The Mysterious Origin of the Sweet Apple

Total Page:16

File Type:pdf, Size:1020Kb

The Mysterious Origin of the Sweet Apple The Mysterious Origin of the Sweet Apple On its way to a grocery counter near you, this delicious fruit traversed continents and mastered coevolution Barrie E. Juniper pples! You can find more than a and roses no fewer than fourteen.) vectors and that a female bee can forage Adozen varieties in the fruit section Does it have relations in the wild crab for up to three kilometers. of your local grocery, or spread out in apples of North America such as the Little wonder that there may be, a stall by a farm gate on a back road— garland tree (Malus coronaria) or in throughout the temperate world, per- maybe even in your own yard in au- Europe in the wild crab (Malus sylves- haps 20,000 distinct named apple vari- tumn. You’ll likely know the names tris)? Does it owe its size to some gross eties. There are, by contrast, only two of your favorites: Jonathan, McIntosh, chromosomal change like polyploidi- varieties of commercial banana and just Red Delicious. If you live in Western zation or a splitting or loss of existing one of the kiwifruit. Moreover, with al- Europe the selection might include chromosomes? Was it a chance discov- most no exceptions, every single apple Belle de Boskoop, Cox’s Orange Pippin, ery, like the kiwifruit, from a source pip has the potential to grow into a new Golden Delicious, Holstein or Ribston of nutritionally relatively indifferent apple tree—there are virtually no sterile Pippin. Abundant apples ready for the wild plants? The answer in every case apples. Elite apples from this genetic ka- eating can likewise be found in Eastern above is no, but the truth is perhaps leidoscope may be grafted to preserve Europe and on through Asia to the Chi- even stranger. their exact genetic character, but this is nese border and the Gobi desert. You Remarkably, the parentage of every not essential. Apple trees on their own can grow this delicious fruit, with its single one of the apple varieties list- roots are perfectly viable. On the other very high levels of vitamins and valu- ed above is unknown. Red Delicious hand, very many other commercial fruit able antioxidants, in your own back emerged by chance in an Iowa fence crops, such as navel oranges and com- lot in almost any soil; you can store it row. It was spotted in about 1870 and mercial bananas, are totally sterile and in the cellar throughout the harshest bulked up by the Stark Nursery Com- rely, eternally, for their genetic future of winters, and it will retain its flavor pany. Golden Delicious (no relation and spread, on grafting or some other and value into the early spring. You except that it’s an apple) emerged as form of clonal propagation. may cook it, dry it or ferment it as you a chance seedling, in about 1890, in a choose, but it is one of the very few hedgerow in West Virginia. It gained a The Geological Framework food sources that you can pick, ripe particular claim to fame by being cloned Long ago, probably some time between from the tree, and eat without any into millions of grafted young trees by the end of the Cretaceous and the early preparation, peeling, grinding, hulling the officers of the Marshall Plan, and Tertiary period (about 65 to 50 million or other manipulation. exported, after 1945, to revive the fruit years ago), the ancestors of the apple But what is this valuable and versa- industry of Western Europe. Figure 1. Apples are so ubiquitous that we tile fruit, and where did it come from? It seems that many of our favorite may be tempted to take them for granted. Yet Is it the product, like so many plants, apples have arisen by sheer chance. So their diversity and broad geographic distribu- of the hybridization of numerous par- what is the arithmetic basis of this lot- tion actually pose fascinating scientific ques- ents from distant lands? (Wheat has at tery? The secret to the apple’s origin tions. Why are there perhaps 20,000 varieties least three parents, strawberries two lies in the fact that apple trees cannot of apples but only two commercial varieties normally pollinate themselves. Unlike, of bananas and one of kiwifruit? Is the sweet Barrie E. Juniper is Emeritus Reader in plant say, peaches, which can and do self-pol- apple related to the so-called crabs? Were cur- sciences at the University of Oxford and Fellow linate, predictably producing peaches rently important commercial varieties—Red Emeritus of St. Catherine’s College, Oxford. His virtually identical to the parents, the vi- and Golden Delicious, for example—de- research has included explorations of plant sur- able seeds (or pips) will produce apples, veloped by hybridization or chromosomal changes? For that matter, where in the world faces, including the specialized ones of insect-eating some of which may have value—but carnivorous plants, and the interactions between did the apple come from? The author’s probe people, their animals and the evolution of crop none of which will resemble the par- of these and other mysteries of the apple’s plants. He and his coauthor, David J. Mabberley, ents. Imagine the evolutionary power origins takes us to a remote mountain range recently published The Story of the Apple (Tim- of the multiplicity of potential crosses in central Asia and introduces us to power- ber Press, 2006). Address: University of Oxford, in planted or wild orchards. Then mul- ful evolutionary drivers such as the bear and Oxford, OX2 6JF, U. K. Internet: barrie.juniper@ tiply this potential by the fact that a horse. (Photograph courtesy of Keith Weller/ plants.ox.ac.uk range of bee species may act as pollen USDA Agricultural Research Service.) © 2007 Sigma Xi, The Scientific Research Society. Reproduction 44 American Scientist, Volume 95 with permission only. Contact [email protected]. © 2007 Sigma Xi, The Scientific Research Society. Reproduction www.americanscientist.org 2007 January–February 45 with permission only. Contact [email protected]. UZBEKISTAN KAZAKHSTAN MONGOLIA to emerge as a distinct geological fea- TIAN SHAN ture about 12 million years ago, and it is still lengthening and rising. In places, in TAKLAMAKAN those “heavenly mountains” (that is the DESERT translation), if you stand in one place, you may be 1.5 centimeters higher at FERGANA CHINA Xi’an the end of the year than you were at the VALLEY beginning. The Tian Shan has by now lifted its peaks well above the snow Shanghai line and lies as a great mountain range about 1,600 kilometers miles long and 640 kilometers in depth, running from what is now China in the east to Uz- bekistan in the west. The east-west ori- entation, with about 20 parallel ridges, is important to our story. The vast mass of the Indian Ocean to the south, through the constant Figure 2. Ancestors of the sweet apple probably crossed a land bridge between North America warm monsoons, has kept the region and Asia, settling into central China near what is now the city of Xi’an. A few million years ago, these neo-apples made their way westward into the Tian Shan range. Red lines are trade ice free. The warming influence of routes along which the apple later spread. these monsoons, in due season, can be detected deep into China. Unlike migrated west across the land bridge tral China, roughly in the area of the the continental regions of northern Eu- connecting what is now North America current provinces of Xi’an and Shaanxi, rope and North America, the whole of with Asia. Although the Bering Strait and perhaps in a great corridor of Ter- the Tian Shan and regions to the south is currently a shallow sea with many tiary temperate forest, a recognizable have not, at least in the immediate geo- islands, during at least 12 periods in ancestral apple. logical past, suffered glaciation. Large the immediate geological past, seawater Much earlier, about 40 million years continental areas, as anybody who has was locked in glaciers and ice sheets, ago, the Indian subcontinent, which spent a night in the desert will testify, and the two continents were connected had detached from East Africa, crashed lose heat very rapidly. Thus northern by an ice-free bridge. Plants and ani- into the great northern land mass. Just Europe and North America chilled out mals would have moved, in both di- like something pushing gently on the rapidly along the advance of the ice rections, through “Beringia” to their edge of a carpet, this thrust successively fronts, as, time after time, the glaciers present locations. This little neo-apple drove up the Himalayas, the Pamirs moved deep to the south. would probably have looked more like and the Tian Shan. India is still moving As a result of its “defense” by the a hawthorn (Crataegus) with bunches northward at several centimeters a year, warm Indian Ocean over millions of of long-stalked fruits not much bigger as the mountain peoples of northwest years, the Tian Shan has become a than peas. But by about 10 million to India, Kashmir, Afghanistan and Ta- refuge for the sustained evolution of 12 million years ago there must have jikistan know full well. The Tian Shan, plants and animals. Almost no other existed somewhere in what is now cen- the last of the ripples as it were, began area in the world has remained invio- late for so long. In contrast, most of North America and the British Isles and much of Western Europe were scraped clean by ice little more than 10,000 years ago.
Recommended publications
  • Native Plants of East Central Illinois and Their Preferred Locations”
    OCTOBER 2007 Native Plants at the University of Illinois at Urbana-Champaign Campus: A Sourcebook for Landscape Architects and Contractors James Wescoat and Florrie Wescoat with Yung-Ching Lin Champaign, IL October 2007 Based on “Native Plants of East Central Illinois and their Preferred Locations” An Inventory Prepared by Dr. John Taft, Illinois Natural History Survey, for the UIUC Sustainable Campus Landscape Subcommittee - 1- 1. Native Plants and Plantings on the UIUC Campus This sourcebook was compiled for landscape architects working on projects at the University of Illinois at Urbana-Champaign campus and the greater headwaters area of east central Illinois.1 It is written as a document that can be distributed to persons who may be unfamiliar with the local flora and vegetation, but its detailed species lists and hotlinks should be useful for seasoned Illinois campus designers as well. Landscape architects increasingly seek to incorporate native plants and plantings in campus designs, along with plantings that include adapted and acclimatized species from other regions. The term “native plants” raises a host of fascinating scientific, aesthetic, and practical questions. What plants are native to East Central Illinois? What habitats do they occupy? What communities do they form? What are their ecological relationships, aesthetic characteristics, and practical limitations? As university campuses begin to incorporate increasing numbers of native species and areas of native planting, these questions will become increasingly important. We offer preliminary answers to these questions, and a suite of electronic linkages to databases that provide a wealth of information for addressing more detailed issues. We begin with a brief introduction to the importance of native plants in the campus environment, and the challenges of using them effectively, followed by a description of the database, online resources, and references included below.
    [Show full text]
  • Spatial Distribution and Historical Dynamics of Threatened Conifers of the Dalat Plateau, Vietnam
    SPATIAL DISTRIBUTION AND HISTORICAL DYNAMICS OF THREATENED CONIFERS OF THE DALAT PLATEAU, VIETNAM A thesis Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Master of Arts By TRANG THI THU TRAN Dr. C. Mark Cowell, Thesis Supervisor MAY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the thesis entitled SPATIAL DISTRIBUTION AND HISTORICAL DYNAMICS OF THREATENED CONIFERS OF THE DALAT PLATEAU, VIETNAM Presented by Trang Thi Thu Tran A candidate for the degree of Master of Arts of Geography And hereby certify that, in their opinion, it is worthy of acceptance. Professor C. Mark Cowell Professor Cuizhen (Susan) Wang Professor Mark Morgan ACKNOWLEDGEMENTS This research project would not have been possible without the support of many people. The author wishes to express gratitude to her supervisor, Prof. Dr. Mark Cowell who was abundantly helpful and offered invaluable assistance, support, and guidance. My heartfelt thanks also go to the members of supervisory committees, Assoc. Prof. Dr. Cuizhen (Susan) Wang and Prof. Mark Morgan without their knowledge and assistance this study would not have been successful. I also wish to thank the staff of the Vietnam Initiatives Group, particularly to Prof. Joseph Hobbs, Prof. Jerry Nelson, and Sang S. Kim for their encouragement and support through the duration of my studies. I also extend thanks to the Conservation Leadership Programme (aka BP Conservation Programme) and Rufford Small Grands for their financial support for the field work. Deepest gratitude is also due to Sub-Institute of Ecology Resources and Environmental Studies (SIERES) of the Institute of Tropical Biology (ITB) Vietnam, particularly to Prof.
    [Show full text]
  • Method for Producing Methacrylic Acid And/Or Ester Thereof
    (19) TZZ _T (11) EP 2 894 224 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (43) Date of publication: (51) Int Cl.: 15.07.2015 Bulletin 2015/29 C12P 7/62 (2006.01) C12N 15/09 (2006.01) (21) Application number: 13835104.4 (86) International application number: PCT/JP2013/005359 (22) Date of filing: 10.09.2013 (87) International publication number: WO 2014/038216 (13.03.2014 Gazette 2014/11) (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • SATO, Eiji GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Yokohama-shi PL PT RO RS SE SI SK SM TR Kanagawa 227-8502 (JP) Designated Extension States: • YAMAZAKI, Michiko BA ME Yokohama-shi Kanagawa 227-8502 (JP) (30) Priority: 10.09.2012 JP 2012198840 • NAKAJIMA, Eiji 10.09.2012 JP 2012198841 Yokohama-shi 31.01.2013 JP 2013016947 Kanagawa 227-8502 (JP) 30.07.2013 JP 2013157306 • YU, Fujio 01.08.2013 JP 2013160301 Yokohama-shi 01.08.2013 JP 2013160300 Kanagawa 227-8502 (JP) 20.08.2013 JP 2013170404 • FUJITA, Toshio Yokohama-shi (83) Declaration under Rule 32(1) EPC (expert Kanagawa 227-8502 (JP) solution) • MIZUNASHI, Wataru Yokohama-shi (71) Applicant: Mitsubishi Rayon Co., Ltd. Kanagawa 227-8502 (JP) Tokyo 100-8253 (JP) (74) Representative: Hoffmann Eitle Patent- und Rechtsanwälte PartmbB Arabellastraße 30 81925 München (DE) (54) METHOD FOR PRODUCING METHACRYLIC ACID AND/OR ESTER THEREOF (57) To provide a method for directly and efficiently producing methacrylic acid in a single step from renew- able raw materials and/or biomass arising from the utili- zation of the renewable raw materials.
    [Show full text]
  • Louisiana Certified Habitat Plant List Native Woody Plants (Trees
    Louisiana Certified Habitat Plant List Native Woody Plants (trees, shrubs, woody vines) Common name Scientific name Stewartia Gum, Swamp Black Nyssa biflora Camellia, Silky malacodendron Acacia, Sweet Acacia farnesiana Catalpa Gum, Tupelo Nyssa aquatica Liquidambar Alder, Black/Hazel Alnus rugosa Catalpa, Southern bignonioides Gum, Sweet styriciflua Allspice, Carolina/ Cedar, Eastern Red Juniperus virginiana Sweet Shrub Calycanthus floridus Cedar, Hackberry Celtis laevigata Ashes, Native Fraxinus spp. Atlantic/Southern Chamaecyparis Hawthorn, Native Crataegus spp. White thyoides Hawthorn, Barberry- Ash, Green F. pennsylvanicum Cherry, Black Prunus serotina leaf C. berberifolia Ash, Carolina F. caroliniana Hawthorn, Cherry, Choke Aronia arbutifolia Ash, Pumpkin F. profunda Blueberry C. brachycantha Cherry-laurel Prunus caroliniana Hawthorn, Green C. viridis Ash, White F. americana Chinquapin Castanea pumila Hawthorn, Mayhaw C. aestivalis/opaca Rhododendron Coralbean, Azalea, Pink canescens Eastern/Mamou Erythrina herbacea Hawthorn, Parsley C. marshallii Azalea, Florida Rhododendron Crabapple, Southern Malus angustifolia Hickories, Native Carya spp. Flame austrinum Creeper, Trumpet Campsis radicans Hickory, Black C. texana Anise, Star Illicium floridanum Parthenocissus Anise, Hickory, Bitternut C. cordiformes Creeper, Virginia quinquefolia Yellow/Florida Illicium parviflorum Hickory, Mockernut C. tomentosa Azalea, Florida Rhododendron Crossvine Bignonia capreolata Flame austrinum Hickory, Nutmeg C. myristiciformes Cucumber Tree Magnolia acuminata Rhododendron Hickory, PECAN C. illinoensis Azalea, Pink canescens Cypress, Bald Taxodium distichum Hickory, Pignut C. glabra Rhododendron Cypress, Pond Taxodium ascendens serrulatum, Hickory, Shagbark C. ovata Cyrilla, Swamp/Titi Cyrilla racemiflora viscosum, Hickory, Azalea, White oblongifolium Cyrilla, Little-leaf Cyrilla parvifolia Water/Bitter Pecan C. aquatica Baccharis/ Groundsel Bush Baccharis halimifolia Devil’s Walkingstick Aralia spinosa Hollies, Native Ilex spp. Baccharis, Salt- Osmanthus Holly, American I.
    [Show full text]
  • Osher Lifelong Learning Institute
    USDA-ARS National Plant Germplasm System Conservation of Fruit & Nut Genetic Resources Joseph Postman Plant Pathologist & Curator National Clonal Germplasm Repository Corvallis, Oregon May 2010 Mission: Collect – Preserve Evaluate – Enhance - Distribute World Diversity of Plant Genetic Resources for Improving the Quality and Production of Economic Crops Important to U.S. and World Agriculture Apple Accessions at Geneva Malus angustifolia ( 59 Accessions) Malus sikkimensis ( 14 Accessions) Malus baccata ( 67 Accessions) Malus sp. ( 41 Accessions) Malus bhutanica ( 117 Accessions) Malus spectabilis ( 9 Accessions) Malus brevipes ( 2 Accessions) Malus sylvestris ( 70 Accessions) Malus coronaria ( 98 Accessions) Malus toringo ( 122 Accessions) Malus domestica ( 1,389 Accessions) Malus transitoria ( 63 Accessions) Malus doumeri ( 2 Accessions) Malus trilobata ( 2 Accessions) Malus florentina ( 4 Accessions) Malus tschonoskii ( 3 Accessions) Malus floribunda ( 12 Accessions) Malus x adstringens ( 2 Accessions) Malus fusca ( 147 Accessions) Malus x arnoldiana ( 2 Accessions) Malus halliana ( 15 Accessions) Malus x asiatica ( 20 Accessions) Malus honanensis ( 4 Accessions) Malus x astracanica ( 1 Accessions) Malus hupehensis ( 185 Accessions) Malus x atrosanguinea ( 2 Accessions) Malus hybrid ( 337 Accessions) Malus x dawsoniana ( 2 Accessions) Malus ioensis ( 72 Accessions) Malus x hartwigii ( 5 Accessions) Malus kansuensis ( 45 Accessions) Malus x magdeburgensis ( 2 Accessions) Malus komarovii ( 1 Accessions) Malus x micromalus ( 25 Accessions)
    [Show full text]
  • ARNOLD ARBORETUM BULLETIN POPULAR I~I~'C~~~~A't'ic~I~1
    NEW SERIES VOL. IX N0.77 ARNOLD ARBORETUM HARVARD UNIVERSITY BULLETIN OF POPULAR I~i~’C~~~~A’T’IC~I~1 JAMAICA PLAIN, MASS. MAY 28, 1923 American Crab Apples. Among the small North American trees still imperfectly known to botanists and wood-lovers and scarcely known at all to gardeners are the different species, varieties and hybrids of the Wild Apple. Nine species of these trees are now recognized, with several varieties, and two hybrids and their varieties. They have white or pink fragrant flowers which do not open until the leaves are partly or entirely grown, and green or pale yellow fragrant fruit which hangs on slender stems and, with the exception of that of the species from the northwestern part of the country is depressed-globose, usually from an inch to two and a half inches in diameter and covered with a waxy secretion. All the species spread into thickets and are excel- lent plants for the decoration of wood-borders and glades. Some of the species have only been distinguished in recent years, and although the species and many of the varieties a~°e now growing in the Arbore- tum several of these have not yet flowered; only two or three of these Crab Apples can be found in commercial nurseries. Malus glauceseens, which is named from the pale glaucous color of the under surface of the leaves, is the first of the American species to flower here and has been blooming for more than a week. It is a shrub usually rather than a tree, not more than fifteen feet high, with stems four or five inches in diameter.
    [Show full text]
  • CHLOROPLAST Matk GENE PHYLOGENY of SOME IMPORTANT SPECIES of PLANTS
    AKDENİZ ÜNİVERSİTESİ ZİRAAT FAKÜLTESİ DERGİSİ, 2005, 18(2), 157-162 CHLOROPLAST matK GENE PHYLOGENY OF SOME IMPORTANT SPECIES OF PLANTS Ayşe Gül İNCE1 Mehmet KARACA2 A. Naci ONUS1 Mehmet BİLGEN2 1Akdeniz University Faculty of Agriculture Department of Horticulture, 07059 Antalya, Turkey 2Akdeniz University Faculty of Agriculture Department of Field Crops, 07059 Antalya, Turkey Correspondence addressed E-mail: [email protected] Abstract In this study using the chloroplast matK DNA sequence, a chloroplast-encoded locus that has been shown to be much more variable than many other genes, from one hundred and forty two plant species belong to the families of 26 plants we conducted a study to contribute to the understanding of major evolutionary relationships among the studied plant orders, families genus and species (clades) and discussed the utilization of matK for molecular phylogeny. Determined genetic relationship between the species or genera is very valuable for genetic improvement studies. The chloroplast matK gene sequences ranging from 730 to 1545 nucleotides were downloaded from the GenBank database. These DNA sequences were aligned using Clustal W program. We employed the maximum parsimony method for phylogenetic reconstruction using PAUP* program. Trees resulting from the parsimony analyses were similar to those generated earlier using single or multiple gene analyses, but our analyses resulted in strict consensus tree providing much better resolution of relationships among major clades. We found that gymnosperms (Pinus thunbergii, Pinus attenuata and Ginko biloba) were different from the monocotyledons and dicotyledons. We showed that Cynodon dactylon, Panicum capilare, Zea mays and Saccharum officiarum (all are in the C4 metabolism) were improved from a common ancestors while the other cereals Triticum Avena, Hordeum, Oryza and Phalaris were evolved from another or similar ancestors.
    [Show full text]
  • Guide Alaska Trees
    x5 Aá24ftL GUIDE TO ALASKA TREES %r\ UNITED STATES DEPARTMENT OF AGRICULTURE FOREST SERVICE Agriculture Handbook No. 472 GUIDE TO ALASKA TREES by Leslie A. Viereck, Principal Plant Ecologist Institute of Northern Forestry Pacific Northwest Forest and Range Experiment Station ÜSDA Forest Service, Fairbanks, Alaska and Elbert L. Little, Jr., Chief Dendrologist Timber Management Research USD A Forest Service, Washington, D.C. Agriculture Handbook No. 472 Supersedes Agriculture Handbook No. 5 Pocket Guide to Alaska Trees United States Department of Agriculture Forest Service Washington, D.C. December 1974 VIERECK, LESLIE A., and LITTLE, ELBERT L., JR. 1974. Guide to Alaska trees. U.S. Dep. Agrie., Agrie. Handb. 472, 98 p. Alaska's native trees, 32 species, are described in nontechnical terms and illustrated by drawings for identification. Six species of shrubs rarely reaching tree size are mentioned briefly. There are notes on occurrence and uses, also small maps showing distribution within the State. Keys are provided for both summer and winter, and the sum- mary of the vegetation has a map. This new Guide supersedes *Tocket Guide to Alaska Trees'' (1950) and is condensed and slightly revised from ''Alaska Trees and Shrubs" (1972) by the same authors. OXFORD: 174 (798). KEY WORDS: trees (Alaska) ; Alaska (trees). Library of Congress Catalog Card Number î 74—600104 Cover: Sitka Spruce (Picea sitchensis)., the State tree and largest in Alaska, also one of the most valuable. For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402—Price $1.35 Stock Number 0100-03308 11 CONTENTS Page List of species iii Introduction 1 Studies of Alaska trees 2 Plan 2 Acknowledgments [ 3 Statistical summary .
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • A Small Molecule but Important for Salt Stress Tolerance in Plants
    Review Melatonin: A Small Molecule but Important for Salt Stress Tolerance in Plants Haoshuang Zhan 1,†, Xiaojun Nie 1,†, Ting Zhang 1, Shuang Li 1, Xiaoyu Wang 1, Xianghong Du 1, Wei Tong 1,* and Weining Song 1,2,* 1 State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, China; [email protected] (H.Z.); [email protected] (X.N.); [email protected] (T.Z.); [email protected] (S.L.); [email protected] (W.X.); [email protected] (X.D.) 2 ICARDA-NWSUAF Joint Research Center for Agriculture Research in Arid Areas, Yangling 712100, China * Corresponding authors: [email protected] (W.T.); [email protected] (W.S.); Tel.: +86-29-8708-2984 (W.S.); Fax: +86-29-8708-2203 (W.S.) † These authors contributed equally to this work. Received: 1 January 2019; Accepted: 4 February 2019; Published: 7 February 2019 Abstract: Salt stress is one of the most serious limiting factors in worldwide agricultural production, resulting in huge annual yield loss. Since 1995, melatonin (N-acetyl-5-methoxytryptamine)—an ancient multi-functional molecule in eukaryotes and prokaryotes—has been extensively validated as a regulator of plant growth and development, as well as various stress responses, especially its crucial role in plant salt tolerance. Salt stress and exogenous melatonin lead to an increase in endogenous melatonin levels, partly via the phyto-melatonin receptor CAND2/PMTR1. Melatonin plays important roles, as a free radical scavenger and antioxidant, in the improvement of antioxidant systems under salt stress.
    [Show full text]
  • Malussylvestris Family: Rosaceae Apple
    Malus sylvestris Family: Rosaceae Apple Apple (Malus spp.) consists of 30+ species that occur on both sides of the Atlantic in northern temperate zones. Its wood can be confused with pear (Pyrus spp.) and other “fruitwoods” in the rose family (Rosaceae). Malus is the classical Latin name for apple. Apple hybridizes with North American crab apples. Malus angustifolia-American crab apple, buncombe crab apple, crab apple, crabtree, narrowleaf crab, narrowleaf crab apple, southern crab, southern crab apple, wild crab, wild crab apple Malus coronaria-Alabama crab, Allegheny crab, American crab, American crab apple, Biltmore crab apple, Buncombe crab, crab, crab apple, Dawson crab, Dunbar crab, fragrant crab, garland tree, lanceleaf crab apple, Missouri crab, sweet crab apple, sweet-scented crab, sweet wild crab, wild crab, wild sweet crab Malus fusca-crab apple, Oregon crab, Oregon crab apple, Pacific crab apple, western crab apple, wild crab apple Malus ioensis-Bechel crab, crab apple, Iowa crab, Iowa crab apple, prairie crab, prairie crab apple, wild crab, wild crab apple Malus sylvestris-apple, common apple, wild apple. Distribution Apple is a cultivated fruit tree, persistent, escaped and naturalized locally across southern Canada, in eastern continental United States, and from Washington south to California. Native to Europe and west Asia. Apple grows wild in the southern part of Great Britain and Scandinavia and is found throughout Europe and southwestern Asia. It is planted in most temperate climates The Tree The tree rarely reaches 30 ft (9 m), with a small crooked bole to 1 ft (0.3 m) in diameter. The Wood General Apple wood has a reddish gray heartwood and light reddish sapwood (12 to 30 rings of sapwood).
    [Show full text]
  • Planting Guide Big O Wild Crabapple
    PLANTING GUIDE ‘BIG O’ WILD CRABAPPLE Malus coronaria (L.) USDA-NRCS Jimmy Carter PMC Americus, Georgia SPECIES: Malus coronaria (L.) P. Mill PLANT SYMBOL: MAC05 RELEASE NAME: ‘Big O’ GENERAL INFORMATION: Wild crabapple is a native tree which produces attractive blooms in spring and valuable fruit for wildlife in the fall. The Jimmy Carter Plant Materials Center has released an outstanding line of wild crabapple called Big O. DESCRIPTION: ‘Big O’ is a small deciduous tree that grows 20-30 feet tall from a slender trunk. The leaves are elliptic lanceolate shaped with a wavy margin. The blossom petals are pink/white fading to whitish. The normal blooming period in Americus is mid-late March. The fruit is a roundish green pome maturing to greenish yellow. Fruits normally begin maturing in November obtaining a size approximately 1 ½ inches in diameter. Big O fruit exhibits several levels of maturity into the winter season; some fruit will be firm while others are drying or rotting. USE: The primary use of Big O is wildlife habitat enhancement. It provides food and cover as a general wildlife plant but is especially suited to providing abundant crops of fruit for deer consumption. ADAPTATION: Big O shows potential adaptation further north but is primarily adapted to the piedmont and coastal plain of the southeastern United States. ENVIRONMENTAL CONCERNS: Big O is a native crabapple from Floyd County, Georgia and has shown no weedy or invasive characteristics. Big O was rated as OK to Release in the Environmental Evaluation of Plant Materials Releases Form. ESTABLISHMENT: The first step in establishment of Big O is fruit collection.
    [Show full text]