Pathogen Protein-Protein Interactions (F

Total Page:16

File Type:pdf, Size:1020Kb

Pathogen Protein-Protein Interactions (F Modeling and Determining the Structures of Proteins and Macromolecular Assemblies Andrej Sali http://salilab.org/ Depts. of Biopharmaceutical Sciences and Pharmaceutical Chemistry UC California Institute for Quantitative Biomedical Research SF University of California at San Francisco 06/01/2006 Topics 1. Tropical Disease Initiative (TDI) (S. Maurer, A. Rai) 2. Automated, large-scale comparative modeling for: • drug target selection via binding site analysis (J. Overington, B. Al-Lazikani, Inpharmatica Inc.) • drug target selection and hit generation via virtual screening (B. Shoichet) • drug target selection via bioinformatics annotation (D. Roos) 3. Identification of host - pathogen protein interactions for: • drug target selection (J. McKerrow, J. DeRisi, E. Stebbins, N. Krogan, ...) 06/01/2006 Topics 1. Tropical Disease Initiative (TDI) (S. Maurer, A. Rai) 2. Automated, large-scale comparative modeling for: • drug target selection via binding site analysis (J. Overington, B. Al-Lazikani, Inpharmatica Inc.) • drug target selection and hit generation via virtual screening (B. Shoichet) • drug target selection via bioinformatics annotation (D. Roos) 3. Identification of host - pathogen protein interactions for: • drug target selection (J. McKerrow, J. DeRisi, E. Stebbins, N. Krogan, ...) 06/01/2006 Tropical Disease Initiative An open source approach to drug discovery www.tropicaldisease.org http://nurture.nature.com/wikis/tdi/ http://www.thesynapticleap.org S. Maurer, A. Rai, A. Sali. Finding Cures for Tropical Diseases: Is Open Source an Answer? PLoS Medicine 1, 180-184, 2004. Collaborative Drug Discovery The Economist, June 10, 2004. http://www.collaborativedrug.com 4 Tropical Disease Initiative An open source approach to drug discovery www.tropicaldisease.org databases of genome sequences S. Maurer, A. Rai, A. Sali. Finding Cures for Tropical Diseases: Is Open Source an Answer? database of protein structures PLoS Medicine 1, 180-184, 2004. virtual ligand libraries PubMed, journals other databases sequence similarity searches protein structure modeling literature searches protein-ligand docking VIRTUAL functional annotation COMPUTING PHARMA and other development leads organizations TOXICITY AND TDI PHARMACOKINETIC TARGET DISCOVERY EVALUATION LEAD DISCOVERY LEAD OPTIMIZATION CLINICAL STUDIES DRUG PRODUCTION synthetic chemistry compound libraries high-throughput screening CHEMISTRY ugs protein production protein engineering dr substrate specificity studies structural biology target validation BIOLOGY 5 Public Databases PubChem InterPro PIR & MLI ProDom Sequence Compounds GenBank SMART ZINC TrEMBL DBAli PFam SCOP DALI UniProt PDB ProSite CATH Function Structure EnZyme MODBASE SFLD DIP PIBASE SNPBase LS-SNP 6 The Universe of Protein-Ligand Interactions Center for Computational Proteomics Research (CCPR) All known protein structures All known protein sequences Comparative modeling Protein-Protein Docking Pipeline The California Institute for Ligand-Protein Refine protein models All known protein interactions Quantitative Biomedical Docking Pipeline Research (QB3) Identify ligand Identify protein Patsy Babbitt, Ken Dill, Tom Lists of small ligands binding sites on models binding sites on models Ferrin, John Irwin, Matt Jacobson, Tanja Kortemme, Tack Kuntz, Marc A. Marti- Virtual ligand libraries Annotated Renom, Andrej Sali, Brian protein structure models Shoichet Build ligand-protein Build protein-protein complexes complexes http://www.ccpr.ucsf.edu/ Rescore ligand-protein Specificity modeling of complexes protein interactions Central database Graphical User Interface 7 TDI web site projects: Collaboration tools Prince Felipe Research Center Gene Cards Valencia, Spain Marc Marti-Renom Gene Basket Gene Annotation Structure Prediction Ginger Taylor Target Selection for Structural Genomics Database of annotated chemical compounds Collaborative Drug Discovery Barry Bunin www.tropicaldisease.org 8 OJECT Gene Cards PR collecting gene information As of September 2005, the Malaria genome had 5,270 ORFs. • NCBI at http://www.ncbi.nlm.nih.gov/ • BioMart at http://www.biomart.org/ • ModBase at http://www.salilab.org/modbase Literature Annotation Structure Function 9 OJECT Gene Basket PR add content to your genes... add genes to your content TSL registered users will be able to save gene cards in their baskets and associate pieces of information to entries in the basket. For example, a user may be browsing the literature at PubMed and find an interesting article, with just one click the system should be able to propose and association between the article and any of the genes in his/her basket. As seen on: 10 OJECT Gene Basket PR add content to your genes... add genes to your content TSL registered users will be able to save gene cards in their baskets and associate pieces of information to entries in the basket. For example, a user may be browsing the literature at PubMed and find an interesting article, with just one click the system should be able to propose and association between the article and any of the genes in his/her basket. As seen on: 10 QB3 Neglected Disease Symposium Speaker Biographies Victoria Hale, Ph.D., Founder, Chief Executive Officer and Chair of the Board of Directors. Dr. Hale established her expertise in all stages of biopharmaceutical drug development at the US Food and Drug Administration (FDA), Center for Drug Evaluation and Research; at Genentech, Inc., the world's first biotechnology company; and as Co-founder and Chief Scientific Officer of Axiom BioMedical, Inc., a pharmaceutical development and liability consultancy. She presently maintains an Adjunct Associate Professorship in Biopharmaceutical Sciences at the University of California, San Francisco (UCSF), is an Advisor to the World Health Organization (WHO) for building ethical review capacity in the developing world, and has served as an expert reviewer to the National Institutes of Health (NIH) on the topic of biodiversity. Dr. Hale and OneWorld Health were recently included in the Scientific American 50, the magazine’s annual list recognizing outstanding acts of leadership in science and technology from the past year (2004). She was also named one of 2004's “Most Outstanding Social Entrepreneurs” by the Schwab Foundation for Social Entrepreneurship in Switzerland and selected as a Leadership Foundation Fellow of the International Women's Forum in September 2003. Dr. Hale earned her Ph.D. in Pharmaceutical Chemistry from UCSF. Shirley Luckhart, Ph.D. Associate Professor, University of California, Davis. General areas of research in the laboratory include: the molecular cell biology and biochemistry of the interaction between malaria parasites and their mosquito hosts, the functional characterization of primitive orthologs of mammalian innate immune molecules and cell signaling proteins using the mosquito as an invertebrate model. Specific research projects include: characterization of mosquito gene products that inhibit malaria and its application to comparative protparasiteein stru cdevelopmture predientctio andn. He mo islecular/ involvedbiochem in theical analysis of parasite Tropical Disease Initiativedamage ;for sig anna lopen-source transduction approach pathway sto in drugvolv edevelopmd in parasiteent. induction Dr Marti- of mosquito innate OJECT GeneRenom was appoinimmunity;ted Res earc analysisBasketh Assoc ofiat expression,e at the Laboratory signaling, of andMolecular regulation Biophysics of anti-parasite genes in (Sali Lab) at The Rockefellermosquitoes University; molecula rin a n2d0 0fu2n. c Htioen realc aenivaelyds heiss ofBS immunec in Ge nfacetitcorss fro thatm are conserved PR the Autonomous Universitybetween mofo squitoesBarcelona, and Ca theirtalonia, mammalia in 1994n andhosts; a PhDimmunological in Biophysics crosstalk in between add content to your1999, focusing genes... on themosquitoes developm andent m ofadda mmamethodsls at f theogenesr finolterfaceding st uofd ibloodfeeding.es u sitong mo leyour cular content dynamics. Jim Wells receiveMad ar Bc .AA .Ma degrtire-Re ienn boimoc ihse Amdisjturnyc ftr Aomss itshtea nt Professor at the University of CaliDfoernpairat,m Beenrkeley,ts of B iandoph ar Ph.D.maceu degreetical Sc inie nces and Pharmaceutical biochemistry fromC hWemasihsitnryg taonnd S tthaet eC Ualnifivoernrsiait yIn. s Htitiust pe ofsotrd Qocutaonratilt ative Biomedical studies were doneResearch at Stanford at theUniv Universersity iMedicalty of Califor School,nia atDepartm San Francisco.ent Most of his of Biochemistry. currenDr. Wellst work was involves the founding improving member the accuracyof the Protein of protein 3-D models, Engineering Departmfocuesntin gat o Genentech,n sequence sInctru cwhereture a lheig nworkedment m foreth o16ds . Recently, his years. His researchinterest focused has on been de signingfocused new on unders functionaltanding properties protein structure evolution into enzymes and hormones and developing new technologies for engineering proteins. In 1998, Dr. Wells founded Sunesis Pharmaceuticals where he served as President and Chief Scientific Officer and developed a novel fragment malaria infections, and studiesdiscovery of mole technologycular mechanism known as disulfides of drug trapping resistance. or Tethering. Dr. In 2005, Dr. Wells joined UCSF as the Harry W. and Diana Hind Distinguished Professor in Pharmaceutical Rosenthal is on the editorial boardsScienc eofs. HAntie is am joiicrobialnt Profess Agentsor in the D andepar tmChements ofot Cherapyellular & Mandole cTheular
Recommended publications
  • Cystatins in Immune System
    Journal of Cancer 2013, Vol. 4 45 Ivyspring International Publisher Journal of Cancer 2013; 4(1): 45-56. doi: 10.7150/jca.5044 Review Cystatins in Immune System Špela Magister1 and Janko Kos1,2 1. Jožef Stefan Institute, Department of Biotechnology, Ljubljana, Slovenia; 2. University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia. Corresponding author: Janko Kos, Ph. D., Department of Biotechnology, Jožef Stefan Institute, &Faculty of Pharmacy, University of Ljubljana, Slovenia; [email protected]; Phone+386 1 4769 604, Fax +3861 4258 031. © Ivyspring International Publisher. This is an open-access article distributed under the terms of the Creative Commons License (http://creativecommons.org/ licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. Received: 2012.10.22; Accepted: 2012.12.01; Published: 2012.12.20 Abstract Cystatins comprise a large superfamily of related proteins with diverse biological activities. They were initially characterised as inhibitors of lysosomal cysteine proteases, however, in recent years some alternative functions for cystatins have been proposed. Cystatins pos- sessing inhibitory function are members of three families, family I (stefins), family II (cystatins) and family III (kininogens). Stefin A is often linked to neoplastic changes in epithelium while another family I cystatin, stefin B is supposed to have a specific role in neuredegenerative diseases. Cystatin C, a typical type II cystatin, is expressed in a variety of human tissues and cells. On the other hand, expression of other type II cystatins is more specific. Cystatin F is an endo/lysosome targeted protease inhibitor, selectively expressed in immune cells, suggesting its role in processes related to immune response.
    [Show full text]
  • Anti-Cystatin B / Stefin B Antibody (ARG56897)
    Product datasheet [email protected] ARG56897 Package: 100 μl anti-Cystatin B / Stefin B antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes Cystatin B / Stefin B Tested Reactivity Hu Tested Application ICC/IF, IHC-P, WB Host Rabbit Clonality Polyclonal Isotype IgG Target Name Cystatin B / Stefin B Antigen Species Human Immunogen Recombinant fusion protein corresponding to aa. 1-98 of Human Cystatin B / Stefin B (NP_000091.1). Conjugation Un-conjugated Alternate Names Liver thiol proteinase inhibitor; EPM1; CPI-B; EPM1A; Cystatin-B; Stefin-B; PME; CST6; ULD; STFB Application Instructions Application table Application Dilution ICC/IF 1:50 - 1:200 IHC-P 1:50 - 1:200 WB 1:500 - 1:2000 Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Positive Control MCF7 and DU145 Calculated Mw 11 kDa Observed Size 14 kDa Properties Form Liquid Purification Affinity purified. Buffer PBS (pH 7.3), 0.02% Sodium azide and 50% Glycerol. Preservative 0.02% Sodium azide Stabilizer 50% Glycerol Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. www.arigobio.com 1/3 Note For laboratory research only, not for drug, diagnostic or other use. Bioinformation Gene Symbol CSTB Gene Full Name cystatin B (stefin B) Background The cystatin superfamily encompasses proteins that contain multiple cystatin-like sequences.
    [Show full text]
  • Disease in a Murine Psoriasis Model Identification of Susceptibility Loci
    The Journal of Immunology Identification of Susceptibility Loci for Skin Disease in a Murine Psoriasis Model1 Daniel Kess,2*‡ Anna-Karin B. Lindqvist,2§ Thorsten Peters,*‡ Honglin Wang,* Jan Zamek,‡ Roswitha Nischt,‡ Karl W. Broman,¶ Robert Blakytny,† Thomas Krieg,‡ Rikard Holmdahl,§ and Karin Scharffetter-Kochanek3*‡ Psoriasis is a frequently occurring inflammatory skin disease characterized by thickened erythematous skin that is covered with silvery scales. It is a complex genetic disease with both heritable and environmental factors contributing to onset and severity. The ␤ CD18 hypomorphic PL/J mouse reveals reduced expression of the common chain of 2 integrins (CD11/CD18) and spontaneously develops a skin disease that closely resembles human psoriasis. In contrast, CD18 hypomorphic C57BL/6J mice do not demon- strate this phenotype. In this study, we have performed a genome-wide scan to identify loci involved in psoriasiform dermatitis under the condition of low CD18 expression. Backcross analysis of a segregating cross between susceptible CD18 hypomorphic PL/J mice and the resistant CD18 hypomorphic C57BL/6J strain was performed. A genome-wide linkage analysis of 94 pheno- typically extreme mice of the backcross was undertaken. Thereafter, a complementary analysis of the regions of interest from the genome-wide screen was done using higher marker density and further mice. We found two loci on chromosome 10 that were significantly linked to the disease and interacted in an additive fashion in its development. In addition, a locus on chromosome 6 that promoted earlier onset of the disease was identified in the most severely affected mice. For the first time, we have identified genetic regions associated with psoriasis in a mouse model resembling human psoriasis.
    [Show full text]
  • Stefin B (CSTB) Mouse Monoclonal Antibody [Clone ID: OTI1E8] Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TA813046 Stefin B (CSTB) Mouse Monoclonal Antibody [Clone ID: OTI1E8] Product data: Product Type: Primary Antibodies Clone Name: OTI1E8 Applications: IHC, WB Recommended Dilution: WB 1:500, IHC 1:500 Reactivity: Human Host: Mouse Isotype: IgG1 Clonality: Monoclonal Immunogen: Human recombinant protein fragment corresponding to amino acids 1-98 of human CSTB (NP_000091) produced in E.coli. Formulation: PBS (PH 7.3) containing 1% BSA, 50% glycerol and 0.02% sodium azide. Concentration: 1 mg/ml Purification: Purified from mouse ascites fluids or tissue culture supernatant by affinity chromatography (protein A/G) Conjugation: Unconjugated Storage: Store at -20°C as received. Stability: Stable for 12 months from date of receipt. Predicted Protein Size: 11 kDa Gene Name: cystatin B Database Link: NP_000091 Entrez Gene 1476 Human P04080 This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 Stefin B (CSTB) Mouse Monoclonal Antibody [Clone ID: OTI1E8] – TA813046 Background: The cystatin superfamily encompasses proteins that contain multiple cystatin-like sequences. Some of the members are active cysteine protease inhibitors, while others have lost or perhaps never acquired this inhibitory activity. There are three inhibitory families in the superfamily, including the type 1 cystatins (stefins), type 2 cystatins and kininogens. This gene encodes a stefin that functions as an intracellular thiol protease inhibitor.
    [Show full text]
  • 1 Supporting Information for a Microrna Network Regulates
    Supporting Information for A microRNA Network Regulates Expression and Biosynthesis of CFTR and CFTR-ΔF508 Shyam Ramachandrana,b, Philip H. Karpc, Peng Jiangc, Lynda S. Ostedgaardc, Amy E. Walza, John T. Fishere, Shaf Keshavjeeh, Kim A. Lennoxi, Ashley M. Jacobii, Scott D. Rosei, Mark A. Behlkei, Michael J. Welshb,c,d,g, Yi Xingb,c,f, Paul B. McCray Jr.a,b,c Author Affiliations: Department of Pediatricsa, Interdisciplinary Program in Geneticsb, Departments of Internal Medicinec, Molecular Physiology and Biophysicsd, Anatomy and Cell Biologye, Biomedical Engineeringf, Howard Hughes Medical Instituteg, Carver College of Medicine, University of Iowa, Iowa City, IA-52242 Division of Thoracic Surgeryh, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada-M5G 2C4 Integrated DNA Technologiesi, Coralville, IA-52241 To whom correspondence should be addressed: Email: [email protected] (M.J.W.); yi- [email protected] (Y.X.); Email: [email protected] (P.B.M.) This PDF file includes: Materials and Methods References Fig. S1. miR-138 regulates SIN3A in a dose-dependent and site-specific manner. Fig. S2. miR-138 regulates endogenous SIN3A protein expression. Fig. S3. miR-138 regulates endogenous CFTR protein expression in Calu-3 cells. Fig. S4. miR-138 regulates endogenous CFTR protein expression in primary human airway epithelia. Fig. S5. miR-138 regulates CFTR expression in HeLa cells. Fig. S6. miR-138 regulates CFTR expression in HEK293T cells. Fig. S7. HeLa cells exhibit CFTR channel activity. Fig. S8. miR-138 improves CFTR processing. Fig. S9. miR-138 improves CFTR-ΔF508 processing. Fig. S10. SIN3A inhibition yields partial rescue of Cl- transport in CF epithelia.
    [Show full text]
  • Cystatin M/E Variant Causes Autosomal Dominant
    fgene-12-689940 July 5, 2021 Time: 19:33 # 1 ORIGINAL RESEARCH published: 12 July 2021 doi: 10.3389/fgene.2021.689940 Cystatin M/E Variant Causes Autosomal Dominant Keratosis Follicularis Spinulosa Decalvans by Edited by: Tommaso Pippucci, Dysregulating Cathepsins L and V Unità Genetica Medica, Policlinico Sant’Orsola-Malpighi, Italy Katja M. Eckl1†, Robert Gruber2†, Louise Brennan1, Andrew Marriott1, Roswitha Plank3,4, Reviewed by: Verena Moosbrugger-Martinz2, Stefan Blunder2, Anna Schossig4, Janine Altmüller5, Caterina Marconi, Holger Thiele5, Peter Nürnberg5, Johannes Zschocke4, Hans Christian Hennies3,5* and Hôpitaux Universitaires de Genève, Matthias Schmuth2* Switzerland Xuanye Cao, 1 Department of Biology, Edge Hill University, Ormskirk, United Kingdom, 2 Department of Dermatology, Medical University Baylor College of Medicine, of Innsbruck, Innsbruck, Austria, 3 Department of Biological and Geographical Sciences, University of Huddersfield, United States Huddersfield, United Kingdom, 4 Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria, 5 Cologne Center for Genomics, Faculty of Medicine and Cologne University Hospital, University of Cologne, Cologne, Germany *Correspondence: Hans Christian Hennies [email protected] Keratosis follicularis spinulosa decalvans (KFSD) is a rare cornification disorder with Matthias Schmuth [email protected] an X-linked recessive inheritance in most cases. Pathogenic variants causing X-linked †These authors have contributed KFSD have been described in MBTPS2, the gene for a membrane-bound zinc equally to this work metalloprotease that is involved in the cleavage of sterol regulatory element binding proteins important for the control of transcription. Few families have been identified with Specialty section: This article was submitted to an autosomal dominant inheritance of KFSD.
    [Show full text]
  • Association Analysis of the Skin Barrier Gene Cystatin a at the PSORS5 Locus in Psoriatic Patients: Evidence for Interaction Between PSORS1 and PSORS5
    European Journal of Human Genetics (2008) 16, 1002–1009 & 2008 Nature Publishing Group All rights reserved 1018-4813/08 $30.00 www.nature.com/ejhg ARTICLE Association analysis of the skin barrier gene cystatin A at the PSORS5 locus in psoriatic patients: evidence for interaction between PSORS1 and PSORS5 Yiannis Vasilopoulos1,3,4, Kevin Walters1,4, Michael J Cork1, Gordon W Duff1, Gurdeep S Sagoo2 and Rachid Tazi-Ahnini*,1 1School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield, UK; 2Public Health Genetics Unit, Wort’s Causeway, Cambridge, UK Family-based analysis has revealed several loci for psoriasis and the locus, PSORS5, on chromosome 3q21 has been found in two independent studies. In this region, cystatin A (CSTA) encodes a skin barrier cystein protease inhibitor found in human sweat and it is over-expressed in psoriatic skin. Three CSTA markers at positions –190 (g.À190T4C), þ 162 (c.162T4C) and þ 344 (c.344C4T) were analysed in 107 unrelated patients and 216 matched controls. There was a significant trend for association with CSTA c.162T4C and psoriasis (odds ratio (OR) ¼ 3.45, Po0.001). Analysis of constructed haplotypes showed a highly significant association between disease and CSTA –190T/ þ 162C/ þ 344C (CSTA TCC) (P ¼ 10À6). In independent study, a TDT analysis in 126 nuclear families confirmed the over-transmission of CSTA TCC (P ¼ 0.0001). The presence of statistical interaction between CSTA TCC haplotype and HLA-Cw6 at PSORS1 locus was detected by performing TDT analysis on CSTA haplotypes stratified by the presence or absence of the risk allele at HLA-Cw6 locus.
    [Show full text]
  • Mutations in SERPINB7, Encoding a Member of the Serine Protease Inhibitor Superfamily, Cause Nagashima-Type Palmoplantar Keratosis
    REPORT Mutations in SERPINB7, Encoding a Member of the Serine Protease Inhibitor Superfamily, Cause Nagashima-type Palmoplantar Keratosis Akiharu Kubo,1,2,3,* Aiko Shiohama,1,4 Takashi Sasaki,1,2,3 Kazuhiko Nakabayashi,5 Hiroshi Kawasaki,1 Toru Atsugi,1,6 Showbu Sato,1 Atsushi Shimizu,7 Shuji Mikami,8 Hideaki Tanizaki,9 Masaki Uchiyama,10 Tatsuo Maeda,10 Taisuke Ito,11 Jun-ichi Sakabe,11 Toshio Heike,12 Torayuki Okuyama,13 Rika Kosaki,14 Kenjiro Kosaki,15 Jun Kudoh,16 Kenichiro Hata,5 Akihiro Umezawa,17 Yoshiki Tokura,11 Akira Ishiko,18 Hironori Niizeki,19 Kenji Kabashima,9 Yoshihiko Mitsuhashi,10 and Masayuki Amagai1,2,4 ‘‘Nagashima-type’’ palmoplantar keratosis (NPPK) is an autosomal recessive nonsyndromic diffuse palmoplantar keratosis characterized by well-demarcated diffuse hyperkeratosis with redness, expanding on to the dorsal surfaces of the palms and feet and the Achilles tendon area. Hyperkeratosis in NPPK is mild and nonprogressive, differentiating NPPK clinically from Mal de Meleda. We performed whole-exome and/or Sanger sequencing analyses of 13 unrelated NPPK individuals and identified biallelic putative loss-of-function mutations in SERPINB7, which encodes a cytoplasmic member of the serine protease inhibitor superfamily. We identified a major caus- ative mutation of c.796C>T (p.Arg266*) as a founder mutation in Japanese and Chinese populations. SERPINB7 was specifically present in the cytoplasm of the stratum granulosum and the stratum corneum (SC) of the epidermis. All of the identified mutants are predicted to cause premature termination upstream of the reactive site, which inhibits the proteases, suggesting a complete loss of the protease inhibitory activity of SERPINB7 in NPPK skin.
    [Show full text]
  • Structural Dynamics Investigation of Human Family 1 & 2 Cystatin
    RESEARCH ARTICLE Structural Dynamics Investigation of Human Family 1 & 2 Cystatin-Cathepsin L1 Interaction: A Comparison of Binding Modes Suman Kumar Nandy, Alpana Seal* Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, West Bengal, India * [email protected] Abstract a11111 Cystatin superfamily is a large group of evolutionarily related proteins involved in numerous physiological activities through their inhibitory activity towards cysteine proteases. Despite sharing the same cystatin fold, and inhibiting cysteine proteases through the same tripartite edge involving highly conserved N-terminal region, L1 and L2 loop; cystatins differ widely in their inhibitory affinity towards C1 family of cysteine proteases and molecular details of these interactions are still elusive. In this study, inhibitory interactions of human family 1 & 2 cystatins with cathepsin L1 are predicted and their stability and viability are verified through OPEN ACCESS protein docking & comparative molecular dynamics. An overall stabilization effect is Citation: Nandy SK, Seal A (2016) Structural Dynamics Investigation of Human Family 1 & 2 observed in all cystatins on complex formation. Complexes are mostly dominated by van Cystatin-Cathepsin L1 Interaction: A Comparison of der Waals interaction but the relative participation of the conserved regions varied exten- Binding Modes. PLoS ONE 11(10): e0164970. sively. While van der Waals contacts prevail in L1 and L2 loop, N-terminal segment chiefly doi:10.1371/journal.pone.0164970 acts as electrostatic interaction site. In fact the comparative dynamics study points towards Editor: Claudio M Soares, Universidade Nova de the instrumental role of L1 loop in directing the total interaction profile of the complex either Lisboa Instituto de Tecnologia Quimica e Biologica, towards electrostatic or van der Waals contacts.
    [Show full text]
  • Genomic Profiling of Short- and Long-Term Caloric Restriction Effects in the Liver of Aging Mice
    Genomic profiling of short- and long-term caloric restriction effects in the liver of aging mice Shelley X. Cao, Joseph M. Dhahbi, Patricia L. Mote, and Stephen R. Spindler* Department of Biochemistry, University of California, Riverside, CA 92521 Edited by Bruce N. Ames, University of California, Berkeley, CA, and approved July 11, 2001 (received for review June 19, 2001) We present genome-wide microarray expression analysis of 11,000 aging and CR on gene expression. Control young (7-month-old; n ϭ genes in an aging potentially mitotic tissue, the liver. This organ has 3) and old (27-month-old; n ϭ 3) mice were fed 95 kcal of a a major impact on health and homeostasis during aging. The effects semipurified control diet (Harlan Teklad, Madison, WI; no. of life- and health-span-extending caloric restriction (CR) on gene TD94145) per week after weaning. Long-term CR (LT-CR) young expression among young and old mice and between long-term CR (7-month-old; n ϭ 3) and old (27-month-old; n ϭ 3) mice were fed (LT-CR) and short-term CR (ST-CR) were examined. This experimental 53 kcal of a semipurified CR diet (Harlan Teklad; no. TD94146) per design allowed us to accurately distinguish the effects of aging from week after weaning. Short-term CR (ST-CR) mice were 34-month- those of CR on gene expression. Aging was accompanied by changes old control mice that were switched to 80 kcal of CR diet for 2 in gene expression associated with increased inflammation, cellular weeks, followed by 53 kcal for 2 weeks (n ϭ 3).
    [Show full text]
  • Cystatin B: Mutation Detection, Alternative Splicing and Expression in Progressive Myclonus Epilepsy of Unverricht-Lundborg Type (EPM1) Patients
    European Journal of Human Genetics (2007) 15, 185–193 & 2007 Nature Publishing Group All rights reserved 1018-4813/07 $30.00 www.nature.com/ejhg ARTICLE Cystatin B: mutation detection, alternative splicing and expression in progressive myclonus epilepsy of Unverricht-Lundborg type (EPM1) patients Tarja Joensuu*,1, Mervi Kuronen1, Kirsi Alakurtti1, Saara Tegelberg1, Paula Hakala1, Antti Aalto2, Laura Huopaniemi3, Nina Aula1, Roberto Michellucci4, Kai Eriksson5 and Anna-Elina Lehesjoki1 1Department of Medical Genetics and Neuroscience Center, Folkha¨lsan Institute of Genetics, Biomedicum Helsinki, University of Helsinki, Finland; 2Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Finland; 3Rational Drug Design Program, Biomedicum Helsinki, Helsinki, Finland; 4Department of Neurosciences, Epilepsy Centre, Bellaria Hospital, Bologna, Italy; 5Pediatric Neurology Unit, Department of Pediatrics, Pediatric Research Center, Medical School, University of Tampere and Tampere University Hospital, Tampere, Finland Progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1) is an autosomal recessive neurodegenerative disorder caused by mutations in the cystatin B gene (CSTB) that encodes an inhibitor of several lysosomal cathepsins. An unstable expansion of a dodecamer repeat in the CSTB promoter accounts for the majority of EPM1 disease alleles worldwide. We here describe a novel PCR protocol for detection of the dodecamer repeat expansion. We describe two novel EPM1-associated mutations, c.149G4A leading to the p.G50E missense change and an intronic 18-bp deletion (c.168 þ 1_18del), which affects splicing of CSTB. The p.G50E mutation that affects the conserved QVVAG amino acid sequence critical for cathepsin binding fails to associate with lysosomes. This further supports the previously implicated physiological importance of the CSTB-lysosome association.
    [Show full text]
  • Rabbit Anti-Cystatin B/FITC Conjugated Antibody-SL5158R-FITC
    SunLong Biotech Co.,LTD Tel: 0086-571- 56623320 Fax:0086-571- 56623318 E-mail:[email protected] www.sunlongbiotech.com Rabbit Anti-Cystatin B/FITC Conjugated antibody SL5158R-FITC Product Name: Anti-Cystatin B/FITC Chinese Name: FITC标记的胱抑素B/半胱氨酸蛋白酶抑制剂B抗体 CPI B; CPI-B; CST6; CSTB; Cystatin B; Cystatin-B; CYTB; EPM1; Liver thiol Alias: proteinase inhibitor; PME; STFB; CHROW21; CYTB_HUMAN; EPM1A; Stefin-B; ULD. Organism Species: Rabbit Clonality: Polyclonal React Species: Human,Mouse,Rat,Pig, IF=1:50-200 Applications: not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. Molecular weight: 14kDa Form: Lyophilized or Liquid Concentration: 1mg/ml immunogen: KLH conjugated synthetic peptide derived from human Cystatin B Lsotype: IgG Purification: affinity purified by Protein A Storage Buffer: 0.01Mwww.sunlongbiotech.com TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year Storage: when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. background: The cystatin superfamily encompasses proteins that contain multiple cystatin-like sequences. Some of the members are active cysteine protease inhibitors, while others have lost or perhaps never acquired this inhibitory activity. There are three inhibitory Product Detail: families in the superfamily, including the type 1 cystatins (stefins), type 2 cystatins and kininogens. This gene encodes a stefin that functions as an intracellular thiol protease inhibitor.
    [Show full text]