POLARIZATION PHENOMENA in ORGANIC NANOSTRUCTURES by Donna Kunkel a DISSERTATION Presented to the Faculty of the Graduate College

Total Page:16

File Type:pdf, Size:1020Kb

POLARIZATION PHENOMENA in ORGANIC NANOSTRUCTURES by Donna Kunkel a DISSERTATION Presented to the Faculty of the Graduate College POLARIZATION PHENOMENA IN ORGANIC NANOSTRUCTURES by Donna Kunkel A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfilment of Requirements For the Degree of Doctor of Philosophy Major: Physics and Astronomy Under the Supervision of Professor Axel Enders Lincoln, Nebraska August, 2014 POLARIZATION PHENOMENA IN ORGANIC NANOSTRUCTURES Donna Kunkel, Ph.D. University of Nebraska, 2014 Adviser: Axel Enders This thesis explores the self-assembly and surface interactions of two classes of or- ganic molecules through scanning tunneling microscopy. The primary scientific goal of this thesis is to better understand the electric polarization in surface-supported or- ganic molecules, whether inherent to a molecule or acquired through intermolecular interactions. First, a class of dipolar molecules, the quinonoid zwitterions, are examined on three noble metal surfaces. Two-dimensional islands of hydrogen-bonded molecules, with aligned dipole moments, are formed on Au(111). However, other structures with zero net dipole moment are observed on Ag(111) and Cu(111). Modifying the molecules with longer substituent tails results in the formation of one-dimensional chains irrespective of the surface. Our calculations show that the dipole moment is not the driving factor determining the self-assembly of these molecules. Instead a more complicated picture emerges in which extensive charge transfer with the surface drastically reduces the dipole moment of the molecule by nearly 9 D, so that dipolar energies become small compared to typical chemical bond energies such as hydrogen bonds. Second, the self-assembly of three molecules, croconic acid, rhodizonic acid, and 3-hydroxyphenalenone (3-HPLN) are studied on three noble metal surfaces. These molecules were chosen due to their ferroelectric bulk properties, which arise from switchable hydrogen bonds. On Ag, croconic acid forms two-dimensional hydrogen bonded sheets which are, in theory, capable of proton transfer. While these com- pounds form hydrogen bonded structures on Ag(111) and Au(111), on the more reactive Cu(111) surface metal-organic frameworks involving surface metal atoms are observed for rhodizonic acid, highlighting the importance of surface chemistry. Ad- ditionally, on an insulating buffer layer, CuN, croconic acid forms a densely packed hydrogen bonded structure, which more closely resembles its bulk phase, demonstrat- ing the effect of charge transfer on self-assembly. Additionally, hydrogen bonded co-crystals of 3-HPLN and croconic acid are syn- thesized on Au(111). Co-crystals of quinonoid zwitterions and croconic acid are also reported. Guided by the surface science studies, related 3D organic co-crystals were grown. Finally, the topic 2D magic organic clusters is presented as a new branch of research. Five new organic magic clusters are described. The research presented in this thesis has relevance to a broad range of applications including data storage devices and molecular electronics. iv ACKNOWLEDGMENTS First and foremost, I want to offer sincere and heartfelt thanks to my thesis adviser, Dr. Axel Enders. His passion for science and learning is nothing short of inspiring. Throughout the years, he has always provided me with kind words of encouragement and wise words of guidance. As a scientist, he has served as an exceptional role model. On a personal note, his warm and gregarious personality has made working with him an absolute pleasure. I would also like to thank my committee members, Dr. Peter Dowben, Dr. Stephen Ducharme, and Dr. Eva Franke-Schubert for their service both as committee members as well as mentors. Furthermore, I would like to thank my numerous collaborators. Chief among them, Dr. Eva Zurek, Scott Simpson, and Dr. James Hooper have continuously proven to be excellent scientists whose tireless research has provided theoretical insights which add significant value to my thesis. Additionally, I want to thank Dr. Alexander Sinitskii and his students Timothy Vo and Wayz Khan for their collaborations. Aside from the committee service, I also would like to thank Dr. Stephen Ducharme and his student Shashi Poddar, and Dr. Peter Dowben for their scientific collaborations. I wish to acknowledge my former lab mates Geoffrey Rojas and Xumin Chen for training me on the instrumentation. I would also like to thank my fellow researcher Sumit Beniwal for continually helping in every aspect of research. By aiding me in everything from routine maintenance to providing valuable scientific discussions Sumit has made this thesis possible. Additionally, his humor and friendship has made conducting research for this thesis enjoyable. Finally, I wish to sincerely thank my friends and family for providing unconditional support during my graduate years. With that, to everyone mentioned above: Thank you! v PUBLICATIONS RELATED TO THIS RESEARCH 11. S. Beniwal, S. Chen, X.-C. Zeng, S. Simpson, J. Hooper, E. Zurek, D. A. Kunkel, A. Enders Kagome Lattice of π-π Stacked 3-Hydroxyphenalenone on Cu(111) accepted Chem. Commun. (2014) 10. J. Hooper, D. A. Kunkel, S. Simpson, S. Beniwal, A. Enders, E. Zurek Chi- ral Surface Networks of 3-HPLN - A Molecular Analog of Rounded Triangle Assembly? Surface Science, in print (2014) 9. T. H. Vo, M. D. Morton, M. Shekkirev, D. A. Kunkel, E. Berglund, P. Wilson, A. Enders, A. Sinitskii Bottom-up Synthesis of Narrow Nitrogen-doped Graphene Nano-ribbons Chem. Commun. 50 4172-4174 (2014). 8. T. H. Vo, M. Shrekhirev, D. A. Kunkel, M. D. Morton, E. Berglund, L. Kong, P. M. Wilson, P. A. Dowben, A. Enders, A. Sinitskii Large-Scale Solution of Narrow Graphene Nanoribbons, Nat. Commun. 5 3189 (2014). 7. D. A. Kunkel, J. Hooper, S. Simpson, S. Beniwal, K. L. Morrow, D. C. Smith, K. Cousins, S. Ducharme, E. Zurek, A. Enders Rhodizonic Acid on Noble Metals: Surface Reactivity and Coordination Chemistry, J. Phys. Chem. Lett. 4, 3413 (2013). 6. S. Simpson, D. A. Kunkel, J. Hooper, J. Nitz, P. A. Dowben, L. Routaboul, P. Braunstein, B. Doudin, A. Enders, E. Zurek, Coverage-Dependent Interactions at the Organics-Metal Interface: Quinonoid Zwitterions on Au(111), J. Phys. Chem. C 117, 16406 (2013). 5. D. A. Kunkel, J. Hooper, S. Simpson, G. A. Rojas, S. Ducharme, T. Usher, E. Zurek, A. Enders Proton Transfer in Surface-Stabilized Chiral Motifs of Cro- conic Acid, Phys. Rev. B 87, 041402 (2013). 4. P. A. Dowben, D. A. Kunkel, A. Enders, Luis G. Rosa, L. Routaboul, B. Doudin, P. Braunstein The Dipole Mediated Surface Chemistry of p-Benzoquinonemonoimine Zwitterions, Top. Cat.56, 1096 (2013). 3. D. A. Kunkel, S. Simpson, J. Nitz, G. A. Rojas, E.Zurek, L. Routaboul, B. Doudin, P. Braunstein, P. A. Dowben, A. Enders Dipole Driven Schemes of Quinonoid Zwitterions on Surfaces, Chem. Commun. 48, 7143 (2012). 2. G. Rojas, S. Simpson, X. Chen, D. A. Kunkel, J.Nitz, J. Xiao, P. A. Dow- ben, E. Zurek, and A. Enders Surface State Engineering of Molecule-Molecule Interactions, Phys. Chem. Chem. Phys. 14, 4971-4976 (2012). 1. G. Rojas, X. Chen, D. Kunkel, M. Bode, A. Enders Temperature Dependence of Metal-Organic Heteroepitaxy, Langmuir 27, 14267-14271 (2011). vi Contents Contents vi 1 Introduction 1 2 Fundamentals 5 2.1 Intermolecular Interactions........................ 5 2.1.1 Dipole-Dipole Interactions .................... 6 2.1.2 Resonance Assisted Hydrogen Bonding ............. 13 2.2 Review of Experiments of Dipolar Molecules on Surfaces ....... 17 2.2.1 Electronic Effects of Dipolar Molecules on Surfaces ...... 17 2.2.2 Self-Assembly of Dipolar Molecules ............... 20 2.3 Molecule Surface Interactions ...................... 27 2.3.1 Short Review of Clean Metal Surfaces .............. 28 2.3.2 Molecule-Substrate Interaction Strengths ............ 30 2.3.3 Energy Level Alignment ..................... 30 2.3.4 Interface Charge Transfer .................... 33 2.3.5 Pauli Repulsion .......................... 35 2.3.6 Unified IDIS-Pillow-Permanent Dipole Model ......... 37 2.3.7 Experimental Confirmation of the IDIS Model ......... 39 vii 2.3.8 Challenges to Interface Modelling ................ 40 2.4 Experimental Methods .......................... 41 2.4.1 Basic Principles of Scanning Tunneling Microscopy ...... 42 2.4.2 Applications of Scanning Tunneling Microscopy ........ 43 2.4.3 Experimental Apparatus ..................... 48 3 Investigation of Strongly Dipolar Organic Molecules on Surfaces 49 3.1 Overview of Quinonoid Zwitterions ................... 49 3.2 Experimental Observations of Quinonoid Zwitterions on Metal Surfaces 54 3.2.1 Parent Quinonoid Zwitterions .................. 55 3.2.2 Ethyl and Butyl Quinonoid Zwitterions ............. 66 3.3 Discussion of Self-Assembly ....................... 71 3.3.1 Single Molecule Adsorption Phenomena ............. 71 3.3.2 Coverage Dependent Bond Strength of PZI on Au(111) .... 77 3.3.3 Amine Deprotonation ....................... 78 3.3.4 Long Range Surface Mediated Interactions ........... 80 3.4 Does the Dipole Moment Drive Quinonoid Zwitterion Self-Assembly? 81 4 2D Single Component, Organic Hydrogen Bonded Networks 84 4.1 STM Investiagations of Surface Supported Croconic Acid ....... 88 4.1.1 Croconic Acid on Ag(111) .................... 89 4.1.2 Croconic Acid on Au(111) .................... 95 4.1.3 Metal Organic Networks of Croconic Acid/Cu ......... 97 4.1.4 Croconic Acid on an Insulating Copper Nitride Buffer Layer . 98 4.2 STM Studies of Surface Supported Rhodizonic Acid .......... 106 4.2.1 First Crystallization of Rhodizonic Acid on Au(111) ...... 106 4.2.2 Metal
Recommended publications
  • May-June 2013 OUTLOOK on Volume 35 No
    CHEMISTRY International The News Magazine of IUPAC May-June 2013 OUTLOOK ON Volume 35 No. 3 LATIN AMERICA Neglected Tropical Diseases INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY Green Chemistry in Teaching From the Editor CHEMISTRY International ay is a month of many celebrations. As we have mentioned several Mtimes before in CI, 20 May is World Metrology Day, which com- The News Magazine of the International Union of Pure and memorates the signing by representatives of 17 nations of The Metre Applied Chemistry (IUPAC) Convention on that day in 1875. This year, the theme is “Measurements in Daily Life”—see more at www.worldmetrologyday.org. www.iupac.org/publications/ci While living in the states, but having grown up in Belgium, I have found that measurements in my daily life can be quite bewildering. A simple Managing Editor: Fabienne Meyers length mentioned in inches, a travel distance Production Editor: Chris Brouwer referred to in miles, a quantity in a cook book Design: pubsimple specified in spoons or cups, or my own weight blurred in pounds on my bathroom scale make All correspondence to be addressed to: no sense to me. And, it is beyond me that this Fabienne Meyers “New World” is stuck in a nonmetric system. If IUPAC, c/o Department of Chemistry on 20 May I can convince just one friend that Boston University SI is the way to go, even for daily usage, it is Metcalf Center for Science and Engineering worth celebrating! 590 Commonwealth Ave. There are many more international and world days in May, several that Boston, MA 02215, USA are even recognized by the UN or UNESCO.
    [Show full text]
  • Synthesis and Properties of Corannulene Derivatives: Journey to Materials Chemistry and Chemical Biology
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2008 Synthesis and properties of corannulene derivatives: journey to materials chemistry and chemical biology Hayama, Tomoharu Abstract: Corannulene, also called as [5]-circulene, is a C20H10 fragment of buckminsterfullerene, C60. The most interesting property of corannulene is probably its bowl structure and bowl-to-bowl inversion. The unique curvature has many possiblities for applications in different fields. Today, large-scale synthesis of corannulene is possible and thus, the time has come to exploit its physical properties. This disserta- tion is divided into four areas: 1) efficient synthesis of sym-pentaarylsubstituedcorannulene derivatives, 2) solvent effect on the bowl inversion, 3) development of the method for solution-phase nanotube syn- thesis, and 4) designing a corannulene-based synthetic receptor. sym-pentaarylsubstituedcorannulenes are quite attractive compounds because of their five-fold symmetry and curvature. The efficient synthesis has been accomplished from sym-pentachlorocorannulene with the coupling reaction using N-heterocyclic carbene ligands in a moderately good yield in spite of its five low-reactive chlorides. The inversion energies of some sym-pentaarylsubstituedcorannulenes have been investigated in different types of sol- vent. The variable temperature 1H-NMR spectra were measured, and line shape analysis or coalescence approximation were used to evaluate the rate parameters. This experiment suggested endo-group inter- actions of those compounds and shows influences of solvent polarity or volume on the inversion energies. In addition, the bowl depths will also be compared and discussed using the crystallographic structural data. The high-energy per-ethynylated polynuclear compound decapentynyl-corannulene has been pre- pared via aryl-alkyne coupling chemistry of decachlorocorannulene.
    [Show full text]
  • Polycyclic Aromatic Hydrocarbon Structure Index
    NIST Special Publication 922 Polycyclic Aromatic Hydrocarbon Structure Index Lane C. Sander and Stephen A. Wise Chemical Science and Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-0001 December 1997 revised August 2020 U.S. Department of Commerce William M. Daley, Secretary Technology Administration Gary R. Bachula, Acting Under Secretary for Technology National Institute of Standards and Technology Raymond G. Kammer, Director Polycyclic Aromatic Hydrocarbon Structure Index Lane C. Sander and Stephen A. Wise Chemical Science and Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 This tabulation is presented as an aid in the identification of the chemical structures of polycyclic aromatic hydrocarbons (PAHs). The Structure Index consists of two parts: (1) a cross index of named PAHs listed in alphabetical order, and (2) chemical structures including ring numbering, name(s), Chemical Abstract Service (CAS) Registry numbers, chemical formulas, molecular weights, and length-to-breadth ratios (L/B) and shape descriptors of PAHs listed in order of increasing molecular weight. Where possible, synonyms (including those employing alternate and/or obsolete naming conventions) have been included. Synonyms used in the Structure Index were compiled from a variety of sources including “Polynuclear Aromatic Hydrocarbons Nomenclature Guide,” by Loening, et al. [1], “Analytical Chemistry of Polycyclic Aromatic Compounds,” by Lee et al. [2], “Calculated Molecular Properties of Polycyclic Aromatic Hydrocarbons,” by Hites and Simonsick [3], “Handbook of Polycyclic Hydrocarbons,” by J. R. Dias [4], “The Ring Index,” by Patterson and Capell [5], “CAS 12th Collective Index,” [6] and “Aldrich Structure Index” [7]. In this publication the IUPAC preferred name is shown in large or bold type.
    [Show full text]
  • Mercury(Ii) Thiolate and Selenolate Interactions
    MERCURY(II) THIOLATE AND SELENOLATE INTERACTIONS, AND CHELATION THERAPY BY ALAN PETER ARNOLD B.Sc. Melb.), B.Sc. (Hons.), ARACI A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Chemistry Department University of Tasmania Hobart Tasmania Australia 1982 This thesis contains no material which has been accepted for the award of any other degree or diploma in any University, and to the best cf my knowledge, contains no copy or paraphrase of material previously presented by another person, except where due reference is made in the text. Alan P. Arnold. FOR MY PARENTS ACKNOWLEDGEMENTS It is a pleasure to respectfully acknowledge the continuous patience and guidance given by Dr. A.J. Canty throughout this study. I am grateful to Dr. G.B. Deacon and Mr. M. Hughes (Mbnash University) for their assistance with the measurement of far infrared spectra, to Dr. A.H. White and Dr. B.W. Skelton (University of Western Australia) for the X-ray crystallographic studies, and to Dr. R.N. Sylva (Australian Atomic Energy Commission) for supplying a listing of his new version of the program MINIQUAD. My sincere thanks are due to Mr. J.C. Bignall of the Central Science Laboratory (University of Tasmania) for his expert tuition and assistance with the intricacies of Laser-Raman spectroscopy of intractable samples, his colleagues Mr. N.W. Davies and Mr. M. Power for the measurement of mass spectra and to Mr. R.R. Thomas for the 1 H nmr spectra. Mr. R. Ford of the Geology Department (University of Tasmania) is gratefully acknowledged for his assistance with the determination of the X-ray powder diffraction patterns of several malodorous mercury(II) selenolates.
    [Show full text]
  • (12) United States Patent (10) Patent N0.: US 6,225,009 B1 Fleischer Et Al
    US006225009B1 (12) United States Patent (10) Patent N0.: US 6,225,009 B1 Fleischer et al. (45) Date of Patent: *May 1, 2001 (54) ELECTROCHEMICAL CELL WITH A NON- (51) Int. Cl.7 ........................... .. H01M 4/52; H01M 4/60; LIQUID ELECTROLYTE H01M 10/40 52 US. Cl. ........................ .. 429/306; 429/213; 429/220; (75) Inventors: Niles A Fleischer; J00st Manassen, ( ) 429/221; 429/224 lgiithRzfsllfech?ggzs?ogig?lgigméylm; (58) Field Of Search ............................ ..442299//23236 320261, 221234; Marvin S. Antelman, Rehovot, all of ’ ’ (IL) (56) References Cited (73) Assignee: E.C.R. -Electr0-Chemical Research US. PATENT DOCUMENTS Ltd” Rehovot (IL) 4,366,216 * 12/1982 McGinness ........................ .. 429/213 ( * ) Notice: PawntSubject is to mendedany disclaimer, or adjusted the term under of this 35 4,847,174 * 7/1989 §$1I1l:r:1_etj1_'_Palmer et a1. ....... .. 429/112 U-S-C- 154(b) by 0 days- 5,731,105 * 3/1998 Fleischer et al. .............. .. 429/213 X This patent is subject to a terminal dis- * Cited by examiner Clalmer' Primary Examiner—Stephen Kalafut (21) APPL NO; 09/068,864 (74) Attorney, Agent, or Firm—Mark M. Friedman (22) PCT Filed: Sep. 23, 1997 (57) ABSTRACT (86) PCT NO; PCT/US97/16901 A non-liquid electrolyte containing electrochemical cell which operates ef?ciently at room temperature. The cell § 371 Datei May 19, 1998 includes (a) a non-liquid electrolyte in which protons are _ mobile, (b) an anode active material based on an organic § 102(6) Date' May 19’ 1998 com P ound which is a source of P rotons durin g cell (87) PCT Pub.
    [Show full text]
  • Used at Rocky Flats
    . TASK 1 REPORT (Rl) IDENTIFICATION OF CHEMICALS AND RADIONUCLIDES USED AT ROCKY FLATS I PROJECT BACKGROUND ChemRisk is conducting a Rocky Flats Toxicologic Review and Dose Reconstruction study for The Colorado Department of Health. The two year study will be completed by the fall of 1992. The ChemRisk study is composed of twelve tasks that represent the first phase of an independent investigation of off-site health risks associated with the operation of the Rocky Flats nuclear weapons plant northwest of Denver. The first eight tasks address the collection of historic information on operations and releases and a detailed dose reconstruction analysis. Tasks 9 through 12 address the compilation of information and communication of the results of the study. Task 1 will involve the creation of an inventory of chemicals and radionuclides that have been present at Rocky Flats. Using this inventory, chemicals and radionuclides of concern will be selected under Task 2, based on such factors as the relative toxicity of the materials, quantities used, how the materials might have been released into the environment, and the likelihood for transport of the materials off-site. An historical activities profile of the plant will be constructed under Task 3. Tasks 4, 5, and 6 will address the identification of where in the facility activities took place, how much of the materials of concern were released to the environment, and where these materials went after the releases. Task 7 addresses historic land-use in the vicinity of the plant and the location of off-site populations potentially affected by releases from Rocky Flats.
    [Show full text]
  • LEAD in DUST WIPES 9105 by Chemical Spot Test (Colorimetric Screening Method)
    LEAD in DUST WIPES 9105 by Chemical Spot Test (Colorimetric Screening Method) Pb MW: 207.19 CAS: 7439-92-1 RTECS: OF7525000 METHOD: 9105, Issue1 EVALUATION: PARTIAL Issue 1: 15 March 2003 OSHA: no PEL PROPERTIES: soft metal; d 11.3 g/cm3; MP 327.5 oC NIOSH: no REL valences +2, +4 in salts ACGIH: no TLV SYNONYMS: Elemental lead and lead compounds except alkyl lead SAMPLING MEASUREMENT SAMPLER: WIPE, meeting the specifications of ASTM TECHNIQUE: CHEMICAL SPOT TEST, Rhodizonate- E1792 [1]. based solution or spot test kit applied to wipe sample [2] SAMPLE: Human skin (e.g., hands) or non-dermal surfaces (e.g., floors, walls, furniture) ANALYTE: Rhodizonate complex of lead SAMPLE POSITIVE STABILITY: Stable INDICATOR: Observed color change on wipe from yellow/orange to pink/red (under acidic BLANKS: At least 5% of samples, min. of 2 per batch conditions) [2,3] RESPONSE: The method is ordinarily positive for the ACCURACY presence of lead in the range of 5 - 15 :g/sample, upwards to and exceeding milligram amounts [3,4]. RANGE STUDIED: <0.01 to >1,000 µg Pb per wipe BIAS: Not applicable OVERALL Ö PRECISION ( rT): Not applicable ACCURACY: Response may differ for different wipe materials, different matrices and different rhodizonate solutions. APPLICABILITY: This is a qualitative, colorimetric screening method, designed for field use. The method was designed as a handwipe method for human skin, but is also applicable to various non-dermal surfaces including floors, walls, furniture, etc. A characteristic color change on the wipe (i.e., from yellow/ orange to pink/ red hues) indicates the presence of lead.
    [Show full text]
  • Monoradicals and Diradicals of Dibenzofluoreno[3,2-B]Fluorene Isomers: Mechanisms of Electronic Delocalization
    pubs.acs.org/JACS Article Monoradicals and Diradicals of Dibenzofluoreno[3,2‑b]fluorene Isomers: Mechanisms of Electronic Delocalization Hideki Hayashi,○ Joshua E. Barker,○ Abel Cardenaś Valdivia,○ Ryohei Kishi, Samantha N. MacMillan, Carlos J. Gomez-Garć ía, Hidenori Miyauchi, Yosuke Nakamura, Masayoshi Nakano,* Shin-ichiro Kato,* Michael M. Haley,* and Juan Casado* Cite This: J. Am. Chem. Soc. 2020, 142, 20444−20455 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: The preparation of a series of dibenzo- and tetrabenzo-fused fluoreno[3,2-b]fluorenes is disclosed, and the diradicaloid properties of these molecules are compared with those of a similar, previously reported series of anthracene-based diradicaloids. Insights on the diradical mode of delocalization tuning by constitutional isomerism of the external naphthalenes has been explored by means of the physical approach (dissection of the electronic properties in terms of electronic repulsion and transfer integral) of diradicals. This study has also been extended to the redox species of the two series of compounds and found that the radical cations have the same stabilization mode by delocalization that the neutral diradicals while the radical anions, contrarily, are stabilized by aromatization of the central core. The synthesis of the fluorenofluorene series and their characterization by electronic absorption and vibrational Raman spectroscopies, X-ray diffraction, SQUID measurements, electrochemistry, in situ UV−vis−NIR absorption spectroelectro- chemistry, and theoretical calculations are presented. This work attempts to unify the properties of different series of diradicaloids in a common argument as well as the properties of the carbocations and carbanions derived from them.
    [Show full text]
  • Synthesis of an Unsymmetrically Pentafunctionalized Corannulene Derivative (Part I) Synthesis of Platinum and Ethynyl-Platinum Corannulenes (Part II)
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2012 Synthesis of an Unsymmetrically Pentafunctionalized Corannulene Derivative (Part I) Synthesis of Platinum and Ethynyl-Platinum Corannulenes (Part II) Maag, Roman M Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-164179 Dissertation Published Version Originally published at: Maag, Roman M. Synthesis of an Unsymmetrically Pentafunctionalized Corannulene Derivative (Part I) Synthesis of Platinum and Ethynyl-Platinum Corannulenes (Part II). 2012, University of Zurich, Faculty of Science. Part I: Synthesis of an Unsymmetrically Pentafunctionalized Corannulene Derivative and Part II: Synthesis of Platinum and Ethynyl-Platinum Corannulenes Dissertation zur Erlangung der naturwissenschaftlichen Doktorwurde¨ Dr. sc. nat. vorgelegt der Mathematisch-naturwissenschaftlichen Fakult¨at der Universit¨at Zurich¨ von Roman M. Maag von Winkel ZH Promotionskommitee: Prof. Dr. Jay S. Siegel (Vorsitz) Prof. Dr. Kim K. Baldridge Prof. Dr. Cristina Nevado Prof. Dr. Roger Alberto Zurich,¨ 2012 Abstract of the Dissertation Part I: Synthesis of an Unsymmetrically Pentafunctionalized Corannulene Derivative and Part II: Synthesis of Platinum and Ethynyl-Platinum Corannulenes by Roman M. Maag University of Zurich, 2012 Prof. Dr. Jay S. Siegel, Chair Corannulene (C20H10) is a polyaromatic hydrocarbon that can be considered as the smallest fragment of Buckminsterfullerene exhibiting a curved surface. Among the in- teresting properties of corannulene are rapid bowl inversion and esthetically appealing fivefold symmetry (C5v), which is rare in chemistry. Whereas the first synthesis in 1968 only afforded milligram quantities, several improvements in the synthetic strategy finally culminated in the development of an efficient process which today furnishes corannulene in kilogram quantities.
    [Show full text]
  • On-Surface Synthesis of a Nitrogen-Embedded Buckybowl with Inverse Stoneâ
    ARTICLE DOI: 10.1038/s41467-018-04144-5 OPEN On-surface synthesis of a nitrogen-embedded buckybowl with inverse Stone–Thrower–Wales topology Shantanu Mishra1, Maciej Krzeszewski2, Carlo A. Pignedoli1, Pascal Ruffieux 1, Roman Fasel 1,3 & Daniel T. Gryko2 π 1234567890():,; Curved -conjugated polycyclic aromatic hydrocarbons, buckybowls, constitute an important class of materials with wide applications in materials science. Heteroatom doping of buck- ybowls is a viable route to tune their intrinsic physicochemical properties. However, synthesis of heteroatom-doped buckybowls is a challenging task. We report on a combined in-solution and on-surface synthetic strategy toward the fabrication of a buckybowl containing two fused nitrogen-doped pentagonal rings. We employ ultra-high-resolution scanning tunneling microscopy and spectroscopy, in combination with density functional theory calculations to characterize the final compound. The buckybowl contains a unique combination of non- hexagonal rings at its core, identified as the inverse Stone–Thrower–Wales topology, resulting in a distinctive bowl-opening-down conformation of the buckybowl on the surface. Our controlled design of non-alternant, heteroatom-doped polycyclic aromatic frameworks with established bottom-up fabrication techniques opens new opportunities in the synthesis of carbon nanostructures with the perspective of engineering properties of graphene-based devices. 1 Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf 8600, Switzerland. 2 Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, Warsaw 01-224, Poland. 3 Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland. Correspondence and requests for materials should be addressed to R.F. (email: [email protected]) or to D.T.G.
    [Show full text]
  • DFT Study of Five-Membered Ring Pahs
    DFT study of five-membered ring PAHs Gauri Devi1, Mridusmita Buragohain1*, Amit Pathak2, 1Department of Physics, Tezpur University, Tezpur 784028, India, [email protected], *Corresponding author 2Department of Physics, Banaras Hindu University, Varanasi 221 005, India ([email protected]) Abstract This work reports a ‘Density Functional Theory’ (DFT) calculation of PAH molecules with a five-member ring to determine the expected region of infrared features. It is highly possible that fullerene molecule might be originated from five-membered ring PAH molecules in the ISM. Effect of ionization and protonation on five-membered ring PAH molecule is also discussed. A detail vibrational analysis of five-membered ring PAH molecule has been reported to further compare with observations and to identify any observational counterpart. Keywords: PAH, Interstellar molecules, IR spectra, Unidentified infrared bands, Astrochemistry INTRODUCTION Polycyclic Aromatic Hydrocarbons(PAHs) are suspected to beoneofthe stableand largest aromatic compounds present in the interstellar medium (ISM) of the Milky Way and external galaxies. The ubiquitous presence of PAHs has been established through numerous observations of the unidentified infrared (UIR) emission bands in the mid- IR (Tielens, 2008, and references therein). PAH molecules, being stable, can survive acute conditions of the ISM in its regular as well as in ionized or de-hydrogenated phase. These properties help to understand the total carbon budget of the universe. PAHs, because of their ubiquitous presence, may provide some clues to some of the hitherto unsolved problems of astronomical spectroscopy, e.g. the 3.4 µm absorp- arXiv:1902.10464v1 [astro-ph.GA] 27 Feb 2019 tion feature (Sellgren et al., 1994), the far-UV steep of the interstellar extinction curve (Li and Draine, 2001), the 217.5 nm bump (Henning and Salama, 1998) and the diffuse interstellar bands (Salama et al., 1999) that appear as absorption features in the visible region of the interstellar extinction curve.
    [Show full text]
  • ROTATIONAL SPECTRA of SMALL Pahs: ACENAPHTHENE, ACENAPHTHYLENE, AZULENE, and FLUORENE S
    The Astrophysical Journal, 662:1309 Y 1314, 2007 June 20 A # 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A. ROTATIONAL SPECTRA OF SMALL PAHs: ACENAPHTHENE, ACENAPHTHYLENE, AZULENE, AND FLUORENE S. Thorwirth,1, 2, 3 P. Theule´,2, 3, 4 C. A. Gottlieb,2, 3 M. C. McCarthy,2, 3 and P. Thaddeus2, 3 Received 2007 January 5; accepted 2007 March 7 ABSTRACT Pure rotational spectra of four small polycyclic aromatic hydrocarbons have been observed by Fourier transform microwave spectroscopy of a molecular beam in the frequency range from 7 to 37 GHz. Initial searches for acenaphthene (C12H10), acenaphthylene (C12H8), and fluorene (C13H10) were guided by quantum chemical calculations performed at the B3LYP/cc-pVTZ level of theory. All three molecules exhibit b-type rotational spectra and are calculated to be moderately polar, with dipole moments of 0.3Y0.9 D. Close agreement (to better than 1%) between the calculated equilibrium and experimentally derived ground-state rotational constants is achieved. Selected transitions of acenaphthene and fluorene have also been measured in the 3 mm region by conventional free-space absorption spectroscopy, as have transitions of the previously studied azulene (C10H8). The data presented here facilitate deep radio astronomical searches with large radio telescopes. Subject headingsg: astrochemistry — ISM: molecules — molecular data Online material: machine-readable tables 1. INTRODUCTION (C12H8; molecule 2), and fluorene (C13H10; molecule 3) have been obtained for the first time employing Fourier transform The mid-infrared spectra from 3 to 20 m of many astronom- microwave (FTM) spectroscopy. Centimeter-wave transitions ical objects are dominated by emission features usually referred of azulene (molecule 4) were also measured, complementing the to as the unidentified infrared bands (UIRs).
    [Show full text]