The Muon Anomalous Magnetic Moment

Total Page:16

File Type:pdf, Size:1020Kb

The Muon Anomalous Magnetic Moment UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE HOMER L. DODGE DEPARTMENT OF PHYSICS AND ASTRONOMY THE MUON ANOMALOUS MAGNETIC MOMENT: A PROBE FOR THE STANDARD MODEL AND BEYOND A REPORT SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the SPECIALIST'S EXAMINATION By OTHMANE RIFKI Norman, Oklahoma 2014 THE MUON ANOMALOUS MAGNETIC MOMENT: A PROBE FOR THE STANDARD MODEL AND BEYOND A REPORT APPROVED FOR THE HOMER L. DODGE DEPARTMENT OF PHYSICS AND ASTRONOMY BY Dr. Brad Abbott, Chair Dr. S. Lakshmivarahan, Outside Member Dr. Mike Strauss Dr. Chung Kao Dr. Eric Abraham Table of Contents List of Tables iv List of Figures v Abstract vi 1 Introduction . .1 2 Properties of the Muon . .4 2.1 Obtaining Polarized Muons . .4 2.2 Parity Violation . .5 2.3 Relativistic Muons in a Magnetic Field . .7 3 Brookhaven g − 2 Experiment: E821 . .9 3.1 Historical Background . .9 3.2 Description of the Experimental Method . .9 3.3 Measurement of the Anomalous Angular Frequency !a ..... 11 3.4 Measurement of the Magnetic Field B .............. 14 3.5 Corrections and Systematic Errors . 15 3.6 Summary of Results from E821 . 18 4 Future Fermilab g − 2 Experiment: E989 . 19 5 The Standard Model Evaluation of the Anomaly (aµ).......... 21 5.1 Introduction . 21 5.2 The QED Contribution to aµ ................... 21 5.3 The Weak Contribution to aµ .................. 22 5.4 The Hadronic Contribution to aµ ................. 23 5.5 The SM Value of aµ ....................... 25 6 Conclusions and Prospects . 26 A The Dirac Result g = 2 27 B Spin Dynamics 30 C Muon Decay Rate 35 α D The Schwinger Term 39 2π References 43 iii List of Tables 1 Systematic errors for !a ......................... 17 2 Systematic errors for !p ......................... 18 3 Results for the anomalous precession frequency !a ........... 19 4 BNL E821 results of the anomaly aµ ................... 19 iv List of Figures 1 Pion decay . .5 2 Muon decay . .6 3 Decay electrons and asymmetry distributions in the muon rest frame . .7 4 Injection chain in the muon g − 2 experiment . 10 5 Muon spin precession in the storage ring . 11 6 Electron detection in the storage ring. 12 7 Decay electrons and asymmetry distributions in the laboratory frame. 13 8 Histogram of detected electrons . 14 9 Feynman diagram of the lowest-order contribution . 22 10 Feynman diagram of a weak contribution . 23 11 Feynman diagram of some hadronic contributions . 24 12 Different SM predictions of aµ ...................... 25 v Abstract 1 The muon is a spin- 2 charged particle characterized by an intrinsic magnetic moment with a gyromagnetic ratio, g, that is very close to 2. Its variance from 2, g − 2 referred to as the magnetic moment anomaly a = , has been determined over µ 2 the last decades to ever higher precisions in both experiment and theory. The most recent experiment (E821) was performed at Brookhaven National Laboratory and achieved a precision of 0.54 ppm, while the current theoretical evaluation stands at a precision of 0.39 ppm. However, the experimental value is higher than the predicted value by more than 3 standard deviations which suggests the possibility of new physics. A new experiment (E989) is being constructed at Fermi National Laboratory to investigate the discrepancy by reducing the experimental error to 0.14 ppm. At the same time, theory groups are working to reduce the error in aµ to match the projected experimental precision. A confirmation of the difference between experiment and theory will have an impact on new physics models in the TeV scale. The goal of this review is to describe the E821 measurement of aµ, the improvements implemented in E989, the current theoretical status in the computation of aµ, and the new physics implications. vi The closer you look the more there is to see. Friedrich Jegerlehner, The Anomalous Magnetic Moment of the Muon [1]. 1 Introduction The study of elementary particles and their interactions led to a representative mathematical formulation known as the Standard Model (SM) of particle physics. When subjected to experimental tests, the SM successfully describes three of the four fundamental forces: electromagnetic, weak, and strong interactions. On the other hand, the SM is not believed to be complete since it fails to explain a number of problems that are still facing today's physics community. First, the SM does not incorporate the fourth fundamental force of gravity. Moreover, It does not provide insight on the nature of the \invisible" matter that is holding galaxies together, which constitutes ∼ 26% of the energy density of the universe and is known as Dark Matter. In addition, the SM does not account for the different masses and mixing of the 12 leptons known as the flavor problem, and the predominance of matter over antimatter. In order to solve these problems, searches for physics not accounted for by the SM have been pursued in both experiment and theory. Any sign of significant discrepancy between experiment and theory is taken very seriously since it might lead to new insights that can reveal what is missing in our current view of the universe. Some physicists have set up experiments to look for answers to SM problems by studying high energy interactions as is pursued at the Large Hadron Collider at CERN, in the hope of observing some new particles. This led to the discovery of the Higgs boson in 2012, a central piece of the SM. Other experiments have been set up to perform detailed studies of known particles, measuring their properties to very high precisions and comparing them to theoretical calculations to both check the models and look for discrepancies. The subject of this current review is an important illustration of the latter scenario where precision tests of the magnetic moment, an intrinsic property of a spinning charged elementary particle, will be examined by comparing experiment to theory. The possible elementary charged particles that can be used to measure the 1 magnetic moment are the three spin 2 leptons: the electron e, the muon µ, and the tau τ. While these particles have the same charge and spin, they have very 1 2 2 different masses which are given by me = 0.511 MeV=c , mµ = 105.658 MeV=c , 2 and mτ = 1776.82 MeV=c . The difference in masses alters the lifetimes and decay modes of each particle. The electron is the lowest mass charged lepton and thus −6 is stable. The muon lifetime is τµ = 2:197 × 10 seconds and it decays almost 100% to an electron and two neutrinos (eνµν¯e). Taus have a much shorter lifetime −13 ττ = 2:906 × 10 seconds and a diversified decay pattern where 65% go into hadronic states (states that contain quark-antiquark pair particles such as pions) and the remainder go into leptonic states (the two possible states are muons 1The unit of mass is given in MeV/c2 according to the relation E = mc2 with the energy E given in units of MeV where 1 MeV = 1.6 × 10−13J. 1 and two neutrinos or electrons and two neutrinos) [2]. Because of its very short lifetime, the study of the tau's magnetic moment is difficult, leaving the electron and the muon as the practical candidates for measuring the magnetic moment. While the electron is the most precisely studied lepton, effects in the magnetic 2 moment sensitive to physics beyond the SM scale with powers of m` [3]. For this reason, muons are more appropriate for the study of the magnetic moment to search for new physics. The magnetic moment arises from the electric charge and the current of an elementary particle with spin. For instance, a classical calculation of a particle with mass m, and charge q, moving in a circular orbit of radius r, with velocity −!v , shows that its magnetic moment −!µ is related to its −! orbital angular momentum ( L = m−!r × −!v ) by the relation: q −! −!µ = L: (1) 2mc In quantum mechanics, the magnetic moment is an intrinsic property of a particle with spin. Both the magnetic moment and the orbital angular momentum are promoted to operators in order to give the correct quantum mechanical representation. While Equation (1) is still valid in describing the orbital angular −! momentum L , the spin magnetic moment requires a modification by a factor g that is very close to 2. The corrected equation is given by q −! −!µ = g S; (2) 2mc where g is called the gyromagnetic ratio, the Lande g-factor, or the g-factor, and q is the charge given in units of the fundamental charge e, where q = −e for a lepton particle (negative muon) and q = +e for a lepton antiparticle (positive −! muon). S is the spin operator −! S = ~−!σ ; (3) 2 where σi are the Pauli spin matrices. The result g = 2 was first obtained by Dirac in 1928 when he generalized the Schr¨odingerequation to incorporate special relativity (See Appendix A). With the development of the quantum mechanical description of electromagnetism known as quantum electrodynamics (QED), g was found to differ from 2 by an anomaly a`, known as the magnetic moment anomaly, or the anomaly for short, such that: g` = 2(1 + a`). The anomaly is then g − 2 a = ` : (4) ` 2 In this equation, the g − 2 factor appears! The factor g − 2 is incorporated in the title of all experiments that measure the magnetic moment of the muon and it is the focus of this review. In addition to the quantum fluctuations of the electromagnetic field described by QED, quantum fluctuations due to heavier particles such as the weak gauge 2 bosons (W± and Z bosons) and hadrons (for example quark-antiquark pairs such as pions) also contribute to the anomaly.
Recommended publications
  • 1 Introduction 2 Spins As Quantized Magnetic Moments
    Spin 1 Introduction For the past few weeks you have been learning about the mathematical and algorithmic background of quantum computation. Over the course of the next couple of lectures, we'll discuss the physics of making measurements and performing qubit operations in an actual system. In particular we consider nuclear magnetic resonance (NMR). Before we get there, though, we'll discuss a very famous experiment by Stern and Gerlach. 2 Spins as quantized magnetic moments The quantum two level system is, in many ways, the simplest quantum system that displays interesting behavior (this is a very subjective statement!). Before diving into the physics of two-level systems, a little on the history of the canonical example: electron spin. In 1921, Stern proposed an experiment to distinguish between Larmor's classical theory of the atom and Sommerfeld's quantum theory. Each theory predicted that the atom should have a magnetic moment (i.e., it should act like a small bar magnet). However, Larmor predicted that this magnetic moment could be oriented along any direction in space, while Sommerfeld (with help from Bohr) predicted that the orientation could only be in one of two directions (in this case, aligned or anti-aligned with a magnetic field). Stern's idea was to use the fact that magnetic moments experience a linear force when placed in a magnetic field gradient. To see this, not that the potential energy of a magnetic dipole in a magnetic field is given by: U = −~µ · B~ Here, ~µ is the vector indicating the magnitude and direction of the magnetic moment.
    [Show full text]
  • Spin the Evidence of Intrinsic Angular Momentum Or Spin and Its
    Spin The evidence of intrinsic angular momentum or spin and its associated magnetic moment came through experiments by Stern and Gerlach and works of Goudsmit and Uhlenbeck. The spin is called intrinsic since, unlike orbital angular momentum which is extrinsic, it is carried by point particle in addition to its orbital angular momentum and has nothing to do with motion in space. The magnetic moment ~µ of silver atom was measured in 1922 experiment by Stern and Gerlach and its projection µz in the direction of magnetic fieldz ^ B (through which the silver beam was passed) was found to be just −|~µj and +j~µj instead of continuously varying between these two as limits. Classically, magnetic moment is proportional to the angular momentum (12) and, assuming this proportionality to survive in quantum mechanics, quan- tization of magnetic moment leads to quantization of corresponding angular momentum S, which we called spin, q q µ = g S ) µ = g ~ m (57) z 2m z z 2m s as is the case with orbital angular momentum, where the ratio q=2m is called Bohr mag- neton, µb and g is known as Lande-g factor or gyromagnetic factor. The g-factor is 1 for orbital angular momentum and hence corresponding magnetic moment is l µb (where l is integer orbital angular momentum quantum number). A surprising feature here is that spin magnetic moment is also µb instead of µb=2 as one would naively expect. So it turns out g = 2 for spin { an effect that can only be understood if linearization of Schr¨odinger equation is attempted i.e.
    [Show full text]
  • 7. Examples of Magnetic Energy Diagrams. P.1. April 16, 2002 7
    7. Examples of Magnetic Energy Diagrams. There are several very important cases of electron spin magnetic energy diagrams to examine in detail, because they appear repeatedly in many photochemical systems. The fundamental magnetic energy diagrams are those for a single electron spin at zero and high field and two correlated electron spins at zero and high field. The word correlated will be defined more precisely later, but for now we use it in the sense that the electron spins are correlated by electron exchange interactions and are thereby required to maintain a strict phase relationship. Under these circumstances, the terms singlet and triplet are meaningful in discussing magnetic resonance and chemical reactivity. From these fundamental cases the magnetic energy diagram for coupling of a single electron spin with a nuclear spin (we shall consider only couplings with nuclei with spin 1/2) at zero and high field and the coupling of two correlated electron spins with a nuclear spin are readily derived and extended to the more complicated (and more realistic) cases of couplings of electron spins to more than one nucleus or to magnetic moments generated from other sources (spin orbit coupling, spin lattice coupling, spin photon coupling, etc.). Magentic Energy Diagram for A Single Electron Spin and Two Coupled Electron Spins. Zero Field. Figure 14 displays the magnetic energy level diagram for the two fundamental cases of : (1) a single electron spin, a doublet or D state and (2) two correlated electron spins, which may be a triplet, T, or singlet, S state. In zero field (ignoring the electron exchange interaction and only considering the magnetic interactions) all of the magnetic energy levels are degenerate because there is no preferred orientation of the angular momentum and therefore no preferred orientation of the magnetic moment due to spin.
    [Show full text]
  • Magnetism of Atoms and Ions
    Magnetism of Atoms and Ions Wulf Wulfhekel Physikalisches Institut, Karlsruhe Institute of Technology (KIT) Wolfgang Gaede Str. 1, D-76131 Karlsruhe 1 0. Overview Literature J.M.D. Coey, Magnetism and Magnetic Materials, Cambridge University Press, 628 pages (2010). Very detailed Stephen J. Blundell, Magnetism in Condensed Matter, Oxford University Press, 256 pages (2001). Easy to read, gives a condensed overview C. Kittel, Introduction to Solid State Physics, John Whiley and Sons (2005). Solid state aspects 2 0. Overview Chapters of the two lectures 1. A quick refresh of quantum mechanics 2. The Hydrogen problem, orbital and spin angular momentum 3. Multi electron systems 4. Paramagnetism 5. Dynamics of magnetic moments and EPR 6. Crystal fields and zero field splitting 7. Magnetization curves with crystal fields 3 1. A quick refresh of quantum mechanics The equation of motion The Hamilton function: with T the kinetic energy and V the potential, q the positions and p the momenta gives the equations of motion: Hamiltonian gives second order differential equation of motion and thus p(t) and q(t) Initial conditions needed for Classical equations need information on the past! t p q 4 1. A quick refresh of quantum mechanics The Schrödinger equation Quantum mechanics replacement rules for Hamiltonian: Equation of motion transforms into Schrödinger equation: Schrödinger equation operates on wave function (complex field in space) and is of first order in time. Absolute square of the wave function is the probability density to find the particle at selected position and time. t Initial conditions needed for Schrödinger equation does not need information on the past! How is that possible? We know that the past influences the present! q 5 1.
    [Show full text]
  • Time-Crystal Model of the Electron Spin
    Time-Crystal Model of the Electron Spin Mário G. Silveirinha* (1) University of Lisbon–Instituto Superior Técnico and Instituto de Telecomunicações, Avenida Rovisco Pais, 1, 1049-001 Lisboa, Portugal, [email protected] Abstract The wave-particle duality is one of the most intriguing properties of quantum objects. The duality is rather pervasive in the quantum world in the sense that not only classical particles sometimes behave like waves, but also classical waves may behave as point particles. In this article, motivated by the wave-particle duality, I develop a deterministic time-crystal Lorentz-covariant model for the electron spin. In the proposed time-crystal model an electron is formed by two components: a particle-type component that transports the electric charge, and a wave component that moves at the speed of light and whirls around the massive component. Interestingly, the motion of the particle-component is completely ruled by the trajectory of the wave-component, somewhat analogous to the pilot-wave theory of de Broglie-Bohm. The dynamics of the time- crystal electron is controlled by a generalized least action principle. The model predicts that the electron stationary states have a constant spin angular momentum, predicts the spin vector precession in a magnetic field and gives a possible explanation for the physical origin of the anomalous magnetic moment. Remarkably, the developed model has nonlocal features that prevent the divergence of the self-field interactions. The classical theory of the electron is recovered as an “effective theory” valid on a coarse time scale. The reported results suggest that time-crystal models may be used to describe some features of the quantum world that are inaccessible to the standard classical theory.
    [Show full text]
  • Lecture Notes on the Rest of the Helium Atom, Electron Spin And
    114 Lecture 18 Now that we've developed our approximation methods, we can turn to solving the helium atom. As usual our Schrödinger equation is H = E , where 2 2 2 2 2 2 2e 2e e H =- (+)-1 2 - + 2me 4r01 4r 02 4r 012 Let’s begin by applying perturbation theory and see what we can learn from it. We are interested in particular in the ground state wavefunction. WHAT IS OUR UNPERTURBED 2 22 (0) 222e 2e ˆˆ HAMILTONIAN? [ Hˆ =- (12 + )- - HHH(1) H (2) , where HH is the 2me r12 r (0) bg0 Hamiltonian for a hydrogen-like atom.] WHAT IS OUR ? [(,rr12 ) 1ss ()12 1 () Zr 1 1 Z 3/2 a0 ,where 1s (1) ( ) e ]. The energy of an electron in a hydrogen-like system is A0 given by Zme24 E=-n 222 2(4 o ) n WHAT IS THE ENERGY OF THE GROUND STATE OF OUR UNPERTURBED SYSTEM? 24 24 4 (0) -Z me -Z me -4me E = E1s(1)+ E 1s (2)= 222 + 222 = 2 2 2(40 )) n1 2(4 0 n2 (4 0 ) WHAT IS OUR PERTURBATION? e2 [H ()1 ] 4 012r WHAT IS THE EQUATION WE USE TO CALCULATE THE CORRECTION TO OUR ENERGY? 2 (0)*(1) (0) (0)*e (0) E=Hˆ d = d 4r012 115 When we plug in the zero order wavefunction we just worked out we get 5 Z 24me E 22 8(4 0 ) 4 (0) me So our total energy is E + E = -2.75 22. Because this is an approximation, we (4 0 ) expect that this energy will differ from the true energy.
    [Show full text]
  • Magnetism of Atoms Quantum-Mechanical Basics
    MAGNETISM OF ATOMS QUANTUM-MECHANICAL BASICS Janusz Adamowski AGH University of Science and Technology, Kraków, Poland 1 • The magnetism of materials can be derived from the magnetic properties of atoms. • The atoms as the quantum objects subject to the laws of quantum mechanics. • =) The magnetism of materials possesses the quantum nature. • In my lecture, I will give a brief introduction to the basic quantum mechanics and its application to a description of the magnetism of atoms. 2 The observable part of the Universe (light matter) consists of mas- sive particles and mass-less radiation. Both particles and radiation possess the quantum nature. 3 Experimental background of quantum physics • distribution of black-body radiation (Planck's law, 1900) • photoelectric eect • discrete emission and absorption spectra of atoms • existence of spin (Stern- Gerlach experiment and spin Zeeman eect) • ::: • nanoelectronic/spintronic devices • quantum computer 4 Outline of lecture 1 Quantum states, wave functions, eigenvalue equations 1.1 Orbital momentum 1.2 Spin 1.3 Magnetic moments 1.4 Spin-orbit coupling 2 Atoms 2.1 Hydrogen atom 2.2 Many-electron atoms 2.3 Pauli exclusion principle, Hund's rules, periodic table of elements 3 Exchange interaction 4 Summary 4.1 Spintronics 4.2 Negative absolute temperature 5 1 Quantum states, wave functions, eigenvalue equa- tions Quantum states of quantum objects (electrons, protons, atoms, molecules) are described by the state vectors being the elements of the abstract Hilbert space H. State vectors in Dirac (bracket) notation: ket vectors j'i; j i; jχi;::: bra vectors h'j; h j; hχj;::: Scalar product h'j i = c c = complex number How can we connect the abstract state vectors with the quantum phenomena that take place in the real/laboratory space? In order to answer this question we introduce the state vector jri that de- scribes the state of the single particle in the well-dened position r = (x; y; z) and calculate the scalar product def hrj i = (r) : (1) =) Eq.
    [Show full text]
  • The Spin and Orbital Contributions to the Total Magnetic Moments of Free
    The spin and orbital contributions to the total magnetic moments of free Fe, Co, and Ni clusters Jennifer Meyer, Matthias Tombers, Christoph van Wüllen, Gereon Niedner-Schatteburg, Sergey Peredkov, Wolfgang Eberhardt, Matthias Neeb, Steffen Palutke, Michael Martins, and Wilfried Wurth Citation: The Journal of Chemical Physics 143, 104302 (2015); doi: 10.1063/1.4929482 View online: http://dx.doi.org/10.1063/1.4929482 View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/143/10?ver=pdfcov Published by the AIP Publishing Articles you may be interested in Novel properties of boron nitride nanotubes encapsulated with Fe, Co, and Ni nanoclusters J. Chem. Phys. 132, 164704 (2010); 10.1063/1.3381183 The geometric, optical, and magnetic properties of the endohedral stannaspherenes M @ Sn 12 ( M = Ti , V, Cr, Mn, Fe, Co, Ni) J. Chem. Phys. 129, 094301 (2008); 10.1063/1.2969111 XMCD Spectra of Co Clusters on Au(111) by Ab‐Initio Calculations AIP Conf. Proc. 882, 159 (2007); 10.1063/1.2644461 The geometric, electronic, and magnetic properties of Ag 5 X + ( X = Sc , Ti, V, Cr, Mn, Fe, Co, and Ni) clusters J. Chem. Phys. 124, 184319 (2006); 10.1063/1.2191495 Reduced magnetic moment per atom in small Ni and Co clusters embedded in AlN J. Appl. Phys. 90, 6367 (2001); 10.1063/1.1416138 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 131.169.38.71 On: Fri, 15 Jan 2016 08:25:19 THE JOURNAL OF CHEMICAL PHYSICS 143, 104302
    [Show full text]
  • Orbital Angular Momentum
    5.61 Physical Chemistry 23-Electron Spin page 1 ELECTRON SPIN Experimental evidence for electron spin Compton Scattering (1921): AH Compton suggested that “the electron is probably the ultimate magnetic particle.” Stern­Gerlach Experiment (1922): Passed a beam of silver atoms (4d105s1) through an inhomogeneous magnetic field and observed that they split into two beams of space quantized components. Uhlenbeck and Goudsmit (1925) showed that these were two angular momentum states – the electron has intrinsic angular momentum – "SPIN" angular momentum Pauli Exclusion Principle (1925): no more than 2 electrons per orbital, or, no two electrons with all the same quantum numbers. Additional quantum number, now called ms, was postulated. Postulate 6: All electronic wavefunctions must be antisymmetric under the exchange of any two electrons. Theoretical Justification Dirac (1928) developed relativistic quantum theory & derived electron spin angular momentum Orbital Angular Momentum L = orbital angular momentum L = � l (l + 1) l = orbital angular momentum quantum number l ≤ n − 1 � Lz = m m = 0, ±1, ±2, …, ±l 5.61 Physical Chemistry 23-Electron Spin page 2 Spin Angular Momentum S ≡ spin angular momentum S = � s (s + 1) = � 3 2 s = spin angular momentum quantum number s = 1 2 � Sz = ms ms = ± 1 2 Define spin angular momentum operators analogous to orbital angular momentum operators 2 m �2 m L Yl (θ , φ ) = l (l +1) Yl (θ , φ ) l = 0,1,2,...n for H atom m � m LzYl (θ , φ ) = m Y l (θ , φ ) m = 0, ±1, ±2,... ± n for H atom 1 Sˆ 2α = s (s +1) �2α Sˆ 2β = s (s +1) �2β s = always 2 ˆ � α 1 ˆ � β 1 Szα = ms α m s = Szβ = m s β ms = − 2 2 Spin eigenfunctions α and β are not functions of spatial coordinates so the equations are somewhat simpler! α ≡ "spin up" β ≡ "spin down" Spin eigenfunctions are orthonormal: α *α dσ = β *β dσ = 1 σ ≡ spin variable ∫ ∫ * * ∫α β dσ = ∫ β α dσ = 0 Spin variable has no classical analog.
    [Show full text]
  • I Magnetism in Nature
    We begin by answering the first question: the I magnetic moment creates magnetic field lines (to which B is parallel) which resemble in shape of an Magnetism in apple’s core: Nature Lecture notes by Assaf Tal 1. Basic Spin Physics 1.1 Magnetism Before talking about magnetic resonance, we need to recount a few basic facts about magnetism. Mathematically, if we have a point magnetic Electromagnetism (EM) is the field of study moment m at the origin, and if r is a vector that deals with magnetic (B) and electric (E) fields, pointing from the origin to the point of and their interactions with matter. The basic entity observation, then: that creates electric fields is the electric charge. For example, the electron has a charge, q, and it creates 0 3m rˆ rˆ m q 1 B r 3 an electric field about it, E 2 rˆ , where r 40 r 4 r is a vector extending from the electron to the point of observation. The electric field, in turn, can act The magnitude of the generated magnetic field B on another electron or charged particle by applying is proportional to the size of the magnetic charge. a force F=qE. The direction of the magnetic moment determines the direction of the field lines. For example, if we tilt the moment, we tilt the lines with it: E E q q F Left: a (stationary) electric charge q will create a radial electric field about it. Right: a charge q in a constant electric field will experience a force F=qE.
    [Show full text]
  • Electron Spin
    Electron Spin Introduction Our solution of the TISE in three dimensions for one-electron atoms resulted in quantum states that are uniquely specified by the values of the three quantum numbers n, l, and ml. This picture was very successful in explaining many characteristics of the hydrogen atom, even more so than the Bohr model. However, experiments showed that this picture was incomplete. This gap was filled by the introduction of the concept of intrinsic angular momentum or spin angular momentum of the electron. Much like an orbiting planet, an electron in an atom has two independent angular momenta: (i) the orbital angular momentum (due to orbital motion) and (ii) an intrinsic or spin angular momentum, which is analogous to a planet spinning about its axis. To understand the consequences of spin, we must first revisit the idea of magnetic dipole moment. To treat the topic of atomic magnetic dipole moment, we shall use classical and semi-classical ideas because they are much simpler to work with. The final results are, however, in agreement with the full quantum mechanical treatment. Orbital Magnetic Dipole Moments Consider an electron of mass m, charge –e and velocity magnitude v executing a circular orbit of radius r in a Bohr atom. The circular motion of the electron constitutes a current loop. The current is given by µ q e ev I I = = = . (12.1) T 2πr v 2πr ( ) r –e Recall that the conventional current is directed opposite to the v direction of the electron’s motion. This current loop constitutes a magnetic dipole, with a magnetic dipole moment (also called magnetic moment) µ given by µ = IAnˆ, (12.2) where A is the area of the loop and nˆ is a unit vector whose direction is perpendicular to the plane of the loop and is given by the right hand rule (fingers in the direction of the current, outstretched thumb points in direction of nˆ ).
    [Show full text]
  • Atomic Spectra
    Atomic Spectra The Bohr atom is our starting point in understanding atomic spectra. e Hydroge n Atom Z 2 p E = −13.6 eV Z = 1 n n2 e (Z-1)e Other Atoms Zp Z 2 E = −13.6 eff eV Zeff takes in to account screening of n n2 the nucleus by inner electron cloud. Total Energy Z 2 1 eff ! E = KE − + ΔESpin−Orbit Coupling total electron spin S will interact with 4πεo r L1 "! e L2 the total orbital angular momentum L S1 S2 e ! + ΔESpin−Spin Coupling electron spin S1 will interact with ! the spin angular momentum S2 Spin-Orbit Interaction and Total J=L+S • The Spin-orbit interaction is the interaction between the atoms orbital magnetic moment L and spin magnetic moment S. • The magnetic moment of a current loop is given by = iA = current x area. !" q 2 q 2 q q !" µ L = iA = (πr ) = (πr ) = mvr = L orbital magnetic moment L T 2πr / v 2m 2m !" q " S µS == S spin magnetic moment N 2m r e 1 ∂V !!" !" !" " ESO ~ µL iµS ~ LiS Spin − Orbit Energy r ∂r • The total angular momentum J = L + S of an atom is conserved and represents a good quantum number. J Ψ (n l s j mj ) Jz n = principal quantum # L= orbital quantum # L s = spin quantum # S J = total quantum # Jz projection of J on to z-axis |Jz| = mj h Values of Angular momentum L=1 (px,py,pz) L=2 (dxy,dyz,dxz,x2-y2,dz2) • Orbital Angular momentum • 2L+1 states L=0 (s) 2 states 6 states 10 states • Spin Angular momentum sz=+/- h/2 z • 2S+1 states Sz=+1/2h • S vector precesses about z-axis, Sx and Sy unknown y • <Sz>=sz is constant sz=+/- h/2 x <Sz> expectation value of Sz Sz=-1/2h 2 states Addition of Angular momentum • We must add the angular momentum J=L+S of active orbital electrons.
    [Show full text]