Exemplary Investigations of Squirrels and Shrews As Relevant Virus

Total Page:16

File Type:pdf, Size:1020Kb

Exemplary Investigations of Squirrels and Shrews As Relevant Virus Inaugural-Dissertation zur Erlangung der Doktorwürde der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München Exemplary investigations of squirrels and shrews as relevant virus reservoir hosts von Vanessa Schulze aus Essen München 2020 Aus dem Veterinärwissenschaftlichen Department der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München Lehrstuhl für Virologie Arbeit angefertigt unter der Leitung von Univ.-Prof. Dr. Gerd Sutter Angefertigt am Friedrich-Loeffler-Institut Insel Riems, Bundesforschungsinstitut für Tiergesundheit, Greifswald-Insel Riems Mentor: Prof. Dr. Martin Beer Gedruckt mit Genehmigung der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München Dekan: Univ.-Prof. Dr. Reinhard K. Straubinger, Ph.D. Berichterstatter: Univ.-Prof. Dr. Gerd Sutter Korreferent: Priv.-Doz. Dr. Kristina Schauer Tag der Promotion: 25. Juli 2020 Die vorliegende Arbeit wurde gemäß § 6 Abs. 2 der Promotionsordnung für die Tierärztliche Fakultät der Ludwig-Maximilians-Universität München in kumulativer Form verfasst. Folgende wissenschaftliche Arbeiten sind in dieser Dissertationsschrift enthalten: Schulze V, Lurz PWW, Ferrari N, Romeo C, Steele MA, Marino S, Mazzamuto MV, Calvignac-Spencer S, Schlottau K, Beer M, Ulrich RG, Ehlers B „Search for borna-, polyoma-, and herpesviruses in squirrels of the family Sciuridae”, erschienen in Virology Journal 2020, online verfügbar unter doi: 10.1186/s12985-020-01310-4. Schulze V*, Große R*, Fürstenau J, Forth LF, Ebinger A, Richter MT, Tappe D, Mertsch T, Klose K, Schlottau K, Hoffmann B, Höper D, Mundhenk L, Ulrich RG, Beer M, Müller KE, Rubbenstroth D „Borna disease outbreak with high mortality in an alpaca herd in a previously unreported endemic area”, erschienen in Transboundary and Emerging Diseases 2020, online verfügbar unter doi: 10.1111/tbed.13556. Weitere Arbeiten, die nicht in der Dissertationsschrift enthalten sind: Rasche A, Lehmann F, König A, Goldmann N, Corman VM, Moreira-Soto A, Geipel A, van Riel D, Vakulenko YA, Sander AL, Niekamp H, Kepper, R, Schlegel M, Akoua- Koffi C, Souza BFCD, Sahr F, Olayemi A, Schulze V, Petraityte-Burneikiene R, Kazaks A, Lowjaga KAAT, Geyer J, Kuiken T, Drosten C, Lukashev AN, Fichet- Calvet E, Ulrich RG, Glebe D, Drexler JF "Highly diversified shrew hepatitis B viruses corroborate ancient origins and divergent infection patterns of mammalian hepadnaviruses“, erschienen in Proceedings of the National Academy of Sciences of the United States of America 2019, online verfügbar unter doi: 10.1073/pnas.1908072116. Contents 1 Introduction ........................................................................................................ 1 2 Literature review ................................................................................................ 5 2.1. Rodents and other small mammals and their role as reservoirs .................... 7 2.2. Current knowledge on the virus diversity in rodents and other small mammals ............................................................................................................... 10 2.3. Workflows for the identification and genetic characterization of viruses ...... 10 2.3.1. Initiation................................................................................................. 10 2.3.2. General workflows ................................................................................ 11 2.3.3. Sampling and sample preparation ........................................................ 13 2.3.4. Nucleic acid extraction .......................................................................... 13 2.3.5. Molecular methods for initial detection of viruses .................................. 14 2.3.6. Determination of a complete viral genome ............................................ 14 2.4. Orthobornaviruses and their reservoirs ....................................................... 15 2.5. (Non-zoonotic) polyoma- and herpesviruses ............................................... 20 2.5.1. Polyomaviruses ..................................................................................... 20 2.5.2. Herpesviruses ....................................................................................... 22 2.6. Virus-host evolution ..................................................................................... 25 3 Study objectives............................................................................................... 27 3.1. Searching for squirrels as reservoir of the VSBV-1 and for novel polyoma- and herpesviruses in squirrels ............................................................................... 29 3.2. Characterization of the interactions between reservoir host and (accidental) dead-end hosts during an exemplary BoDV-1 outbreak ........................................ 29 4 Results .............................................................................................................. 31 4.1. Publication 1: Search for borna-, polyoma-, and herpesviruses in squirrels of the family Sciuridae ............................................................................................... 35 4.2. Publication 2: Borna disease outbreak with high mortality in an alpaca herd in a previously unreported endemic area in Germany ............................................... 59 5 Discussion ........................................................................................................ 77 5.1. Squirrels as hosts of the Mammalian orthobornavirus 2 .............................. 79 5.2. Novel polyomaviruses in squirrels ............................................................... 80 5.3. Novel herpesviruses in squirrels .................................................................. 83 5.4. Co-infections in squirrels ............................................................................. 84 5.5. The reservoir of BoDV-1 .............................................................................. 85 6 Summary ........................................................................................................... 87 7 Zusammenfassung .......................................................................................... 91 8 References ........................................................................................................ 95 9 Supplement .................................................................................................... 109 9.1. Table S1: Overview about recently discovered viruses associated with rodents and shrews. ............................................................................................ 111 9.2. List of abbreviations ................................................................................... 135 9.3. List of figures ............................................................................................. 139 9.4. List of tables .............................................................................................. 139 10 Acknowledgement ......................................................................................... 141 1 Introduction Chapter 1: Introduction 1 2 1 Introduction 1 Introduction Rodentia is the most numerous and most diversified order of mammals, representing about 43 % of the total number of mammalian species. They are distributed almost worldwide and inhabit a broad range of habitats including forest, desert, agricultural land, and urbanized regions (Wilson, Lacher Jr, and Mittermeier 2016). The order Eulipotyphla, includes more than 400 species, comprising hedgehogs and gymnures (family Erinaceidae), solenodons (family Solenodontidae), the desmans, moles, and shrew-like moles (family Talpidae) and true shrews (family Soricidae), of which the most feed almost exclusively on insects. Equally to rodents they are globally distributed and inhabit all continents, except Antarctica (Wilson and Mittermeier 2018). Due to their close proximity to humans, rodents and insectivores, i.e. shrews, often function as reservoir hosts of numerous zoonotic viruses. They serve as a connection between humans, domestic animals, wildlife and e.g. arthropod vectors (Meerburg, Singleton, and Kijlstra 2009). They can spread viruses either between the respective reservoir hosts or to accidental dead-end hosts. Various molecular methods and workflows have been developed for the identification of novel viruses or virus variants, directly without prior agent cultivation or after virus isolation. The choice of the optimal method depends on the aim of the study, the agents to be detected and their genome organization. Common methods are conventional polymerase chain reactions (PCRs) in different formats (e.g. generic or nested format), quantitative reverse transcription polymerase chain reaction (RT- qPCR) and High-Throughput sequencing (HTS), which can be applied separately or in combination, e.g. in a sophisticated workflow. Even if the implementation of new technologies, like HTS and optimized workflows in combination with classical PCR methods resulted in numerous discoveries of novel viruses in the recent past (Supplement, Table S1), still only a small portion of the whole number of different viruses (so-called ´virome´) in rodents is known (Drewes et al. 2017; Wu et al. 2018). In congruence to this, knowledge about pathogens in squirrels and shrews is also scarce. Therefore, the studies described in this thesis present the characterization of reservoir hosts, exemplary in squirrels and shrews. In addition, results from selected approaches for the
Recommended publications
  • Transcriptomic Profiling of Equine and Viral Genes in Peripheral Blood
    pathogens Article Transcriptomic Profiling of Equine and Viral Genes in Peripheral Blood Mononuclear Cells in Horses during Equine Herpesvirus 1 Infection Lila M. Zarski 1, Patty Sue D. Weber 2, Yao Lee 1 and Gisela Soboll Hussey 1,* 1 Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA; [email protected] (L.M.Z.); [email protected] (Y.L.) 2 Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA; [email protected] * Correspondence: [email protected] Abstract: Equine herpesvirus 1 (EHV-1) affects horses worldwide and causes respiratory dis- ease, abortions, and equine herpesvirus myeloencephalopathy (EHM). Following infection, a cell- associated viremia is established in the peripheral blood mononuclear cells (PBMCs). This viremia is essential for transport of EHV-1 to secondary infection sites where subsequent immunopathol- ogy results in diseases such as abortion or EHM. Because of the central role of PBMCs in EHV-1 pathogenesis, our goal was to establish a gene expression analysis of host and equine herpesvirus genes during EHV-1 viremia using RNA sequencing. When comparing transcriptomes of PBMCs during peak viremia to those prior to EHV-1 infection, we found 51 differentially expressed equine genes (48 upregulated and 3 downregulated). After gene ontology analysis, processes such as the interferon defense response, response to chemokines, the complement protein activation cascade, cell adhesion, and coagulation were overrepresented during viremia. Additionally, transcripts for EHV-1, EHV-2, and EHV-5 were identified in pre- and post-EHV-1-infection samples. Looking at Citation: Zarski, L.M.; Weber, P.S.D.; micro RNAs (miRNAs), 278 known equine miRNAs and 855 potentially novel equine miRNAs were Lee, Y.; Soboll Hussey, G.
    [Show full text]
  • Changes to Virus Taxonomy 2004
    Arch Virol (2005) 150: 189–198 DOI 10.1007/s00705-004-0429-1 Changes to virus taxonomy 2004 M. A. Mayo (ICTV Secretary) Scottish Crop Research Institute, Invergowrie, Dundee, U.K. Received July 30, 2004; accepted September 25, 2004 Published online November 10, 2004 c Springer-Verlag 2004 This note presents a compilation of recent changes to virus taxonomy decided by voting by the ICTV membership following recommendations from the ICTV Executive Committee. The changes are presented in the Table as decisions promoted by the Subcommittees of the EC and are grouped according to the major hosts of the viruses involved. These new taxa will be presented in more detail in the 8th ICTV Report scheduled to be published near the end of 2004 (Fauquet et al., 2004). Fauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U., and Ball, L.A. (eds) (2004). Virus Taxonomy, VIIIth Report of the ICTV. Elsevier/Academic Press, London, pp. 1258. Recent changes to virus taxonomy Viruses of vertebrates Family Arenaviridae • Designate Cupixi virus as a species in the genus Arenavirus • Designate Bear Canyon virus as a species in the genus Arenavirus • Designate Allpahuayo virus as a species in the genus Arenavirus Family Birnaviridae • Assign Blotched snakehead virus as an unassigned species in family Birnaviridae Family Circoviridae • Create a new genus (Anellovirus) with Torque teno virus as type species Family Coronaviridae • Recognize a new species Severe acute respiratory syndrome coronavirus in the genus Coro- navirus, family Coronaviridae, order Nidovirales
    [Show full text]
  • Nucleotide Amino Acid Size (Nt) #Orfs Marnavirus Heterosigma Akashiwo Heterosigma Akashiwo RNA Heterosigma Lang Et Al
    Supplementary Table 1: Summary of information for all viruses falling within the seven Marnaviridae genera in our analyses. Accession Genome Genus Species Virus name Strain Abbreviation Source Country Reference Nucleotide Amino acid Size (nt) #ORFs Marnavirus Heterosigma akashiwo Heterosigma akashiwo RNA Heterosigma Lang et al. , 2004; HaRNAV AY337486 AAP97137 8587 One Canada RNA virus 1 virus akashiwo Tai et al. , 2003 Marine single- ASG92540 Moniruzzaman et Classification pending Q sR OV 020 KY286100 9290 Two celled USA ASG92541 al ., 2017 eukaryotes Marine single- Moniruzzaman et Classification pending Q sR OV 041 KY286101 ASG92542 9328 One celled USA al ., 2017 eukaryotes APG78557 Classification pending Wenzhou picorna-like virus 13 WZSBei69459 KX884360 9458 One Bivalve China Shi et al ., 2016 APG78557 Classification pending Changjiang picorna-like virus 2 CJLX30436 KX884547 APG79001 7171 One Crayfish China Shi et al ., 2016 Beihai picorna-like virus 57 BHHQ57630 KX883356 APG76773 8518 One Tunicate China Shi et al ., 2016 Classification pending Beihai picorna-like virus 57 BHJP51916 KX883380 APG76812 8518 One Tunicate China Shi et al ., 2016 Marine single- ASG92530 Moniruzzaman et Classification pending N OV 137 KY130494 7746 Two celled USA ASG92531 al ., 2017 eukaryotes Hubei picorna-like virus 7 WHSF7327 KX884284 APG78434 9614 One Pill worm China Shi et al ., 2016 Classification pending Hubei picorna-like virus 7 WHCC111241 KX884268 APG78407 7945 One Insect China Shi et al ., 2016 Sanxia atyid shrimp virus 2 WHCCII13331 KX884278 APG78424 10445 One Insect China Shi et al ., 2016 Classification pending Freshwater atyid Sanxia atyid shrimp virus 2 SXXX37884 KX883708 APG77465 10400 One China Shi et al ., 2016 shrimp Labyrnavirus Aurantiochytrium single Aurantiochytrium single stranded BAE47143 Aurantiochytriu AuRNAV AB193726 9035 Three4 Japan Takao et al.
    [Show full text]
  • Molecular Phylogeny and Biogeography of Oriental Voles: Genus Eothenomys (Muridae, Mammalia)
    MOLECULAR PHYLOGENETICS AND EVOLUTION Molecular Phylogenetics and Evolution 33 (2004) 349–362 www.elsevier.com/locate/ympev Molecular phylogeny and biogeography of Oriental voles: genus Eothenomys (Muridae, Mammalia) Jing Luoa,1, Dongming Yanga, Hitoshi Suzukic, Yingxiang Wangd, Wei-Jen Chene, Kevin L. Campbellf, Ya-ping Zhanga,b,* a Laboratory of Molecular Biology of Domestic Animals, and Cellular and Molecular Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China b Laboratory of Conservation and Utilization of Bio-resource, Yunnan University, Kunming 650091, China c Laboratory of Ecology and Genetics, Graduate School of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan d Mammalogy Division, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China e Department of Biology, University of Konstanz, D-78457, Konstanz, Germany f Department of Zoology, University of Manitoba, Winnipeg, Man., Canada R3T 2N2 Received 7 December 2003; revised 21 May 2004 Available online 29 July 2004 Abstract Oriental voles of the genus Eothenomys are predominantly distributed along the Southeastern shoulder of the Qinghai-Tibetan Plateau. Based on phylogenetic analyses of the mitochondrial cytochrome b gene (1143bp) obtained from 23 specimens (eight spe- cies) of Oriental voles collected from this area, together with nucleotide sequences from six specimens (two species) of Japanese red- backed voles (Eothenomys andersoni and Eothenomys smithii) and five species of the closely related genus Clethrionomys, we revised the systematic status of Eothenomys. We also tested if vicariance could explain the observed high species diversity in this area by correlating estimated divergence times to species distribution patterns and corresponding paleo-geographic events.
    [Show full text]
  • Development of In-House Taqman Qpcr Assay to Detect Equine Herpesvirus-2 in Al-Qadisiyah City ﻟﺛﺎﻧﻲ ا ﻓﺎﯾرو
    Iraqi Journal of Veterinary Sciences, Vol. 34, No. 2, 2020 (365-371) Development of in-house Taqman qPCR assay to detect equine herpesvirus-2 in Al-Qadisiyah city M.H. Al-Saadi Department of Internal and Preventive Medicine, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Qadisiyah, Iraq, Email: [email protected] (Received September 6, 2019; Accepted October 1, 2019; Available online July 23, 2020) Abstract EHV-2 is distributed in horses globally. It is clustered within gamma-herpesvirus subfamily and percavirus genus. EHV-2 infection has two phases: latent and lytic. In the later, EHV-2 mainly associated with respiratory and genital symptoms. However, in the quiescent phase of infection, EHV-2 stay dormant in the host till viral reactivation. Our previous study has showed that EHV-2 can be harboured by equine tendons, suggesting that leukocytes possibly carrying EHV-2 for the systemic dissemination. So far, numerous PCR protocols have been performed targeting the gB gene. However, this gene is heterogenic. Therefore, there is a need to develop a quantitative diagnostic approach to detect the quiescent EHV-2 strains. To do this, Taqman qPCR assay was developed to quantify the virus. This was performed by targeting a highly conserved gene known as DNA polymerase (DPOL) gene using constructed plasmid as a standard curve calibrator. The obtained results showed an infection frequency of 33% in which the EHV-2 load reached 6647 copies/100 ng DNA whereas the minimum load revealed as 2 copies/100 ng DNA. The median quantification was found as 141 copies/ 100 ng DNA.
    [Show full text]
  • Shared Ancestry of Herpes Simplex Virus 1 Strain Patton with Recent Clinical Isolates from Asia and with Strain KOS63
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Virology Manuscript Author . Author manuscript; Manuscript Author available in PMC 2018 December 01. Published in final edited form as: Virology. 2017 December ; 512: 124–131. doi:10.1016/j.virol.2017.09.016. Shared ancestry of herpes simplex virus 1 strain Patton with recent clinical isolates from Asia and with strain KOS63 Aldo Pourcheta, Richard Copinb, Matthew C. Mulveyc, Bo Shopsina,b, Ian Mohra, and Angus C. Wilsona,# aDepartment of Microbiology, New York University School of Medicine, New York, New York, USA bDepartment of Medicine, New York University School of Medicine, New York, New York, USA cBeneVir Biopharm, Inc., Gaithersburg, Maryland, USA Abstract Herpes simplex virus 1 (HSV-1) is a widespread pathogen that persists for life, replicating in surface tissues and establishing latency in peripheral ganglia. Increasingly, molecular studies of latency use cultured neuron models developed using recombinant viruses such as HSV-1 GFP- US11, a derivative of strain Patton expressing green fluorescent protein (GFP) fused to the viral US11 protein. Visible fluorescence follows viral DNA replication, providing a real time indicator of productive infection and reactivation. Patton was isolated in Houston, Texas, prior to 1973, and distributed to many laboratories. Although used extensively, the genomic structure and phylogenetic relationship to other strains is poorly known. We report that wild type Patton and the GFP-US11 recombinant contain the full complement of HSV-1 genes and differ within the unique regions at only eight nucleotides, changing only two amino acids. Although isolated in North America, Patton is most closely related to Asian viruses, including KOS63.
    [Show full text]
  • Some Chinese Vertebrates
    LIBRARY UWVESilTY OF CALIFORNIA DAVIS flDemoirs of the flBuseum of Comparative Zoology? \ i II \ i; V \ i; ii COLLEG K. VOL. XL. No. i. SOME CHINESE VERTEBRATES. INTRODUCTION . BY SAMUEL HENSHAW. PISCES Bv SAMUEL GARM.AN. AMPHIBIA AND REPT1LIA BY THOMAS HARBOUR. AM . BY JOHN E. THAYER AND OUTRAM BANGS. MAMMALIA BY GLOVER M. ALLEN. WITH SIX PLATi.s. CAMBRIDGE, U.S.A.: priuteo for tbe Aueeum. AUGUST, 1912. ADemolrs of tbe flDuseum of Comparative Zoology AT HARVARD COLLEGE. VOL. XL. No. 4. SOME CHINESE VERTEBEATES. INTRODUCTION . BY SAMUEL HENSHAW. PISCES .... BY SAMUEL GARMAN. AMPHIBIA AND REPTILIA BY THOMAS BARBOUR. AVES .... BY JOHN E. THAYER AND OUTRAM BANGS. MAMMALIA BY GLOVER M. ALLEN. WITH SIX PLATES. CAMBRIDGE, U.S.A.: prtnteo for tbe flDuseum. AUGUST, 1912. SOME CHINESE VERTEBRATES. CONTENTS. PAO INTRODUCTION. BY SAMUEL HENSHAW 107 PISCES. BY SAMUEL CARMAN .111 AMPHIBIA AND REPTILIA. BY THOMAS BARBOUK .... .125 AVES. BY JOHN E. THAYER AND OUTRAM BANGS ...... 137 201 MAMMALIA. BY GLOVER M. ALLEN . INTRODUCTION. BY SAMUEL HENSHAW. THE collections described in the following pages were made in the Chinese provinces of Hupeh and Szechwan during the years 1907 and 1908. With hardly an exception they represent the work of Mr. Walter R. Zappey while he was attached to the expedition sent out by the Arnold Arboretum, under the direc- tion of Mr. E. H. Wilson, the well-known botanical collector. Mr. John E. Thayer, recognizing the need of zoological work in lower China, secured the consent of Prof. C. S. Sargent, the Director of the Arnold Arboretum, for a trained collector to accompany Mr.
    [Show full text]
  • Porcine Kobuvirus
    PORCINE KOBUVIRUS Prepared for the Swine Health Information Center By the Center for Food Security and Public Health, College of Veterinary Medicine, Iowa State University September 2015 SUMMARY Etiology • Porcine kobuvirus (PKoV) is a small, non-enveloped RNA virus in the family Picornaviridae. • There are three distinct clusters within the genus Kobuvirus: Aichivirus A (AiV-A) includes human AiV-1, canine KoV-1, and murine KoV-1. Aichivirus B (AiV-B) includes bovine KoV-1 and sheep KoV-1. Aichivirus C (AiV-C) includes porcine KoV-1 (PKoV/AiV-C).1 Cleaning and Disinfection • AiV-1 is readily inactivated at 56ºC after 20 minutes. • There is no published information about the susceptibility of PKoV/AiV-C to disinfectants. Kobuviruses (KoVs) are potentially susceptible to disinfection with acids like acetic acid, aldehydes like glutaraldehyde, alkalis like sodium hydroxide, and oxidizing agents like Virkon- S®11. Epidemiology • Kobuviruses infect many different species. The AiV-C cluster contains swine viruses exclusively. • PKoV/AiV-C has been isolated from swine herds in China, Thailand, Japan, South Korea, Italy, Hungary, Czech Republic, the United States, the Netherlands, Kenya, Uganda, and Brazil. • Prevalence in domestic pigs ranges from 13–99%. One study of pigs in the United States showed that 21.7% of healthy and 21.9% of diarrheic samples were PKoV/AiV-C-positive. Transmission • Transmission is thought to be fecal-oral. • Wild boars might be a source of infection for domestic swine. Infection in Swine/Pathogenesis • PKoV/AiV-C has been implicated as the cause of an outbreak of diarrhea, dehydration, and vomiting in Chinese piglets.
    [Show full text]
  • Genus/Species Skull Ht Lt Wt Stage Range Abalosia U.Pliocene S America Abelmoschomys U.Miocene E USA A
    Genus/Species Skull Ht Lt Wt Stage Range Abalosia U.Pliocene S America Abelmoschomys U.Miocene E USA A. simpsoni U.Miocene Florida(US) Abra see Ochotona Abrana see Ochotona Abrocoma U.Miocene-Recent Peru A. oblativa 60 cm? U.Holocene Peru Abromys see Perognathus Abrosomys L.Eocene Asia Abrothrix U.Pleistocene-Recent Argentina A. illuteus living Mouse Lujanian-Recent Tucuman(ARG) Abudhabia U.Miocene Asia Acanthion see Hystrix A. brachyura see Hystrix brachyura Acanthomys see Acomys or Tokudaia or Rattus Acarechimys L-M.Miocene Argentina A. minutissimus Miocene Argentina Acaremys U.Oligocene-L.Miocene Argentina A. cf. Murinus Colhuehuapian Chubut(ARG) A. karaikensis Miocene? Argentina A. messor Miocene? Argentina A. minutissimus see Acarechimys minutissimus Argentina A. minutus Miocene? Argentina A. murinus Miocene? Argentina A. sp. L.Miocene Argentina A. tricarinatus Miocene? Argentina Acodon see Akodon A. angustidens see Akodon angustidens Pleistocene Brazil A. clivigenis see Akodon clivigenis Pleistocene Brazil A. internus see Akodon internus Pleistocene Argentina Acomys L.Pliocene-Recent Africa,Europe,W Asia,Crete A. cahirinus living Spiny Mouse U.Pleistocene-Recent Israel A. gaudryi U.Miocene? Greece Aconaemys see Pithanotomys A. fuscus Pliocene-Recent Argentina A. f. fossilis see Aconaemys fuscus Pliocene Argentina Acondemys see Pithanotomys Acritoparamys U.Paleocene-M.Eocene W USA,Asia A. atavus see Paramys atavus A. atwateri Wasatchian W USA A. cf. Francesi Clarkforkian Wyoming(US) A. francesi(francesci) Wasatchian-Bridgerian Wyoming(US) A. wyomingensis Bridgerian Wyoming(US) Acrorhizomys see Clethrionomys Actenomys L.Pliocene-L.Pleistocene Argentina A. maximus Pliocene Argentina Adelomyarion U.Oligocene France A. vireti U.Oligocene France Adelomys U.Eocene France A.
    [Show full text]
  • Viral Diversity in Tree Species
    Universidade de Brasília Instituto de Ciências Biológicas Departamento de Fitopatologia Programa de Pós-Graduação em Biologia Microbiana Doctoral Thesis Viral diversity in tree species FLÁVIA MILENE BARROS NERY Brasília - DF, 2020 FLÁVIA MILENE BARROS NERY Viral diversity in tree species Thesis presented to the University of Brasília as a partial requirement for obtaining the title of Doctor in Microbiology by the Post - Graduate Program in Microbiology. Advisor Dra. Rita de Cássia Pereira Carvalho Co-advisor Dr. Fernando Lucas Melo BRASÍLIA, DF - BRAZIL FICHA CATALOGRÁFICA NERY, F.M.B Viral diversity in tree species Flávia Milene Barros Nery Brasília, 2025 Pages number: 126 Doctoral Thesis - Programa de Pós-Graduação em Biologia Microbiana, Universidade de Brasília, DF. I - Virus, tree species, metagenomics, High-throughput sequencing II - Universidade de Brasília, PPBM/ IB III - Viral diversity in tree species A minha mãe Ruth Ao meu noivo Neil Dedico Agradecimentos A Deus, gratidão por tudo e por ter me dado uma família e amigos que me amam e me apoiam em todas as minhas escolhas. Minha mãe Ruth e meu noivo Neil por todo o apoio e cuidado durante os momentos mais difíceis que enfrentei durante minha jornada. Aos meus irmãos André, Diego e meu sobrinho Bruno Kawai, gratidão. Aos meus amigos de longa data Rafaelle, Evanessa, Chênia, Tati, Leo, Suzi, Camilets, Ricardito, Jorgito e Diego, saudade da nossa amizade e dos bons tempos. Amo vocês com todo o meu coração! Minha orientadora e grande amiga Profa Rita de Cássia Pereira Carvalho, a quem escolhi e fui escolhida para amar e fazer parte da família.
    [Show full text]
  • Viruses in Transplantation - Not Always Enemies
    Viruses in transplantation - not always enemies Virome and transplantation ECCMID 2018 - Madrid Prof. Laurent Kaiser Head Division of Infectious Diseases Laboratory of Virology Geneva Center for Emerging Viral Diseases University Hospital of Geneva ESCMID eLibrary © by author Conflict of interest None ESCMID eLibrary © by author The human virome: definition? Repertoire of viruses found on the surface of/inside any body fluid/tissue • Eukaryotic DNA and RNA viruses • Prokaryotic DNA and RNA viruses (phages) 25 • The “main” viral community (up to 10 bacteriophages in humans) Haynes M. 2011, Metagenomic of the human body • Endogenous viral elements integrated into host chromosomes (8% of the human genome) • NGS is shaping the definition Rascovan N et al. Annu Rev Microbiol 2016;70:125-41 Popgeorgiev N et al. Intervirology 2013;56:395-412 Norman JM et al. Cell 2015;160:447-60 ESCMID eLibraryFoxman EF et al. Nat Rev Microbiol 2011;9:254-64 © by author Viruses routinely known to cause diseases (non exhaustive) Upper resp./oropharyngeal HSV 1 Influenza CNS Mumps virus Rhinovirus JC virus RSV Eye Herpes viruses Parainfluenza HSV Measles Coronavirus Adenovirus LCM virus Cytomegalovirus Flaviviruses Rabies HHV6 Poliovirus Heart Lower respiratory HTLV-1 Coxsackie B virus Rhinoviruses Parainfluenza virus HIV Coronaviruses Respiratory syncytial virus Parainfluenza virus Adenovirus Respiratory syncytial virus Coronaviruses Gastro-intestinal Influenza virus type A and B Human Bocavirus 1 Adenovirus Hepatitis virus type A, B, C, D, E Those that cause
    [Show full text]
  • Supplementary Material
    SUPPLEMENTARY MATERIAL Appendix; Search strategy MEDLINE 1. Herpes Labialis/ 2. Stomatitis, Herpetic/ 3. ((herpe* adj3 (labial* or stomatiti* or gingivostomatiti*)) or cold-sore* or fever-blister*).tw,kf. 4. 1 or 2 or 3 5. Herpes Simplex/ 6. Simplexvirus/ or herpesvirus 1, human/ or herpesvirus 2, human/ 7. (hsv-1 or hsv1 or hsv-2 or hsv2 or simplexvirus or simplex-virus or herpes-simplex or herpe*).tw,kf. 8. exp Mouth/ 9. (lip*1 or mouth or labial* or orolabial* or oro-labial* or perioral or peri-oral or extraoral or extra-oral or intraoral or intra-oral or gingiva* or gingivo*).tw,kf. 10. (5 or 6 or 7) and (8 or 9) 11. 4 or 10 12. Secondary Prevention/ 13. exp Recurrence/ 14. (prevention or recurren* or prophyla*).tw,kf. 15. pc.fs. 16. 12 or 13 or 14 or 15 17. 11 and 16 18. exp animals/ not human*.sh. 19. 17 not 18 EMBASE 1. herpes labialis/ 2. herpetic stomatitis/ 3. ((herpe* adj3 (labial* or stomatiti* or gingivostomatiti*)) or cold-sore* or fever-blister*).tw,kw,dq. 4. 1 or 2 or 3 5. herpes simplex/ 6. simplexvirus/ or exp human alphaherpesvirus 1/ or exp herpes simplex virus 2/ 7. (hsv-1 or hsv1 or hsv-2 or hsv2 or simplexvirus or simplex-virus or herpes-simplex or herpe*).tw,kw,dq. 8. mouth/ or exp cheek/ or exp lip/ or exp mouth cavity/ or exp mouth floor/ or exp mouth mucosa/ or exp palate/ or oral blister/ 9. (lip*1 or mouth or labial* or orolabial* or oro-labial* or perioral or peri-oral or extraoral or extra-oral or intraoral or intra-oral or gingiva* or gingivo*).tw,kw,dq.
    [Show full text]