies of major figures evoking their energies, achievements, and their impact on the char- acter of this age. Projects to be included range from works on Blake to Hardy, Erasmus Darwin to Charles Darwin, Wordsworth to Yeats, Coleridge and J. S. Mill, Joanna Baillie, Jane Austen, Sir Walter Scott, Byron, Shelley, Keats to Dickens, Tennyson, George Eliot, Browning, Hopkins, Lewis Carroll, Rudyard Kipling, and their contemporaries. The series editor is Marilyn Gaull, PhD from Indiana University. She has served on the faculty at Temple University, New York University, and is now Research Professor at the Editorial Institute at Boston University. She brings to the series decades of experience as editor of books on nineteenth century literature and culture. She is the founder and editor of The Wordsworth Circle, author of English Romanticism: The Human Context, publishes edi- tions, essays, and reviews in numerous journals and lectures internationally on British Romanticism, folklore, and narrative theory. -
Le Théâtre Lambe-Lambe Son Histoire Et Sa Poésie Du Petit
Université Charles de Gaulle – Lille 3 UFR Humanités – Département Arts Année universitaire 2016-2017 Le Théâtre Lambe-Lambe Son histoire et sa poésie du petit Master 1 Arts Parcours théories et pratiques du théâtre contemporain Sous la direction de Mme. Véronique PERRUCHON Soutenu par Pedro Luiz COBRA SILVA Juin 2017 REMERCIEMENTS Je tiens à remercier ici celles et ceux qui ont contribué à la réalisation de ce mémoire : Tout d'abord Madame Véronique Perruchon, directrice de ce mémoire, pour le suivi et les conseils apportés. Des remerciements spéciaux à Ismine Lima et Denise Di Santos, créatrices du Théâtre Lambe- Lambe, qui ont partagé leurs histoires et leurs connaissances avec toute humilité et amour. Un grand merci à l’équipe de production du 4º FESTILAMBE – Festival de Teatro Lambe-Lambe de Valparaíso et aux lambe-lambeiros et lambe-lambeiras qui ont participé à cet événement au Chili avec moi. Votre passion, vos remarques et vos développements apportés à l’art du Théâtre Lambe-Lambe m’ont beaucoup aidé à écrire ce mémoire. Merci à mes nouveaux amis et amies de Lille pour leur aide et leur sourire lors de mon adaptation en France. Merci à ma famille qui me manque beaucoup pour leurs conseils et leur soutien tout au long de mon année universitaire à l’étranger. Enfin, merci à ma compagne Larissa qui prend ma main dans les voyages de la vie. Merci pour son amour, sa joie et patience. TABLE DE MATIÈRES INTRODUCTION.....................................................................................................................................1