Presentation Title
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
NXP Powerpoint Template Confidential 16:9 Widescreen
NXP MCU PRODUCT UPDATE & ROADMAP Q4 2016 NXP’S MCU POWERHOUSE PORTFOLIO 1 PUBLIC USE NXP Microcontrollers Business Line Why Customers Choose Us Applications • Comprehensive portfolio supporting the diverse IoT landscape Wearable / Healthcare • Fitness & Wireless Healthcare • Extensive software and development environment • Diabetes & Cardiac Care • Diagnostics & therapy • Industry leading customer support, quality, and longevity Home & Building Automation • Broad ecosystem of partners enabling system solutions • Smart meters & grid • Integrated wireless connectivity solutions • Ease of use solutions tailored for mass market • Home energy control Smart Accessories • Game controllers and consoles Example Customers • Wearable computing • eReaders, tablets, portable navigation Vehicle Networking & Information • Infotainment, software define radio • Navigation systems, E-call Home Appliances • Energy efficient refrigerators, dishwashers • Human-machine interface • Connected appliances Industrial Controls & Factory Automation • Machine-to-machine • Motor control Products • Industrial networking Kinetis & LPC 32-bit i.MX ARM® Applications 2 ARMPUBLIC® Microcontrollers USE Processors NXP MCUs - Powerhouse Portfolio ARM Expertise Broadest licensee of ARM cores in industry Most scalable portfolio with Expansive Portfolio optimized performance and capabilities Development Tools Best-in-class hardware platforms and software solutions Ecosystem Leadership Industry leading partnerships for innovation and differentiation Experienced global support team -
Porting the Arduino Library to the Cypress Psoc in Psoc Creator
Porting the Arduino Library to the Cypress PSoC in PSoC Creator Matt Durak November 11, 2011 Design Team 1 Abstract Arduino, the open-source electronic platform is a useful tool to hobbyists in building embedded systems. It provides an easy to use library which includes components to work with an Ethernet board, called the Ethernet shield. PSoC is a programmable system-on-chip made by Cypress Semiconductor. It is a very flexible platform which includes an ARM Cortex M3 processor. This application note includes the steps necessary to port parts of the Arduino library to the PSoC in order to use Arduino software and hardware, known as shields, with the PSoC. The note will cover many issues which must be overcome in porting this software. Keywords PSoC, Arduino, C++, C, Library, Software, Porting, PSoC Creator, Ethernet shield Introduction Arduino Library The Arduino is an open-source electronics hardware platform that is designed primarily for students and hobbyists (1). Arduino provides the schematics to build the hardware, as well as kits which can be pre- assembled or just include the parts. This application note will focus on the software for Arduino. Arduino has its own open-source development environment based on Wiring, a platform for programming electronics (2). The software library used by Arduino is written in C++ and is also open-source and freely available (3). This library is composed of a low layer which communicates directly with hardware registers and provides an abstraction for programmers to set whether a pin is an input or an output and to read and write to those pins. -
EFM32 Happy Gecko Family EFM32HG Data Sheet
EFM32 Happy Gecko Family EFM32HG Data Sheet The EFM32 Happy Gecko MCUs are the world’s most energy- friendly microcontrollers. KEY FEATURES The EFM32HG offers unmatched performance and ultra low power consumption in both • ARM Cortex-M0+ at 25 MHz active and sleep modes. EFM32HG devices consume as little as 0.6 μA in Stop mode • Ultra low power operation and 127 μA/MHz in Run mode. It also features autonomous peripherals, high overall chip • 0.6 μA current in Stop (EM3), with and analog integration, and the performance of the industry standard 32-bit ARM Cortex- brown-out detection and RAM retention M0+ processor, making it perfect for battery-powered systems and systems with high- • 51 μA/MHz in EM1 performance, low-energy requirements. • 127 μA/MHz in Run mode (EM0) • Fast wake-up time of 2 µs EFM32HG applications include the following: • Hardware cryptography (AES) • Energy, gas, water and smart metering • Alarm and security systems • Up to 64 kB of Flash and 8 kB of RAM • Health and fitness applications • Industrial and home automation • Smart accessories Core / Memory Clock Management Energy Management Security High Frequency 48/24 MHz Voltage Voltage Crystal Oscillator Comm. RC Osc. Hardware AES ARM CortexTM M0+ processor Regulator Comparator High Frequency Auxiliary High RC Oscillator Freq. RC Osc. Brown-out Power-on Flash Program RAM Memory Low Frequency Low Freq. Detector Reset Memory Crystal Oscillator RC Oscillator Debug w/ MTB DMA Controller Ultra Low Freq. RC Oscillator 32-bit bus Peripheral Reflex System Serial Interfaces I/O Ports Timers and Triggers Analog Interfaces Low Energy External General Analog USART Timer/Counter Real Time Counter ADC UARTTM Interrupts Purpose I/O Comparator Low Energy I2C Pin Reset Pin Wakeup Pulse Counter Watchdog Timer Current DAC USB Lowest power mode with peripheral operational: EM0 - Active EM1 - Sleep EM2 – Deep Sleep EM3 - Stop EM4 - Shutoff silabs.com | Building a more connected world. -
Schedule 14A Employee Slides Supertex Sunnyvale
UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 SCHEDULE 14A Proxy Statement Pursuant to Section 14(a) of the Securities Exchange Act of 1934 Filed by the Registrant Filed by a Party other than the Registrant Check the appropriate box: Preliminary Proxy Statement Confidential, for Use of the Commission Only (as permitted by Rule 14a-6(e)(2)) Definitive Proxy Statement Definitive Additional Materials Soliciting Material Pursuant to §240.14a-12 Supertex, Inc. (Name of Registrant as Specified In Its Charter) Microchip Technology Incorporated (Name of Person(s) Filing Proxy Statement, if other than the Registrant) Payment of Filing Fee (Check the appropriate box): No fee required. Fee computed on table below per Exchange Act Rules 14a-6(i)(1) and 0-11. (1) Title of each class of securities to which transaction applies: (2) Aggregate number of securities to which transaction applies: (3) Per unit price or other underlying value of transaction computed pursuant to Exchange Act Rule 0-11 (set forth the amount on which the filing fee is calculated and state how it was determined): (4) Proposed maximum aggregate value of transaction: (5) Total fee paid: Fee paid previously with preliminary materials. Check box if any part of the fee is offset as provided by Exchange Act Rule 0-11(a)(2) and identify the filing for which the offsetting fee was paid previously. Identify the previous filing by registration statement number, or the Form or Schedule and the date of its filing. (1) Amount Previously Paid: (2) Form, Schedule or Registration Statement No.: (3) Filing Party: (4) Date Filed: Filed by Microchip Technology Incorporated Pursuant to Rule 14a-12 of the Securities Exchange Act of 1934 Subject Company: Supertex, Inc. -
Reconfigurable Embedded Control Systems: Problems and Solutions
RECONFIGURABLE EMBEDDED CONTROL SYSTEMS: PROBLEMS AND SOLUTIONS By Dr.rer.nat.Habil. Mohamed Khalgui ⃝c Copyright by Dr.rer.nat.Habil. Mohamed Khalgui, 2012 v Martin Luther University, Germany Research Manuscript for Habilitation Diploma in Computer Science 1. Reviewer: Prof.Dr. Hans-Michael Hanisch, Martin Luther University, Germany, 2. Reviewer: Prof.Dr. Georg Frey, Saarland University, Germany, 3. Reviewer: Prof.Dr. Wolf Zimmermann, Martin Luther University, Germany, Day of the defense: Monday January 23rd 2012, Table of Contents Table of Contents vi English Abstract x German Abstract xi English Keywords xii German Keywords xiii Acknowledgements xiv Dedicate xv 1 General Introduction 1 2 Embedded Architectures: Overview on Hardware and Operating Systems 3 2.1 Embedded Hardware Components . 3 2.1.1 Microcontrollers . 3 2.1.2 Digital Signal Processors (DSP): . 4 2.1.3 System on Chip (SoC): . 5 2.1.4 Programmable Logic Controllers (PLC): . 6 2.2 Real-Time Embedded Operating Systems (RTOS) . 8 2.2.1 QNX . 9 2.2.2 RTLinux . 9 2.2.3 VxWorks . 9 2.2.4 Windows CE . 10 2.3 Known Embedded Software Solutions . 11 2.3.1 Simple Control Loop . 12 2.3.2 Interrupt Controlled System . 12 2.3.3 Cooperative Multitasking . 12 2.3.4 Preemptive Multitasking or Multi-Threading . 12 2.3.5 Microkernels . 13 2.3.6 Monolithic Kernels . 13 2.3.7 Additional Software Components: . 13 2.4 Conclusion . 14 3 Embedded Systems: Overview on Software Components 15 3.1 Basic Concepts of Components . 15 3.2 Architecture Description Languages . 17 3.2.1 Acme Language . -
Getting Started with Psoc 6 MCU (AN221774)
AN221774 Getting Started with PSoC 6 MCU Authors: Srinivas Nudurupati, Vaisakh K V Associated Part Family: All PSoC® 6 MCU devices Software Version: ModusToolbox™ 1.0, PSoC Creator™ 4.2 Associated Application Notes and Code Examples: Click here. More code examples? We heard you. To access an ever-growing list of hundreds of PSoC code examples, please visit our code examples web page. You can also explore the PSoC video library here. AN221774 introduces the PSoC 6 MCU, a dual-CPU programmable system-on-chip with Arm® Cortex®-M4 and Cortex-M0+ processors. This application note helps you explore PSoC 6 MCU architecture and development tools, and shows you how to create your first project using ModusToolbox and PSoC Creator. This application note also guides you to more resources available online to accelerate your learning about PSoC 6 MCU. To get started with the PSoC 6 MCU with BLE Connectivity device family, refer to AN210781 – Getting Started with PSoC 6 MCU with BLE Connectivity. Contents 1 Introduction .................................................................. 2 5.6 Part 4: Build the Application .............................. 32 1.1 Prerequisites ....................................................... 3 5.7 Part 5: Program the Device ............................... 33 2 Development Ecosystem ............................................. 4 5.8 Part 6: Test Your Design ................................... 34 2.1 PSoC Resources ................................................ 4 6 My First PSoC 6 MCU Design 2.2 Firmware/Application Development .................... 5 Using PSoC Creator .................................................. 36 2.3 Support for Other IDEs ....................................... 9 6.1 Using These Instructions .................................. 36 2.4 RTOS Support .................................................... 9 6.2 About the Design .............................................. 37 2.5 Debugging......................................................... 11 6.3 Part 1: Create a New Project from Scratch ...... -
Dialog Semiconductor to Acquire Atmel
Filed by Atmel Corporation Pursuant to Rule 425 Under The Securities Act of 1933 And Deemed Filed Pursuant to Rule 14a-12 Under the Securities Exchange Act of 1934 Subject Company: Atmel Corporation Commission File Number: 000-19032 DIALOG SEMICONDUCTOR TO ACQUIRE ATMEL Jose Cano Head of IR Thank you, and good morning to everyone joining us today. This call is being hosted by Dialog Semiconductor's CEO, Dr. Jalal Bagherli, and we are also delighted to welcome Steve Laub, CEO of Atmel. In a moment, I will hand you over to Jalal for a review of yesterday's announcement. I must remind everyone that today's briefing and some of the answers to your questions may contain forward-looking statements in relation to Dialog and Atmel and the future operating performance of and outlook of Dialog and the combined company that are subject to risks and uncertainties. These forward-looking statements are based upon the current beliefs and expectations of the management of Dialog and Atmel, and there are risks associated with them. You can find a full explanation of these risks in the press release and the investor presentation which has been posted to the IR section of our website. Before I hand over to Jalal, let me remind you that a description of underlying performance and non-GAAP metrics has been included as well in slide 20 of the investor presentation available on our website. These financial metrics have not been calculated in accordance with IFRS or GAAP, as applicable, so you are encouraged to refer to the most comparable IFRS or GAAP financial metrics. -
0.18 Um CMOS Cell-Based ASIC Military
Features • Comprehensive Library of Standard Logic and I/O Cells • ATC18 Core and I/O Cells Designed to Operate with VDD = 1.8V ± 0.15V as Main Target Operating Conditions • IO33 Pad Libraries Provide Interfaces to 3V Environments • Memory Cells Compiled to the Precise Requirements of the Design • Compatible with Atmel’s Extensive Range of Microcontroller, DSP, Standard-interface and Application-specific Cells • EDAC Library • SEU Hardened DFF’s • Cold Sparring Buffers 0.18 µm CMOS • High Speed LVDS Buffers • PCI Buffer • Predefined die Sizes to Easily Accommodate Specified Packages Cell-based ASIC • MQFP Packages up to 352 pins (340 Signal Pins) • MCGA Packages up to 625 pins (581 Signal Pins) for Military Use • Offered to QML Q Grade Description ATC18M The Atmel ATC18M is fabricated on a proprietary 0.18 µm, up to six-layer-metal CMOS process intended for use with a supply voltage of 1.8V ± 0.15V. Table 1 shows the range for which Atmel library cells have been characterized. Advanced Table 1. Recommended Operating Conditions Information Symbol Parameter Conditions Min Typ Max Unit VDD DC Supply Voltage Core and Standard I/Os 1.65 1.8 1.95 V VDD3.3 DC Supply Voltage 3V Interface I/Os 3 3.3 3.6 V VI DC Input Voltage 0 VDD V VO DC Output Voltage 0 VDD V Operating Free Air TEMP Military -55 +125 °C Temperature Range The Atmel cell libraries and megacell compilers have been designed in order to be compatible with each other. Simulation representations exist for three types of operat- ing conditions. -
Shieldbuddy TC275 User Manual
ShieldBuddy TC275 User Manual Basic information on the ShieldBuddy TC275 development board Connectors, board layout, component placement, power options, programming Released User Manual 4269.40100, 2.8, 2015-05 User Manual ShieldBuddy TC275 Development Platform Aurix 32-Bit Triple Core CONFIDENTIAL Edition 2015-05 Published by: Hitex (U.K.) Limited. University Of Warwick Science Park, Coventry, CV4 7EZ, UK © 2019 Hitex (U.K.) Limited. All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the product, Hitex (UK) Ltd. hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Hitex Office (www.hitex.co.uk). ShieldBuddy TC275 Development Platform Aurix 32-Bit Triple Core CONFIDENTIAL Document Change History Date Version Changed By Change Description 8/8/2014 0.1 M Beach First version 9/8/2014 M Beach Revised top view 0.2 20/2/2015 0.3 M Beach/D Greenhill Revised for Rev B HW 9/4/2015 0.8 M Beach Added board test 16/9/2015 0.9 M Beach Corrected P33.6 8/11/2016 1.0 M Beach Added IDE extensions 29/11/2016 1.1 M Beach Added new connector diagram 9/1/2017 1.2 M Beach Changed Fast_digitalWrite() 13/1/2017 1.3 M Beach Added Wire changes 23/1/2017 1.4 M Beach Added EEPROM support. -
Atmel Studio 7 And
Atmel Studio 7 Part I Advanced Developer Software Deciding Development Software: ● Application Dependent: ○ Embedded Systems ○ Front end GUI ○ Databases ○ AI ○ PCB fabrication ○ Simulation ● Vendor Dependent: ○ ARM ○ Atmel ○ Etc. Arduino IDE ● Pros: ○ Light Weight ○ Works “out of the box” ○ Comes with examples and samples to help get started ○ Easy to configure with Hardware ○ Open Source ○ Add-ons for additional hardware ■ Ada Fruit ■ Sparkfun ■ Etc ● Cons: ○ Not an engineer's tool ○ Anything more complex than a Hobbyist's breadboard device can be hard to manage Atmel Studios 7 Pros: ● More professional level tools ○ Autocomplete ○ Project hierarchy ○ Simulator ○ In-System Programming and In-Circuit Emulator (ICE) support Cons: ● Much more bulky ○ Built on top of a Microsoft Visual Studios Shell. (~3GB in size) ● Another software to learn and feel familiar with. Importing Arduino Script Process: ● Make an Arduino script or take a blank one ● Go to “file” -> ”New project” -> “import Arduino Script” ○ Pick the path of desired script and Arduino IDE install path. ● Select Board type and Device type ○ For our projects these will either be “Leonardo” or “Lillypad USB” Arduino Import Hierarchy Hierarchy Cont. For Arduino projects the Hierarchy is important for showing two different things: ● Arduino Base Code ○ Looking into the base code is important for finding microcontroller specific defaults. ● Better Organize your project source files ○ Main Script ○ Headers/ Src. Simulator ● Similar to AVR Studio 4’s simulator, used in EE346, the Atmel Studio 7 simulator provides a quick method of verifying your code. ○ Go to “tools” as seen in the toolbar the select “debugger” -> “simulator” ○ Same as other simulators, utilize the stepping tools as needed. -
Silicon Labs to Acquire Energy Micro, a Leader in Low Power ARM Cortex-Based Microcontrollers and Radios
June 7, 2013 Silicon Labs to Acquire Energy Micro, a Leader in Low Power ARM Cortex-Based Microcontrollers and Radios Companies' Combined Portfolios Enable the Internet of Things, Smart Energy and Portable Electronics AUSTIN, Texas & OSLO, Norway--(BUSINESS WIRE)-- Silicon Labs (Nasdaq: SLAB), a leader in high-performance, analog- intensive, mixed-signal ICs, today announced that it has signed a definitive agreement to acquire Energy Micro AS. Based in Oslo, Norway, the late-stage privately held company offers the industry's most power-efficient portfolio of 32-bit microcontrollers (MCUs) and is developing multi-protocol wireless RF solutions based on the industry-leading ARM® Cortex-M architecture. Energy Micro's energy-friendly MCU and radio solutions are designed to enable a broad range of power-sensitive applications for the Internet of Things (IoT), smart energy, home automation, security and portable electronics markets. This strategic acquisition accelerates Silicon Labs' growth opportunities and positions the company as the foremost innovator in energy-friendly embedded solutions. The growth of the IoT market, coupled with continued deployment of smart grid and smart energy infrastructure, is driving strong demand for energy-efficient processing and wireless connectivity technology to enable connected devices in which low-power capabilities are increasingly important. Industry experts predict that the number of connected devices for the IoT will top 15 billion nodes by 2015 and reach 50 billion nodes by 2020. Energy Micro's portfolio complements Silicon Labs' 32-bit Precision32™ MCU, Ember® ZigBee® and sub-GHz wireless products and targets a growing embedded market. The acquisition greatly expands Silicon Labs' MCU portfolio, adding nearly 250 ARM- based EFM32 Gecko MCU products ranging from extreme-low-power, small-footprint MCUs based on the ARM Cortex-M0+ core to higher-performance, energy-friendly MCUs powered by the Cortex-M4 core capable of DSP and floating-point operations. -
Embedded Market Study, 2013
2013 EMBEDDED MARKET STUDY Essential to Engineers DATASHEETS.COM | DESIGNCON | DESIGN EAST & DESIGN WEST | EBN | EDN | EE TIMES | EMBEDDED | PLANET ANALOG | TECHONLINE | TEST & MEASUREMENT WORLD 2013 Embedded Market Study 2 UBM Tech Electronics’ Brands Unparalleled Reach & Experience UBM Tech Electronics is the media and marketing services solution for the design engineering and electronics industry. Our audience of over 2,358,928 (as of March 5, 2013) are the executives and engineers worldwide who design, develop, and commercialize technology. We provide them with the essentials they need to succeed: news and analysis, design and technology, product data, education, and fun. Copyright © 2013 by UBM. All rights reserved. 2013 Embedded Market Study 5 Purpose and Methodology • Purpose: To profile the findings of the 2013 results of EE Times Group annual comprehensive survey of the embedded systems markets worldwide. Findings include types of technology used, all aspects of the embedded development process, tools used, work environment, applications, methods and processes, operating systems used, reasons for using and not using chips and technology, and brands and chips currently used by or being considered by embedded developers. Many questions in this survey have been trended over two to five years. • Methodology: A web-based online survey instrument based on the previous year’s survey was developed and implemented by independent research company Wilson Research Group from January 18, 2013 to February 13, 2013 by email invitation • Sample: E-mail invitations were sent to subscribers to UBM/EE Times Group Embedded Brands with one reminder invitation. Each invitation included a link to the survey. • Returns: 2,098 valid respondents for an overall confidence of 95% +/- 2.13%.