An ECMS-Based Controller for the Electrical System of a Passenger

Total Page:16

File Type:pdf, Size:1020Kb

An ECMS-Based Controller for the Electrical System of a Passenger An ECMS-Based Controller for the Electrical System of a Passenger Vehicle THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Jeremy R. Couch B.S. (Case Western Reserve University) 2011 Graduate Program in Mechanical Engineering The Ohio State University 2013 Master's Examination Committee: Professor Marcello Canova, Advisor Professor Giorgio Rizzoni, Committee Member Dr. Lisa Fiorentini, Committee Member Copyright by Jeremy R. Couch 2013 Abstract A primary concern for automotive manufacturers is increasing the fuel economy of their vehicles. One way to accomplish this is by reducing the losses associated with operating the ancillary loads such as the loads of the vehicle’s electrical system. In the electrical system of a vehicle, the alternator provides current to the electrical loads. The difference between the load current demand and the current provided by the alternator is either accepted or supplied by the battery. Therefore, the current demand of the electrical loads can be met by the alternator, the battery or a combination thereof. While improving the efficiency of the actual components of the electrical system (alternator, battery and electrical loads) is beneficial, additional gains can be realized with a smart control strategy for the alternator. Conventional alternator control strategies make little use of the battery; the power demand from the electrical loads is almost solely met by the alternator. However, since the alternator is directly connected to the engine, this results in increased fuel consumption, particularly at idle speed conditions. To this extent, more advanced control strategies could be implemented to make use of the battery energy buffer to limit the use of the alternator at low engine efficiency conditions. ii The focus of this thesis is the design of an advanced alternator control strategy. First, a model of a vehicle’s electrical system is developed with control design in mind. The system is modeled starting from a lumped-parameter, energy-based characterization of the battery and alternator. This is followed by a thorough calibration using experimental data and, finally, validation on a vehicle chassis dynamometer considering a standard (production) alternator control strategy. Next, a novel alternator control algorithm is designed by applying the Equivalent Consumption Minimization Strategy (ECMS), a well known energy management approach often used to control the powertrain of hybrid electric vehicles. This strategy works by determining the optimal alternator current to minimize the instantaneous fuel consumption while complying with input and state of charge constraints. The ECMS algorithm was extensively calibrated for a variety of drive cycles and load current profiles. This proposed control strategy was then compared in simulation to the production alternator controller and fuel consumption reductions of up to 2.18% have been shown. An adaptive ECMS (A-ECMS) is then defined, using feedback from the battery’s state of charge to dynamically tune the ECMS calibration parameter in real- time. Simulation results for the A-ECMS show fuel savings compared to the baseline alternator control strategy that are on the same order of magnitude as the ECMS. Furthermore, a robustness study verifies the A-ECMS is insensitive to model inaccuracies, poor tuning of the parameters and variations in the load current profile. iii Acknowledgements I have had a great experience as a graduate student at The Ohio State University and, in particular, the Center for Automotive Research (CAR). I owe much thanks to those who have helped me in my time here. Thank you to my advisor, Professor Marcello Canova, for bringing me into CAR, guiding me into a rewarding project, and supporting me throughout these two years. Thank you to Dr. Lisa Fiorentini for her infinite patience and for making time for me when she had none for herself. Thank you to Dr. Fabio Chiara for sharing his knowledge and sense of humor when things got tough. Thank you to Professor Giorgio Rizzoni for his insight on the ECMS and Dr. Shawn Midlam-Mohler for his expertise on hardware instrumentation. Thank you to Yann Guezennec for his valuable input on battery modeling and John Neal for helping conduct the battery testing. Thank you to Sabarish Gurusubramanian for his assistance with experimental testing and Quansheng Zhang for answering all my questions, no matter how simple. I would also like to thank Benjamin Grimm and Neeraj Agarwal for laying the foundation for my work. Finally, many thanks to Kyle Merical for keeping me sane during the more trying times. I appreciate you all. iv To my family. v Vita 2007................................................................Cloverleaf High School 2011................................................................B.S. Mechanical Engineering, Case Western Reserve University 2011 to present ..............................................Graduate Fellow, Department of Mechanical and Aerospace Engineering, Center for Automotive Research, The Ohio State University Fields of Study Major Field: Mechanical Engineering vi Table of Contents Abstract ............................................................................................................................... ii Acknowledgements ............................................................................................................ iv Vita ..................................................................................................................................... vi Table of Contents .............................................................................................................. vii List of Tables ..................................................................................................................... xi List of Figures ................................................................................................................... xv Nomenclature ................................................................................................................. xxiii Chapter 1: Introduction ....................................................................................................... 1 Section 1.1 Scope of Work .............................................................................................. 1 Section 1.2 Document Layout ......................................................................................... 2 Chapter 2: State of the Art .................................................................................................. 3 Section 2.1 Fuel Consumption in the Transportation Sector .......................................... 3 Section 2.2 Industry Response ........................................................................................ 7 2.2.1 Powertrain ........................................................................................................... 7 Powertrain Design ................................................................................................... 9 vii Energy Savings/Recovery ..................................................................................... 12 2.2.2 Ancillary Loads ................................................................................................ 18 Lubrication System ............................................................................................... 18 Cooling System ..................................................................................................... 20 AC System ............................................................................................................ 20 Alternator .............................................................................................................. 22 2.2.3 Electrical System Control ................................................................................. 23 Section 2.3 Equivalent Consumption Minimization Strategy ....................................... 26 2.3.1 The ECMS ........................................................................................................ 26 2.3.2 The Adaptive ECMS ........................................................................................ 29 Chapter 3: Model Development, Calibration and Validation ........................................... 32 Section 3.1 Experimental Setup .................................................................................... 32 3.1.1 Engine ............................................................................................................... 33 3.1.2 Vehicle .............................................................................................................. 35 3.1.3 Battery Testing ................................................................................................. 38 Section 3.2 Overview of the Vehicle Energy Simulator ............................................... 39 3.2.1 Driver ................................................................................................................ 40 3.2.2 Sensors .............................................................................................................. 40 3.2.3 Chrysler Control ............................................................................................... 41 viii 3.2.4 OSU Control ..................................................................................................... 41 3.2.5 Actuators ..........................................................................................................
Recommended publications
  • Wisdom & Woe from the Workshop
    Worn camshaft wisdom & woe from the workshop This month we will be looking at camshafts and how to select the correct camshaft for your application. Most TVR applications utilise relatively high performance camshafts, so the longevity of these components is often compromised. This means that most TVR engines will require camshaft replacement at some point in their lifetime... Many TVR engines (e.g. Rover V8 and Cologne or Essex V6) have a single camshaft located in the centre of the engine block, with both intake and exhaust lobes on the same camshaft. This type of set-up translates the motion of the cam lobes to the intake and exhaust valves via followers, pushrods and rocker arms. Other TVR engines (e.g. Speed Six) have two separate camshafts located in the top of the cylinder head, with the intake lobes on one camshaft and the exhaust lobes on the other camshaft. This type of set-up translates the motion of the cam lobes to the intake and exhaust valves via solid finger followers. Rover V8 When selecting a non-standard camshaft for your application you first need to ensure that you have the ability to modify the fuel quantity and ignition timing, particularly at full load and preferably throughout the entire load/rpm range. If the camshaft is not significantly different from the original specification, then a slight adjustment of the fuel pressure and ignition advance at peak torque may be sufficient. If the camshaft is significantly different from the original then you may require some significant work in terms of fuel and ignition adjustments, to ensure that you get the most out of your chosen camshaft (e.g.
    [Show full text]
  • Modeling and Analysis of Composite Automotive V8
    MODELING AND ANALYSIS OF COMPOSITE AUTOMOTIVE V8 ENGINE B.Sreenivasulu1, K.Anil Kumar2, P.Paramesh3 1,2,3 Assistant Professor In Mechanical Engineering Dept, Sphoorthy Enginering College, Hyderabad, (India) ABSTRACT Heat losses are a major limiting factor for the efficiency of internal combustion engines. Furthermore, heat transfer phenomena cause thermally induced mechanical stresses compromising the reliability of engine components. The ability to predict heat transfer in engines plays an important role in engine development. Today, predictions are increasingly being done with numerical simulations at an ever earlier stage of engine development. These methods must be based on the understanding of the principles of heat transfer. In the present work V type multi cylinder engine assembly is modeled. This model is imported to ANSYS and done the steady state Thermal and Structural analysis for predicting thermal stress, temperature distribution, heat flux by comparing with two different material (FU 2451) from existing material (Aluminium).Heat transfer is one major important aspect of energy transformation in internal combustion (IC) engines. Locating hot spots in a solid wall can be used as an impetus to design a better cooling system. Fast transient heat flux between the combustion chamber and the solid wall must be investigated to understand the effects of the non-steady thermal environment. Keywords: Cylinder, Combustion Chamber, FU 2451. I INTRODUCTION A V8 engine is a V engine with eight barrels mounted on the crankcase in two banks of four chambers, much of the time set at a privilege plot to one another yet frequently at a narrower edge, with each of the eight cylinders driving a typical crankshaft.
    [Show full text]
  • Lean and Mean India Armed Forces Order New Light-Attack Chopper Developed by HAL
    MOBILITY ENGINEERINGTM ENGLISH QUARTERLY Vol : 5 Issue : 1 January - March 2018 Free Distribution Lean and mean India armed forces order new light-attack chopper developed by HAL HCCI Hands-off engines driving is here Overcoming Cadillac’s Super Cruise, the challenges autonomous-vehicle tech overview ME Altair Ad 0318.qxp_Mobility FP 1/5/18 2:58 PM Page 1 CONTENTS Features 33 Advancing toward driverless cars 46 Electrification not a one-size- AUTOMOTIVE AUTONOMY fits-all solution OFF-HIGHWAY Autonomous-driving technology is set to revolutionize the ELECTRIFICATION auto industry. But getting to a true “driverless” future will Efforts in the off-highway industry have been under way be an iterative process based on merging numerous for decades, but electrification technology still faces individual innovations. implementation challenges. 36 Overcoming the challenges of 50 700 miles, hands-free! HCCI combustion AUTOMOTIVE ADAS AUTOMOTIVE PROPULSION GM’s Super Cruise turns Cadillac drivers into passengers in a Homogenous-charge compression ignition (HCCI) holds well-engineered first step toward greater vehicle autonomy. considerable promise to unlock new IC-engine efficiencies. But HCCI’s advantages bring engineering obstacles, particularly emissions control. 40 Simulation for tractor cabin vibroacoustic optimization OFF-HIGHWAY SIMULATION Cover The Indian Army and Air Foce recently ordered more than a 43 Method of identifying and dozen copies of the new Light stopping an electronically Combat Helicopter (LCH) controlled diesel engine in developed
    [Show full text]
  • Cylinder Deactivation: a Technology with a Future Or a Niche Application?: Schaeffler Symposium
    172 173 Cylinder Deactivation A technology with a future or a niche application? N O D H I O E A S M I O U E N L O A N G A D F J G I O J E R U I N K O P J E W L S P N Z A D F T O I E O H O I O O A N G A D F J G I O J E R U I N K O P O A N G A D F J G I O J E R O I E U G I A F E D O N G I U A M U H I O G D N O I E R N G M D S A U K Z Q I N K J S L O G D W O I A D U I G I R Z H I O G D N O I E R N G M D S A U K N M H I O G D N O I E R N G E Q R I U Z T R E W Q L K J P B E Q R I U Z T R E W Q L K J K R E W S P L O C Y Q D M F E F B S A T B G P D R D D L R A E F B A F V N K F N K R E W S P D L R N E F B A F V N K F N T R E C L P Q A C E Z R W D E S T R E C L P Q A C E Z R W D K R E W S P L O C Y Q D M F E F B S A T B G P D B D D L R B E Z B A F V R K F N K R E W S P Z L R B E O B A F V N K F N J H L M O K N I J U H B Z G D P J H L M O K N I J U H B Z G B N D S A U K Z Q I N K J S L W O I E P ArndtN N BIhlemannA U A H I O G D N P I E R N G M D S A U K Z Q H I O G D N W I E R N G M D A M O E P B D B H M G R X B D V B D L D B E O I P R N G M D S A U K Z Q I N K J S L W O Q T V I E P NorbertN Z R NitzA U A H I R G D N O I Q R N G M D S A U K Z Q H I O G D N O I Y R N G M D E K J I R U A N D O C G I U A E M S Q F G D L N C A W Z Y K F E Q L O P N G S A Y B G D S W L Z U K O G I K C K P M N E S W L N C U W Z Y K F E Q L O P P M N E S W L N C T W Z Y K M O T M E U A N D U Y G E U V Z N H I O Z D R V L G R A K G E C L Z E M S A C I T P M O S G R U C Z G Z M O Q O D N V U S G R V L G R M K G E C L Z E M D N V U S G R V L G R X K G T N U G I C K O
    [Show full text]
  • And Heavy-Duty Truck Fuel Efficiency Technology Study – Report #2
    DOT HS 812 194 February 2016 Commercial Medium- and Heavy-Duty Truck Fuel Efficiency Technology Study – Report #2 This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings and conclusions expressed in this publication are those of the author and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its content or use thereof. If trade or manufacturers’ names or products are mentioned, it is because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers. Suggested APA Format Citation: Reinhart, T. E. (2016, February). Commercial medium- and heavy-duty truck fuel efficiency technology study – Report #2. (Report No. DOT HS 812 194). Washington, DC: National Highway Traffic Safety Administration. TECHNICAL REPORT DOCUMENTATION PAGE 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. DOT HS 812 194 4. Title and Subtitle 5. Report Date Commercial Medium- and Heavy-Duty Truck Fuel Efficiency February 2016 Technology Study – Report #2 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Thomas E. Reinhart, Institute Engineer SwRI Project No. 03.17869 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Southwest Research Institute 6220 Culebra Rd. 11. Contract or Grant No. San Antonio, TX 78238 GS-23F-0006M/DTNH22- 12-F-00428 12. Sponsoring Agency Name and Address 13.
    [Show full text]
  • The 4.7 Liter “Next Generation” and “Semi-Hemi” V8 Engine (Dodge - Jeep)
    The 4.7 Liter “Next Generation” and “semi-Hemi” V8 Engine (Dodge - Jeep) Chrysler’s first truly new V-8 since the 1960s, the “Corsair” 4.7 had better power, gas mileage, and emissions than the 5.2 liter engine it replaced; a new truck V6, the 3.7 , was based on it, replacing the 3.9 liter V6 based on the 5.2. The engine was reportedly designed as a replacement for the venerable 4-liter AMC I-6, with the 3.7 to replace the AMC 2.5. EGR and knock sensors were added in 2005. In 2007 (model year 2008), Chrysler replaced the 4.7 liter V8 with a new version. Power went from 230 hp to 290 hp (and up to 320 lb-feet of torque) with that move; gas mileage went up, and noise and vibration went down. The new 4.7-liter V-8 features 5.7-Hemi features such as two spark plugs per cylinder, with a high 9.8:1 compression ratio, and better port flow; but it has a new slant/squish combustion system design. Refinements included significant revisions to the induction system, reduced reciprocating mass via a lightweight piston/rod assembly, and reduced accessory drive speed. A new normally open valve lash adjuster system smooths the engine at idle, while electronic throttle control is needed for new stability systems. The engine will be manufactured at the Mack Avenue Engine Complex in Detroit. Chrysler's New Cammer: Mopar’s first all-new production V8 in 41 years By RICK EHRENBERG. Copyright © 1999 by Rick Ehrenberg.
    [Show full text]
  • Review of Advancement in Variable Valve Actuation of Internal Combustion Engines
    applied sciences Review Review of Advancement in Variable Valve Actuation of Internal Combustion Engines Zheng Lou 1,* and Guoming Zhu 2 1 LGD Technology, LLC, 11200 Fellows Creek Drive, Plymouth, MI 48170, USA 2 Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA; [email protected] * Correspondence: [email protected] Received: 16 December 2019; Accepted: 22 January 2020; Published: 11 February 2020 Abstract: The increasing concerns of air pollution and energy usage led to the electrification of the vehicle powertrain system in recent years. On the other hand, internal combustion engines were the dominant vehicle power source for more than a century, and they will continue to be used in most vehicles for decades to come; thus, it is necessary to employ advanced technologies to replace traditional mechanical systems with mechatronic systems to meet the ever-increasing demand of continuously improving engine efficiency with reduced emissions, where engine intake and the exhaust valve system represent key subsystems that affect the engine combustion efficiency and emissions. This paper reviews variable engine valve systems, including hydraulic and electrical variable valve timing systems, hydraulic multistep lift systems, continuously variable lift and timing valve systems, lost-motion systems, and electro-magnetic, electro-hydraulic, and electro-pneumatic variable valve actuation systems. Keywords: engine valve systems; continuously variable valve systems; engine valve system control; combustion optimization 1. Introduction With growing concerns on energy security and global warming, there are global efforts to develop more efficient vehicles with lower regulated emissions, including hybrid electrical vehicles, electrical vehicles, and fuel cell vehicles. Hybrid electrical vehicles became a significant part of vehicle production because of their overall efficiency, and they still pose a significant cost penalty, resulting in a stagnant market penetration of 3.2% and 2.7% in 2013 and 2018, respectively, in the United States (US), for example [1].
    [Show full text]
  • Engineering the Motivo Way Praveen Penmetsa’S U.S.-Based Team Develops Unique Mobility Solutions
    MOBILITY ENGINEERINGTM ENGLISH QUARTERLY Vol : 5 Issue : 2 April - June 2018 Free Distribution Engineering the Motivo Way Praveen Penmetsa’s U.S.-based team develops unique mobility solutions New-age stationary power Developing Mazda’s drones for SpCCI engine passenger transport ready for production ME Altair Ad 0618.qxp_Mobility FP 3/29/18 2:49 PM Page 1 CONTENTS Features 30 Roadmap for future Indian 46 Developing an alternative engine passenger drone sector concept COMMERCIAL VEHICLE PROPULSION AEROSPACE AUTONOMY Ricardo’s CryoPower engine leverages two unique combustion techniques for reduced emissions and fuel consumption—liquid nitrogen and split combustion. 32 Internet of Vehicles: connected Long-haul trucking and stationary power generation will vehicles & data - driven solutions be the first beneficiaries of the technologies. AUTOMOTIVE CONNECTIVITY 49 Spark of genius AUTOMOTIVE PROPULSION 34 Development and verification of Mazda’s Skyactiv-X—the nexus of gasoline and diesel electronic braking system ECU tech—remains on track for 2019 production. We test-drive software for commercial vehicle recent prototypes to check development status. COMMERCIAL VEHICLE CHASSIS 52 Plain bearings for aerospace 42 Engineering the Motivo Way applications AEROSPACE MATERIALS AUTOMOTIVE ENGINEERING Broad capabilities, unparalleled project diversity and an innovative culture have put this thriving California “idea factory” in high demand. Cover Sway Motorsports’ three- wheeled electric motorcycle leans into a curve thanks to a suspension design developed
    [Show full text]
  • The Oakland V-Eightby Tim Dye
    The Oakland V-Eightby Tim Dye any of the car enthusiasts you meet flathead V8 motor produced in great numbers M at the average car show today have was introduced by Ford in 1932, and was in never heard of an Oakland. This is under- use for years. Many of these cars survive to- standable since the car was last produced in day, so many in fact that a club exist just for 1931, many years before most of the people them. Members of the Early Ford V8 club at the show were born. With that in mind it can be found at most of the open car shows I is also understandable that they know noth- attend with the Oakland. It is these folks that ing of the unique motor powering the Oak- are most taken aback by the Oakland V8. It is land in its last two years of production, 1930 almost comical how long they will just stand and ‘31. When describing our 1931 Oakland and stare into the engine compartment, and to car enthusiast, they think that it is pretty are always amazed to learn that Oakland had unique, upon mentioning the V8 they auto- a flathead V8 that pre-dates their Fords. matically assume you have a custom car, and The Oakland V8 is a 251 cubic inch motor are quite surprised when you tell them it is that develops 85 horsepower. In comparison, original equipment. the Model “A” had around 40 horsepower, There had been V8s for years, but one of making the Oakland a very racy car in its day.
    [Show full text]
  • Naturally Aspirated Gasoline Engines and Cylinder Deactivation
    WORKING PAPER 2016-12 Naturally aspirated gasoline engines and cylinder deactivation Authors: Aaron Isenstadt and John German (ICCT); Mihai Dorobantu (Eaton) Date: 21 June 2016 Keywords: Passenger vehicles, advanced technologies, fuel efficiency, technology innovation Introduction The technology assessments Background conducted by the agencies to inform In 2012, the U.S. Environmental The internal combustion engine (ICE) the 2017–2025 rule were conducted Protection Agency (EPA) and the is designed to convert chemical five years ago. The ICCT is now col- Department of Transportation’s energy (fuel) into kinetic energy laborating with automotive suppliers National Highway Traffic Safety (motion of the vehicle). Direct losses to publish a series of working papers Administration (NHTSA) finalized a in engine efficiency are due to the evaluating technology progress and joint rule establishing new greenhouse inherent thermal efficiency, intake new developments in engines, trans- gas and fuel economy standards for and exhaust pumping losses, friction missions, vehicle body design and vehicles.1 The new standards apply within the engine, and engine-driven lightweighting, and other measures. to new passenger cars, light-duty accessory losses. The biggest ineffi- Each paper in the series will evaluate: trucks, and medium-duty passenger ciencies arise from thermal efficiency vehicles, covering model years 2012 • How the current rate of progress limits and intake and exhaust through 2021, with a mid-term review (cost, benefits, market penetra- pumping losses. Reducing the impact in 2017. tion) compares to projections in of these sources of loss is the focus of the rule this briefing. Assuming the fleet mix remains unchanged, the standards require • Recent technology develop- ICEs are heat engines.
    [Show full text]
  • Ace155 Wang 2021 O
    2021 DOE Vehicle Technologies Office Annual Merit Review Project ID: ace155 Low-Mass and High-Efficiency Engine for Medium-Duty Truck Applications Qigui Wang/Ed Keating General Motors 6/24/2021 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. This presentation does not contain any proprietary, confidential, or otherwise restricted information Overview Timeline Barriers/Technical Targets Project start date: 10/2019 Combustion Technology – Advanced gasoline stoichiometric dilute combustion Project end date: 12/2023 to achieve the target fuel economy requirement & Percent complete: ~30% deliver outstanding value to the customer Materials Technology Budget – Lightweight, high performance, and low cost Total project funding Partners
    [Show full text]
  • 4.0 & 4.6 Litre V8 Engine Overhaul Manual
    4.0 & 4.6 LITRE V8 ENGINE OVERHAUL MANUAL These engines having Serial No. Prefix 42D, 46D, 47D, 48D, 49D, 50D or 51D are fitted to the following models: New Range Rover Discovery - North American Specification - 1996 MY Onwards Defender - North American Specification - 1997 MY Onwards Defender V8i Automatic Publication Part No. LRL 0004ENG - 3rd Edition Published by Rover Technical Communication 1998 Rover Group Limited INTRODUCTION CONTENTS Page INFORMATION INTRODUCTION...................................................................................................... 1 REPAIRS AND REPLACEMENTS........................................................................... 2 SPECIFICATION...................................................................................................... 2 INTRODUCTION INTRODUCTION References How to use this Manual With the engine and gearbox assembly removed, the crankshaft pulley end of the engine is referred to To assist in the use of this Manual the section title is as the front. References to RH and LH banks of given at the top and the relevant sub-section is given cylinders are taken viewing from the flywheel end of at the bottom of each page. the engine. This manual contains procedures for overhaul of the Operations covered in this Manual do not include V8 engine on the bench with the gearbox, clutch, reference to testing the vehicle after repair. It is inlet manifold, exhaust manifolds, coolant pump, essential that work is inspected and tested after starter motor, alternator, and all other ancillary
    [Show full text]