Height Systems and Vertical Datums: a Review in the Australian Context
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Meyers Height 1
University of Connecticut DigitalCommons@UConn Peer-reviewed Articles 12-1-2004 What Does Height Really Mean? Part I: Introduction Thomas H. Meyer University of Connecticut, [email protected] Daniel R. Roman National Geodetic Survey David B. Zilkoski National Geodetic Survey Follow this and additional works at: http://digitalcommons.uconn.edu/thmeyer_articles Recommended Citation Meyer, Thomas H.; Roman, Daniel R.; and Zilkoski, David B., "What Does Height Really Mean? Part I: Introduction" (2004). Peer- reviewed Articles. Paper 2. http://digitalcommons.uconn.edu/thmeyer_articles/2 This Article is brought to you for free and open access by DigitalCommons@UConn. It has been accepted for inclusion in Peer-reviewed Articles by an authorized administrator of DigitalCommons@UConn. For more information, please contact [email protected]. Land Information Science What does height really mean? Part I: Introduction Thomas H. Meyer, Daniel R. Roman, David B. Zilkoski ABSTRACT: This is the first paper in a four-part series considering the fundamental question, “what does the word height really mean?” National Geodetic Survey (NGS) is embarking on a height mod- ernization program in which, in the future, it will not be necessary for NGS to create new or maintain old orthometric height benchmarks. In their stead, NGS will publish measured ellipsoid heights and computed Helmert orthometric heights for survey markers. Consequently, practicing surveyors will soon be confronted with coping with these changes and the differences between these types of height. Indeed, although “height’” is a commonly used word, an exact definition of it can be difficult to find. These articles will explore the various meanings of height as used in surveying and geodesy and pres- ent a precise definition that is based on the physics of gravitational potential, along with current best practices for using survey-grade GPS equipment for height measurement. -
National Spatial Reference System: "Positioning Changes for 2022"
National Spatial Reference System “Positioning Changes for 2022” Civil GPS Service Interface Committee Meeting Miami, Florida September 24, 2018 Denis Riordan, PSM NOAA, National Geodetic Survey [email protected] U.S. Department of Commerce National Oceanic & Atmospheric Administration National Geodetic Survey Mission: To define, maintain & provide access to the National Spatial Reference System (NSRS) to meet our Nation’s economic, social & environmental needs National Spatial Reference System * Latitude * Scale * Longitude * Gravity * Height * Orientation & their variations in time U. S. Geometric Datums in 2022 National Spatial Reference System (NSRS) Improvements in the Horizontal Datums TIME NETWORK METHOD NETWORK SPAN ACCURACY OF REFERENCE NAD 27 1927-1986 10 meter (1 part in 100,000) TRAVERSE & TRIANGULATION - GROUND MARKS USED FOR NAD83(86) 1986-1990 1 meter REFERENCING (1 part THE in 100,000) NSRS. NAD83(199x)* 1990-2007 0.1 meter GPS B- orderBECOMES (1 part THE in MEANS 1 million) OF POSITIONING – STILL GRND MARKS. HARN A-order (1 part in 10 million) NAD83(2007) 2007 - 2011 0.01 meter 0.01 meter GPS – CORS STATIONS ARE MEANS (CORS) OF REFERENCE FOR THE NSRS. NAD83(2011) 2011 - 2022 0.01 meter 0.01 meter (CORS) NSRS Reference Basis Old Method - Ground Current Method - GNSS Stations Marks (Terrestrial) (CORS) Why Replace NAD83? • Datum based on best known information about the earth’s size and shape from the early 1980’s (45 years old), and the terrestrial survey data of the time. • NAD83 is NON-geocentric & hence inconsistent w/GNSS . • Necessary for agreement with future ubiquitous positioning of GNSS capability. Future Geometric (3-D) Reference Frame Blueprint for 2022: Part 1 – Geometric Datum • Replace NAD83 with new geometric reference frame – by 2022. -
Datums in Texas NGS: Welcome to Geodesy
Datums in Texas NGS: Welcome to Geodesy Geodesy is the science of measuring and monitoring the size and shape of the Earth and the location of points on its surface. NOAA's National Geodetic Survey (NGS) is responsible for the development and maintenance of a national geodetic data system that is used for navigation, communication systems, and mapping and charting. ln this subject, you will find three sections devoted to learning about geodesy: an online tutorial, an educational roadmap to resources, and formal lesson plans. The Geodesy Tutorial is an overview of the history, essential elements, and modern methods of geodesy. The tutorial is content rich and easy to understand. lt is made up of 10 chapters or pages (plus a reference page) that can be read in sequence by clicking on the arrows at the top or bottom of each chapter page. The tutorial includes many illustrations and interactive graphics to visually enhance the text. The Roadmap to Resources complements the information in the tutorial. The roadmap directs you to specific geodetic data offered by NOS and NOAA. The Lesson Plans integrate information presented in the tutorial with data offerings from the roadmap. These lesson plans have been developed for students in grades 9-12 and focus on the importance of geodesy and its practical application, including what a datum is, how a datum of reference points may be used to describe a location, and how geodesy is used to measure movement in the Earth's crust from seismic activity. Members of a 1922 geodetic suruey expedition. Until recent advances in satellite technology, namely the creation of the Global Positioning Sysfem (GPS), geodetic surveying was an arduous fask besf suited to individuals with strong constitutions, and a sense of adventure. -
Modernization of the National Spatial Reference System
Pathway to 2022: The Ongoing Modernization of the United States National Spatial Reference System William A. Stone & Dana J. Caccamise II NOAA’s National Geodetic Survey NOAA’s National Geodetic Survey Mission & Vision To define, maintain, and provide access to the National Spatial Reference System to Introduction meet our nation's economic, social, and environmental needs Presented here is an update, including recent naming convention and technical decisions, for … is the mission of the United States National Oceanic and Atmospheric Administration’s the ongoing National Geodetic Survey effort to modernize the National Spatial Reference (NOAA) National Geodetic Survey (NGS). The National Spatial Reference System (NSRS) is System, which will culminate in the 2022 (anticipated) replacement of all components of the the nation’s system of latitude, longitude, height/elevation, and related geophysical and current U.S. national geodetic datums and models, including the North American Datum of geodetic models, tools, and data, which together provide a consistent spatial framework for the 1983 (NAD83) and the North American Vertical Datum of 1988 (NAVD88). This modernized broad spectrum of civilian geospatial data positioning requirements. NSRS facilitates and three-dimensional and time-dependent national spatial framework will optimally leverage the empowers the NGS organizational vision that … ever-increasing capabilities of modern technologies, data, and modeling – notably the Global Navigation Satellite System (GNSS), gravity data, and geopotential/tectonic modeling – while Everyone accurately knows where they are and where other things are better accommodating Earth’s dynamic nature. The future NSRS will feature unprecedented anytime, anyplace. accuracy and repeatability, and users will experience many efficiencies of access well beyond To continue to accomplish the mission and further the vision of today’s NGS, today’s capability. -
Vertical Datum Conversion Guidance
Guidance for Flood Risk Analysis and Mapping Vertical Datum Conversion May 2014 This guidance document supports effective and efficient implementation of flood risk analysis and mapping standards codified in the Federal Insurance and Mitigation Administration Policy FP 204- 07801. For more information, please visit the Federal Emergency Management Agency (FEMA) Guidelines and Standards for Flood Risk Analysis and Mapping webpage (http://www.fema.gov/guidelines-and- standards-flood-risk-analysis-and-mapping), which explains the policy, related guidance, technical references, and other information about the guidelines and standards process. Nothing in this guidance document is mandatory other than standards codified separately in the aforementioned Policy. Alternate approaches that comply with FEMA standards that effectively and efficiently support program objectives are also acceptable. Vertical Datum Conversion May 2014 Guidance Document 24 Page i Document History Affected Section or Date Description Subsection Initial version of new transformed guidance. The content was derived from the Guidelines and Specifications for Flood First Publication May 2014 Hazard Mapping Partners, Procedure Memoranda, and/or Operating Guidance documents. It has been reorganized and is being published separately from the standards. Vertical Datum Conversion May 2014 Guidance Document 24 Page ii Table of Contents 1.0 Overview .................................................................................................................................. -
Mind the Gap! a New Positioning Reference
A new positioning reference Why is the United States adopting NATRF2022? What are we doing about this in Canada? We want to hear from you! • The Canadian Geodetic Survey and the United States • Improved compatibility with Global Navigation • The Canadian Geodetic Survey is working closely National Geodetic Survey have collaborated for Satellite Systems (GNSS), such as GPS, is driving this with the United States National Geodetic Survey in • Send us your comments, the challenges you over a century to provide the fundamental reference change. The geometric reference frames currently defining reference frames to ensure they will also foresee, and any concerns to help inform our path Mind the gap! systems for latitude, longitude and height for their used in Canada and the United States, although be suitable for Canada. forward to either of these organizations: respective countries. compatible with each other, are offset by 2.2 m from • Geodetic agencies from across Canada are A new positioning reference the Earth’s geocentre, whereas GNSS are geocentric. - Canadian Geodetic Survey: nrcan. • Together our reference systems have evolved collaborating on reference system improvements geodeticinformation-informationgeodesique. to meet today’s world of GPS and geographical • Real-time decimetre-level accuracies directly from through the Canadian Geodetic Reference System [email protected] NATRF2022 information systems, while supporting legacy datums GNSS satellites are expected to be available soon. Committee, a working committee of the Canadian -
What Does Height Really Mean?
Department of Natural Resources and the Environment Department of Natural Resources and the Environment Monographs University of Connecticut Year 2007 What Does Height Really Mean? Thomas H. Meyer∗ Daniel R. Romany David B. Zilkoskiz ∗University of Connecticut, [email protected] yNational Geodetic Survey zNational Geodetic Suvey This paper is posted at DigitalCommons@UConn. http://digitalcommons.uconn.edu/nrme monos/1 What does height really mean? Thomas Henry Meyer Department of Natural Resources Management and Engineering University of Connecticut Storrs, CT 06269-4087 Tel: (860) 486-2840 Fax: (860) 486-5480 E-mail: [email protected] Daniel R. Roman David B. Zilkoski National Geodetic Survey National Geodetic Survey 1315 East-West Highway 1315 East-West Highway Silver Springs, MD 20910 Silver Springs, MD 20910 E-mail: [email protected] E-mail: [email protected] June, 2007 ii The authors would like to acknowledge the careful and constructive reviews of this series by Dr. Dru Smith, Chief Geodesist of the National Geodetic Survey. Contents 1 Introduction 1 1.1Preamble.......................................... 1 1.2Preliminaries........................................ 2 1.2.1 TheSeries...................................... 3 1.3 Reference Ellipsoids . ................................... 3 1.3.1 Local Reference Ellipsoids . ........................... 3 1.3.2 Equipotential Ellipsoids . ........................... 5 1.3.3 Equipotential Ellipsoids as Vertical Datums ................... 6 1.4MeanSeaLevel....................................... 8 1.5U.S.NationalVerticalDatums.............................. 10 1.5.1 National Geodetic Vertical Datum of 1929 (NGVD 29) . ........... 10 1.5.2 North American Vertical Datum of 1988 (NAVD 88) . ........... 11 1.5.3 International Great Lakes Datum of 1985 (IGLD 85) . ........... 11 1.5.4 TidalDatums.................................... 12 1.6Summary.......................................... 14 2 Physics and Gravity 15 2.1Preamble......................................... -
Measuring the Water Level Datum Relative to the Ellipsoid During Hydrographic Survey
Measuring the Water Level Datum Relative to the Ellipsoid During Hydrographic Survey Glen Rice LTJG / NOAA Corps, Coast Survey Development Laboratory 24 Colovos Road, Durham NH 03824 [email protected] ; 603‐862‐1397 Jack Riley Physical Scientist, NOAA Hydrographic Systems and Technology Program 1315 East West Hwy, SSMC3, Silver Spring MD 20910‐3282 [email protected] ; 301‐713‐2653 x154 Abstract Hydrographic surveys are referenced vertically to a local water level “chart” datum. Conducting a survey relative to the ellipsoid dictates a datum transformation take place before the survey is used for current navigational products. Models that combine estimates for the tide, sea surface topography, the geoid, and the ellipsoid are often used to transform an ellipsoid referenced survey to a local water level datum. Regions covered by these vertical datum transformation models are limited and so would appear to constrain the areas where ellipsoid referenced surveys can be conducted. Because areas not covered by a vertical datum transformation model still must have a tide model to conduct a hydrographic survey, survey‐ time measurements of the ellipsoid to water level datum can be conducted through the vessel reference point. This measured separation is largely a function of the vessel ellipsoid height and the standard survey tide model and thus introduces limited additional uncertainty than is typical in a water level referenced survey. This approach is useful for reducing ellipsoid reference surveys to the water level datum, examining a tide model, or for evaluating a vertical datum transformation model. Prototype tools and a comparison to typical vertical datum transformation models are discussed. -
FAA Order 8260.58
U.S. DEPARTMENT OF TRANSPORTATION ORDER FEDERAL AVIATION ADMINISTRATION I 8260.58 National Policy Effective Date: 09/21/2012 SUBJ: United States Standard for Performance Based Navigation (PBN) Instrument Procedure Design This order provides a consolidated United States Performance Based Navigation (PBN) procedure design criteria. The PBN concept specifies aircraft area navigation (RNAV) system performance requirements in terms of accuracy, integrity, availability, continuity and functionality needed for the proposed operations in the context of a particular Airspace Concept. The PBN concept represents a shift from sensor-based to performance-based navigation. Performance requirements are identified in navigation specifications, which also identify the choice of navigation sensors and equipment that may be used to meet the performance requirements. These navigation specifications are defined at a sufficient level of detail to facilitate global harmonization by providing specific implementation guidance. John M. Allen Director, Flight Standards Service Distribution: Electronic Only Initiated By: AFS-400 THIS PAGE INTENTIONALLY LEFT BLANK 09/21/2012 8260.58 Table of Contents Paragraph No. Page No. VOLUME 1. GENERAL GUIDANCE AND INFORMATION Chapter 1 General Information 1.0 Purpose of This Order .......................................................................... 1-1 1.1 Audience............................................................................................... 1-1 1.2 Where Can I Find This Order?............................................................ -
The Relation Between Rigorous and Helmert's Definitions of Orthometric
J Geodesy DOI 10.1007/s00190-006-0086-0 ORIGINAL ARTICLE The relation between rigorous and Helmert’s definitions of orthometric heights M. C. Santos · P. Vanícekˇ · W. E. Featherstone · R. Kingdon · A. Ellmann · B.-A. Martin · M. Kuhn · R. Tenzer Received: 8 November 2005 / Accepted: 28 July 2006 © Springer-Verlag 2006 Abstract Following our earlier definition of the rig- which is embedded in the vertical datums used in numer- orous orthometric height [J Geod 79(1-3):82–92 (2005)] ous countries. By way of comparison, we also consider we present the derivation and calculation of the differ- Mader and Niethammer’s refinements to the Helmert ences between this and the Helmert orthometric height, orthometric height. For a profile across the Canadian Rocky Mountains (maximum height of ∼2,800 m), the ∼ M. C. Santos (B) · P. Va n í cekˇ · R. Kingdon · A. Ellmann · rigorous correction to Helmert’s height reaches 13 cm, B.-A. Martin whereas the Mader and Niethammer corrections only Department of Geodesy and Geomatics Engineering, reach ∼3 cm. The discrepancy is due mostly to the rig- University of New Brunswick, P.O. Box 4400, orous correction’s consideration of the geoid-generated Fredericton, NB, Canada E3B 5A3 e-mail: [email protected] gravity disturbance. We also point out that several of the terms derived here are the same as those used in P. Va n í cekˇ e-mail: [email protected] regional gravimetric geoid models, thus simplifying their implementation. This will enable those who currently R. Kingdon e-mail: [email protected] use Helmert orthometric heights to upgrade them to a more rigorous height system based on the Earth’s grav- Present Address: A. -
Derivation of Orthometric Heights from Gps Measured Heights Using Geometric Technique and Egm96 Model
FUTY Journal of the Environment, Vol. 5, No. 1, July 2010 80 @ School of Environmental Sciences, Federal University of Technology, Yola - Nigeria DERIVATION OF ORTHOMETRIC HEIGHTS FROM GPS MEASURED HEIGHTS USING GEOMETRIC TECHNIQUE AND EGM96 MODEL Opaluwa Y. D. and 2Adejare Q. A. Department of Surveying & Geoinformatics, School of Environmental Technology, Federal University of Technology, Minna, Nigeria. E-Mail: [email protected], Phone: +2348052292076 E-Mail: [email protected], Phone: +2348032156620 Abstract As a result of wide spread use of satellite based positioning techniques, especially Global Positioning System (GPS), a greater attention has been focused on precise determination of geoid models with an aim to replace the classical leveling with Global Navigation Satellite System (GNSS) measurements. In this study, geometric technique of deriving orthometric height from GPS survey along a profile and the use of EGM 96 geoid model for deriving orthometric height from GPS data (using GNSS solution software) are discussed. The main focus of the research is to critically examine the potentials of these methods with a view to establishing the optimum technique as an alternative to classical differential levelling. From the results obtained, the standard errors are 1.453m and 1.450m for EGM 96 model and the geometrical approach respectively. From the graphical representation of the residuals from the two methods, it was observed that the two curves suddenly became sinusoidal from station 9 (corresponding to SB08 in the tables). This similarity pattern of the residuals makes it difficult to draw a conclusive judgment between the two methods examined; however, from the standard errors, it could be inferred that the geometrical technique gave a better result over EGM 96 model. -
Development of a Vertical Datum Transformation Tool and a Bathymetric/Topographic Digital Elevation Model for Southern California
21st International Conference of The Coastal Society DEVELOPMENT OF A VERTICAL DATUM TRANSFORMATION TOOL AND A BATHYMETRIC/TOPOGRAPHIC DIGITAL ELEVATION MODEL FOR SOUTHERN CALIFORNIA Edward P. Myers, NOAA/NOS Coast Survey Development Laboratory (CSDL) Jason Woolard, NOAA/NOS National Geodetic Survey Zhizhang Yang, Futron, Inc; NOAA/NOS CSDL Frank Aikman III, NOAA/NOS CSDL Abstract As one component of NOAA’s (National Oceanic and Atmospheric Administration) Coastal Storms Program, a vertical datum transformation tool (VDatum) and a bathymetric/topographic digital elevation model (DEM) are being developed for Southern California. This pilot effort of the Coastal Storms Program (CSP) is a multidisciplinary effort to increase community resiliency to coastal storms by providing an integrated set of tools, data and models. In addition to this VDatum/DEM project, other CSP efforts in this region include enhanced observing systems, an ecological assessment of storm impacts, coastal storm decision-support tools, and a precipitation atlas. VDatum is a software tool developed by NOAA's National Ocean Service for the transformation of data between various vertical datums (including orthometric, ellipsoidal, and tidal datums). VDatum accurately translates geospatial data between 28 different vertical reference systems, allowing for the easy transformation of elevation data from one vertical datum to another. NOAA’s Coast Survey Development Laboratory, National Geodetic Survey and Center for Operational Oceanographic Products and Services are coordinating the development of a VDatum application for the Southern California region. The National Geodetic Survey will then use VDatum to transform the best available bathymetric and topographic data to a common vertical datum and reformat these data onto a quality-controlled, gridded DEM for Southern California.