Engineering a 45-Amino Acid Protein Scaffold for Molecular Cancer Imaging

Total Page:16

File Type:pdf, Size:1020Kb

Engineering a 45-Amino Acid Protein Scaffold for Molecular Cancer Imaging Engineering a 45-Amino Acid Protein Scaffold for Molecular Cancer Imaging A DISSERTATION SUBMITTED TO THE FACULY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Max Kruziki IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Advisor: Benjamin J. Hackel December 2017 © Max Kruziki 2017 Acknowledgements I am thankful for all the wonderful people I have met during my years in graduate school. They have had the biggest impact on my happiness and success both at work and in life. Katie, who will soon be my wife, has inspired me to push myself be the best that I can be, in the hopes of even approaching all she has accomplished. She has helped keep me hopeful when experiments weren’t going well, and has provided encouragement and friendship whenever I needed it most. All of my lab mates, but especially Danny, Brett, Larry, and Sadie who have shared an office with me nearly my entire time in Minnesota made each day enjoyable. We could always laugh and joke around, and yet switch to serious scientific discussion when someone had a question or needed help. The undergraduates who have worked with me; Vandon, Andrew, Lizzie, and Feifan were great people to work with and mentor, and it was fulfilling to watch their scientific knowledge grow. The entire CEMS department has been like a family to me. Especially the other students in my class, who struggled with me through early classes and long homework assignments. Without the kindness and support from them during the intense first few semesters, grad school would have been much different and much less fun. Ben, my advisor, has instilled in me the desire to do good science and be vigilant to not cut corners or take the easy way out. His optimism is contagious, and our weekly i meetings always left me feeling refreshed and encouraged to conquer what problems I may face. Finally, I want to thank my family and friends outside of CEMS. My brother, Jake, and along with my other close friends give an escape to talk about topics outside of chemical engineering and fulfill my interests outside of science. Most importantly, my parent’s unwavering belief and support is what has allowed me to accomplish all I have throughout life. ii Abstract Cancer is the second leading cause of death in the United States. Molecularly targeted cancer treatments, including monoclonal antibodies and kinase inhibitors, exhibit strong performance on a small subset of patients but are inconsistent due to tumor heterogeneity. Biopsy-based genetic and protein tumor characterization provide value but cannot address spatial or temporal variations in heterogeneity. Non-invasive methods, such as molecular imaging, to characterize cancer cells will allow for easier patient stratification and treatment monitoring. Currently, molecular imaging is limited by the modest availability of quality probes that efficiently distribute throughout the body and quantitatively localize at the site of the cancer biomarker. Engineering effective diagnostic molecular probes would provide a substantial advance in cancer characterization and personalized medicine. Protein scaffolds, which comprise a large stabilizing framework and a randomized region onto which binding interactions can be engineered, offer an efficient platform for probe engineering. More broadly, engineered binding proteins are useful in many aspects of biotechnology and medicine. In this thesis, we mined ~100,000 known protein topologies to identify candidate small protein scaffolds. We developed the 45-amino acid Gp2scaffold and evolved multiple Gp2 variants that strongly (as strong as 0.2 nM) and specifically (greater than 50:1 target:control) bind their respective target while also retaining high thermal stability (65- 80 ºC thermal desaturation midpoint) . iii A Gp2 variant that was evolved to bind with strong affinity to epidermal growth factor receptor (EGFR), a cell surface biomarker overexpressed in multiple cancer types, was more thoroughly investigated in pre-clinical studies. This variant exhibited strong (18 nM), selective binding, and was passive on normal EGFR signaling pathways, which is important to reduce off-target side effects. PET imaging of subcutaneously xenografted tumors in mice revealed effective probe localization to EGFR-high tumors while low signal was observed in EGFR-low tumors and from non-targeted control Gp2. Gp2 evolution was studied by comparing the efficacy of different combinatorial library amino acid diversity based on high throughput sequencing data, natural Gp2 homologs, structural data, and computed stability. Multiple library designs elucidated amino acid diversity that was beneficial or detrimental in different sections of the Gp2 protein, and will aid future evolution and developability of Gp2. From these libraries, high affinity Gp2 variants targeting an additional clinically-relevant cancer biomarker, programmed death-ligand 1 (PD-L1), were evolved, isolated, and characterized. Collectively this work identifies and validates Gp2 as a new potential tool for biomarker- based cancer detection and sets a strong foundation for future optimization. iv Table of Contents List of Figures ..................................................................................................................... x List of Tables ................................................................................................................... xiii Chapter 1: Introduction ....................................................................................................... 1 1.1.1 Benefits of molecular recognition ...................................................................... 1 1.1.2 Protein scaffolds as imaging agents ................................................................... 4 1.1.3 Protein evolution and design .............................................................................. 9 Chapter 2: A 45-amino acid scaffold mined from the Protein Data Bank for high affinity ligand engineering ............................................................................................................. 14 2.1. Abstract .................................................................................................................. 14 2.2. Introduction ............................................................................................................ 14 2.3 Experimental Procedures ........................................................................................ 18 2.3.1 Protein Data Bank Analysis ............................................................................. 18 2.3.2 Library Construction ........................................................................................ 19 2.3.3 Binder Selection and Affinity Maturation ....................................................... 19 2.3.4 Illumina MiSeq Analysis ................................................................................. 20 2.3.5 Affinity and Biophysical Properties................................................................. 21 2.4. Results .................................................................................................................... 22 2.4.1 Scaffold Discovery and Library Construction ................................................. 22 2.4.2 Yeast Surface Display Selection Against Model Protein Targets ................... 26 v 2.4.3 Soluble Protein Characterization ..................................................................... 30 2.4.4 EGFR-Targeting Gp2 Domains ....................................................................... 31 2.4.5 Deep Sequencing of Naïve and Binding Populations ...................................... 34 2.5 Discussion ............................................................................................................... 36 2.6 Significance............................................................................................................. 39 2.7 Acknowledgements ................................................................................................. 40 2.8 Supplemental Data .................................................................................................. 40 2.8.1 Supplemental Experimental Procedures .......................................................... 48 Chapter 3: A 64Cu-labeled Gp2 Domain for PET Imaging of Epidermal Growth Factor Receptor ............................................................................................................................ 59 3.1 Abstract ................................................................................................................... 59 3.2 Introduction ............................................................................................................. 60 3.3 Materials and Methods ............................................................................................ 62 3.3.1 Protein production and DOTA conjugation ..................................................... 62 3.3.2 Size Exclusion Chromatography...................................................................... 63 3.3.4 Cell growth....................................................................................................... 63 3.3.5 Affinity measurement ...................................................................................... 63 3.3.6 Western Blot Analysis ..................................................................................... 64 3.3.7 Internalization .................................................................................................
Recommended publications
  • Affibody Molecules for Epidermal Growth Factor Receptor Targeting
    Journal of Nuclear Medicine, published on January 21, 2009 as doi:10.2967/jnumed.108.055525 Affibody Molecules for Epidermal Growth Factor Receptor Targeting In Vivo: Aspects of Dimerization and Labeling Chemistry Vladimir Tolmachev1-3, Mikaela Friedman4, Mattias Sandstrom¨ 5, Tove L.J. Eriksson2, Daniel Rosik2, Monika Hodik1, Stefan Sta˚hl4, Fredrik Y. Frejd1,2, and Anna Orlova1,2 1Unit of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden; 2Affibody AB, Bromma, Sweden; 3Department of Medical Sciences, Nuclear Medicine, Uppsala University, Uppsala, Sweden; 4Division of Molecular Biotechnology, School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden; and 5Section of Hospital Physics, Department of Oncology, Uppsala University Hospital, Uppsala, Sweden Noninvasive detection of epidermal growth factor receptor (EGFR) expression in malignant tumors by radionuclide molecu- he epidermal growth factor receptor (EGFR; other lar imaging may provide diagnostic information influencing pa- T designations are HER1 and ErbB-1) is a transmembrane tient management. The aim of this study was to evaluate a tyrosine kinase receptor that regulates cell proliferation, novel EGFR-targeting protein, the ZEGFR:1907 Affibody molecule, for radionuclide imaging of EGFR expression, to determine a motility, and suppression of apoptosis (1). Overexpression suitable tracer format (dimer or monomer) and optimal label. of EGFR is documented in several malignant tumors, such Methods: An EGFR-specific Affibody molecule, ZEGFR:1907, as carcinomas of the breast, urinary bladder, and lung, and 111 and its dimeric form, (ZEGFR:1907)2, were labeled with In using is associated with poor prognosis (2). A high level of EGFR 125 benzyl-diethylenetriaminepentaacetic acid and with I using expression could provide malignant cells with an advantage p-iodobenzoate.
    [Show full text]
  • Fig. 1C Combination Therapy of Tumor Targeted ICOS Agonists with T-Cell Bispecific Molecules
    ( (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C07K 16/30 (2006.01) A61P 35/00 (2006.01) kind of national protection av ailable) . AE, AG, AL, AM, C07K 16/28 (2006.01) A 6IK 39/00 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, C07K 16/40 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, (21) International Application Number: HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, PCT/EP20 18/086046 KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (22) International Filing Date: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 20 December 2018 (20. 12.2018) OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (25) Filing Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available) . ARIPO (BW, GH, 17209444.3 2 1 December 2017 (21. 12.2017) EP GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (71) Applicant (for all designated States except US): F. HOFF- TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, MANN-LA ROCHE AG [CH/CH]; Grenzacherstrasse EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, 124, 4070 Basel (CH).
    [Show full text]
  • Protein Conjugation with Triazolinediones: Switching from a General Tyrosine-Selective Labeling Method to a Highly Specific Tryptophan Bioconjugation Strategy Klaas W
    Protein Conjugation with Triazolinediones: Switching from a General Tyrosine-Selective Labeling Method to a Highly Specific Tryptophan Bioconjugation Strategy Klaas W. Decoene,† Kamil Unal,‡ An Staes⟠Ψ, Kris Gevaert⟠, Johan M. Winne,‡ Annemieke Madder†* † Organic and Biomimetic Chemistry Research group OBCR, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium ‡ Organic Synthesis group, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium ⟠ VIB Centre for Medical Biotechnology, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium & Department of Bio- molecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium Ψ VIB core facility , VIB Centre for Medical Biotechnology, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium ABSTRACT: Selective labeling of tyrosine residues in peptides and proteins can be achieved via a 'tyrosine-click' reaction with triazolinedione reagents (TAD). We have found that tryptophan residues are in fact often also labeled with this reagent. This off-target labeling is only observed at very low levels in protein bioconjugation but remains under the radar due to the low relative abundance of tryptophan compared to tyrosines in natural proteins, and because of the low availability and ac- cessibility of their nucleophilic positions at the solvent-exposed protein surface. Moreover, because TAD-Trp adducts are known to be readily thermoreversible, it can be challenging to detect these physiologically stable but thermally labile modi- fications using several MS/MS techniques. We have found that fully solvent-exposed tryptophan side chains are kinetically favored over tyrosines under almost all conditions, and this selectivity can even be further enhanced by modifying the pH of the aqueous buffer to effect selective Trp-labeling.
    [Show full text]
  • Strategies and Challenges for the Next Generation of Therapeutic Antibodies
    FOCUS ON THERAPEUTIC ANTIBODIES PERSPECTIVES ‘validated targets’, either because prior anti- TIMELINE bodies have clearly shown proof of activity in humans (first-generation approved anti- Strategies and challenges for the bodies on the market for clinically validated targets) or because a vast literature exists next generation of therapeutic on the importance of these targets for the disease mechanism in both in vitro and in vivo pharmacological models (experi- antibodies mental validation; although this does not necessarily equate to clinical validation). Alain Beck, Thierry Wurch, Christian Bailly and Nathalie Corvaia Basically, the strategy consists of develop- ing new generations of antibodies specific Abstract | Antibodies and related products are the fastest growing class of for the same antigens but targeting other therapeutic agents. By analysing the regulatory approvals of IgG-based epitopes and/or triggering different mecha- biotherapeutic agents in the past 10 years, we can gain insights into the successful nisms of action (second- or third-generation strategies used by pharmaceutical companies so far to bring innovative drugs to antibodies, as discussed below) or even the market. Many challenges will have to be faced in the next decade to bring specific for the same epitopes but with only one improved property (‘me better’ antibod- more efficient and affordable antibody-based drugs to the clinic. Here, we ies). This validated approach has a high discuss strategies to select the best therapeutic antigen targets, to optimize the probability of success, but there are many structure of IgG antibodies and to design related or new structures with groups working on this class of target pro- additional functions.
    [Show full text]
  • International Patent Classification: KR, KW, KZ, LA, LC, LK, LR, LS, LU
    ( 2 (51) International Patent Classification: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, A61K 39/42 (2006.01) C07K 16/10 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, C07K 16/08 (2006.01) KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (21) International Application Number: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, PCT/US20 19/033 995 SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (22) International Filing Date: TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. 24 May 2019 (24.05.2019) (84) Designated States (unless otherwise indicated, for every (25) Filing Language: English kind of regional protection available) . ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (26) Publication Language: English UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (30) Priority Data: TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, 62/676,045 24 May 2018 (24.05.2018) US EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, (71) Applicant: LANKENAU INSTITUTE FOR MEDICAL TR), OAPI (BF, BJ, CF, CG, Cl, CM, GA, GN, GQ, GW, RESEARCH [US/US]; 100 Lancaster Avenue, Wyn- KM, ML, MR, NE, SN, TD, TG).
    [Show full text]
  • Article in Press
    G Model MIMM-4561; No. of Pages 12 ARTICLE IN PRESS Molecular Immunology xxx (2015) xxx–xxx Contents lists available at ScienceDirect Molecular Immunology j ournal homepage: www.elsevier.com/locate/molimm Review Alternative molecular formats and therapeutic applications for ଝ bispecific antibodies ∗ Christoph Spiess, Qianting Zhai, Paul J. Carter Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA a r t i c l e i n f o a b s t r a c t Article history: Bispecific antibodies are on the cusp of coming of age as therapeutics more than half a century after they Received 28 November 2014 ® were first described. Two bispecific antibodies, catumaxomab (Removab , anti-EpCAM × anti-CD3) and Received in revised form ® blinatumomab (Blincyto , anti-CD19 × anti-CD3) are approved for therapy, and >30 additional bispecific 30 December 2014 antibodies are currently in clinical development. Many of these investigational bispecific antibody drugs Accepted 2 January 2015 are designed to retarget T cells to kill tumor cells, whereas most others are intended to interact with two Available online xxx different disease mediators such as cell surface receptors, soluble ligands and other proteins. The modular architecture of antibodies has been exploited to create more than 60 different bispecific antibody formats. Keywords: These formats vary in many ways including their molecular weight, number of antigen-binding sites, Bispecific antibodies spatial relationship between different binding sites, valency for each antigen, ability to support secondary Antibody engineering Antibody therapeutics immune functions and pharmacokinetic half-life. These diverse formats provide great opportunity to tailor the design of bispecific antibodies to match the proposed mechanisms of action and the intended clinical application.
    [Show full text]
  • WO 2014/152006 A2 25 September 2014 (25.09.2014) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/152006 A2 25 September 2014 (25.09.2014) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K 39/395 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, PCT/US20 14/026804 KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, (22) International Filing Date: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 13 March 2014 (13.03.2014) OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (25) Filing Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (26) Publication Language: English ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 61/791,953 15 March 2013 (15.03.2013) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, (71) Applicant: INTRINSIC LIFESCIENCES, LLC UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, [US/US]; 505 Coast Boulevard South, Suite 408, La Jolla, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, California 92037 (US).
    [Show full text]
  • WO 2018/144999 Al 09 August 2018 (09.08.2018) W ! P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/144999 Al 09 August 2018 (09.08.2018) W ! P O PCT (51) International Patent Classification: Lennart; c/o Orionis Biosciences NV, Rijvisschestraat 120, A61K 38/00 (2006.01) C07K 14/555 (2006.01) Zwijnaarde, B-9052 (BE). TAVERNIER, Jan; c/o Orionis A61K 38/21 (2006.01) C12N 15/09 (2006.01) Biosciences NV, Rijvisschestraat 120, Zwijnaarde, B-9052 C07K 14/52 (2006.01) (BE). (21) International Application Number: (74) Agent: ALTIERI, Stephen, L. et al; Morgan, Lewis & PCT/US2018/016857 Bockius LLP, 1111 Pennsylvania Avenue, NW, Washing ton, D.C. 20004 (US). (22) International Filing Date: 05 February 2018 (05.02.2018) (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (25) Filing Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, (26) Publication Language: English CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, (30) Priority Data: HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, 62/454,992 06 February 2017 (06.02.2017) US KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (71) Applicants: ORIONIS BIOSCIENCES, INC. [US/US]; MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 275 Grove Street, Newton, MA 02466 (US).
    [Show full text]
  • Affinity Chromatography (AC)
    Affinity Chromatography (AC) 1 Affinity Chromatography (AC) • Principles of AC • Main stages in Chromatography • How to prepare Affinity gel - Ligand Immobilization - Spacer arms – Coupling methods – Coupling tips • Types of AC • Elution Conditions • Binding equilibrium, competitive elution, kinetics • Industrial Examples: Protein A/G for Therapeutic proteins • Future Considerations 2 What is affinity chromatography? Affinity chromatography is a technique of liquid chromatography which separates molecules through biospecific interactions. The molecule to be purified is specifically and reversibly adsorbed to a specific ligand The ligand is immobilized to an insoluble support (“matrix”): resin, “chip”, Elisa plate, membrane, Western, IP (immuneprecipitation), etc Introduction of a “spacer arm” between the ligand and the matrix to improve binding Elution of the bound target molecule a) non specific or b) specific elution method 3 What is it used for? Monoclonal and polyclonal antibodies Fusion proteins Enzymes DNA-binding proteins . ANY protein where we have a binding partner!! 4 Designing and preparing an affinity gel Choosing the matrix Designing the ligand - Spacer arms Coupling methods 5 Ligand Immobilization Ligand + Activating agent + Matrix Activated Immobilised matrix ligand 6 Designing the ligand Essential ligand properties: interacts selectively and reversibly with the target Carries groups which can couple it to the matrix without losing its binding activity Available in a pure form 7 Steric considerations & spacer arms Small ligand (<1,000) Risk of steric interference with binding between matrix and target molecule Often need spacer arm but watch out for Spacer arm adsorption to the spacer! 8 Design of spacer arms Alkyl chain Real risk of unspecific interactions between H H spacer and target molecule O O Hydrophilic chain Risk of unspecific interactions greatly O H reduced No coupling reaction will use 100% of the available binding sites.
    [Show full text]
  • EURL ECVAM Recommendation on Non-Animal-Derived Antibodies
    EURL ECVAM Recommendation on Non-Animal-Derived Antibodies EUR 30185 EN Joint Research Centre This publication is a Science for Policy report by the Joint Research Centre (JRC), the European Commission’s science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication. For information on the methodology and quality underlying the data used in this publication for which the source is neither Eurostat nor other Commission services, users should contact the referenced source. EURL ECVAM Recommendations The aim of a EURL ECVAM Recommendation is to provide the views of the EU Reference Laboratory for alternatives to animal testing (EURL ECVAM) on the scientific validity of alternative test methods, to advise on possible applications and implications, and to suggest follow-up activities to promote alternative methods and address knowledge gaps. During the development of its Recommendation, EURL ECVAM typically mandates the EURL ECVAM Scientific Advisory Committee (ESAC) to carry out an independent scientific peer review which is communicated as an ESAC Opinion and Working Group report. In addition, EURL ECVAM consults with other Commission services, EURL ECVAM’s advisory body for Preliminary Assessment of Regulatory Relevance (PARERE), the EURL ECVAM Stakeholder Forum (ESTAF) and with partner organisations of the International Collaboration on Alternative Test Methods (ICATM). Contact information European Commission, Joint Research Centre (JRC), Chemical Safety and Alternative Methods Unit (F3) Address: via E.
    [Show full text]
  • Generation of Novel Intracellular Binding Reagents Based on the Human Γb-Crystallin Scaffold
    Generation of novel intracellular binding reagents based on the human γB-crystallin scaffold Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) vorgelegt der Naturwissenschaftlichen Fakultät I-Biowissenschaften der Martin-Luther-Universität Halle-Wittenberg Institut für Biochemie und Biotechnologie von Ewa Mirecka geboren am 17. Dezember 1976 in Gdynia, Polen Table of contents Table of contents 1. INTRODUCTION.........................................................................................................1 1.1 Monoclonal antibodies as a biomolecular scaffold..........................................................1 1.2 Binding molecules derived from non-immunoglobulin scaffolds.....................................3 1.2.1 Alternative protein scaffolds – general considerations............................................................ 3 1.2.2 Application of alternative binding molecules ........................................................................... 6 1.3 Affilin – novel binding molecules based on the human γB-crystallin scaffold................... 6 1.3.1 Human γB-crystallin as a molecular scaffold........................................................................... 6 1.3.2 Generation of a human γB-crystallin library and selection of first-generation Affilin molecules ................................................................................................................................ 8 1.4 Selection of binding proteins by phage display ...................................................................
    [Show full text]
  • WO 2017/013231 Al 26 January 2017 (26.01.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2017/013231 Al 26 January 2017 (26.01.2017) P O P C T (51) International Patent Classification: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, C07K 14/705 (2006.01) C07K 16/00 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, PCT/EP20 16/067468 MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (22) International Filing Date: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 2 1 July 20 16 (21 .07.2016) SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of regional protection available): ARIPO (BW, GH, (30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, 62/194,882 2 1 July 2015 (21.07.2015) TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, 62/364,414 20 July 2016 (20.07.2016) TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (72) Inventors; and LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, (71) Applicants : XIANG, Sue D.
    [Show full text]