Winds of Change Ricardo Helps Develop Next-Generation Wind Energy Technology

Total Page:16

File Type:pdf, Size:1020Kb

Winds of Change Ricardo Helps Develop Next-Generation Wind Energy Technology Q1, 2008 Q1, RicaRdo QuaRteRly Review winds of Change Ricardo helps develop next-generation wind energy technology India opens up: SIAM outlook for Indian auto industry New Ricardo office Hybrids: Why an all new development process is needed Biofuels: Why automakers should be concerned Interview: Dr HS Lee, president, R&D, Hyundai Contents Ricardo Quarterly Review Q1, 2008 08 14 06 20 news features 04 Industry news 08 Wind power: the next generation Detroit’s green agenda; Land Rover diesel hybrid, Ford’s Wind power may be a renewable source of energy, but the downsized SUV; Chrysler’s concepts; Tata launches weather is rarely predictable. Ricardo has been assisting People’s Car in New Delhi; supersports cars go diesel General Compression on novel technology which allows energy to be harvested and stored for periods of peak 30 Ricardo news demand. Anthony Smith reports AFS Trinity Extreme HybridTM demonstrator completed in fi ve months; cost-reduction co-operation on lithium-ion batteries; 17 Ricardo India Ricardo wins motorsport export award; US manufacturing As Ricardo inaugurates its India division, we take a close look collaboration; clean diesel breakthrough at the Indian automotive scene and the fresh way of doing business that the new organisation will usher in questions and answers 20 The challenge of biofuels 06 HS Lee, head of R&D at Hyundai-Kia Once seen as the answer to the world’s environmental President of corporate R&D at increasingly successful Korean problems, biofuels are coming under increasing scrutiny automaker Hyundai-Kia Automotive, HS Lee tells Tony Lewin for their well-to-wheels performance and possible adverse about hybrids, fuel cell vehicles, CO2 saving – and the launch effects on engine durability. Jesse Crosse speaks to Ricardo’s of the group’s luxury Genesis series experts in the fi eld 14 Dilip Chenoy, SIAM 26 Hybrid vehicle development The Director General of the Society of Indian Automotive The step-change in systems integration that comes with hybrid Manufacturers is presiding over an unprecedented boom in and energy-effi cient vehicles means a fundamental rethink India’s auto industry. We hear his views on today’s successes of the way we develop our vehicles. Andy Chien of Ricardo – including the Tata Nano – and India’s prospects for the future Strategic consulting anticipates a revolution in the making Head offi ce: Conceived and produced for Ricardo by: Ricardo plc, Shoreham-by-Sea, TwoTone Media Ltd West Sussex, BN43 5FG, Editor: Tony Lewin United Kingdom Contributors: Tel: +44 (0)1273 455611 Mark Roberts, Anthony Smith, Ricardo contacts and locations: Jesse Crosse, Andy Chien www.ricardo.com/contacts TwoTone Media Ltd contacts: RQ subscriptions: www.ricardo.com/rq Anthony Smith: [email protected] Sales enquiries: [email protected] Tony Lewin: [email protected] Industry News Land Rover LRX (left), Cadillac Provoq (below) and Ford Explorer America (above) all caught Detroit’s green mood. Detroit’s green agenda etroit 2008 could go down in claiming enhanced off- Dhistory as the event where North road performance as America at last showed it was taking well as the potential for energy saving – and even climate 120 g/km CO2 emissions. be many years change – seriously. Production is likely early before the fuel cell Hybrids were on everyone’s stands, next decade, assuming powertrain makes it into many of them volume production Land Rover’s new owners production, but the smaller models; downsizing was much in approve the programme. and lighter unitary platform evidence, with GM showing a fuel Ford’s Explorer America concept offers useful downsizing of dimensions cell Cadillac and cancelling a V8 sought to redefi ne the iconic SUV, and consumption and will be in the programme, and even Hummer was ditching the big V8 and weighty ladder showrooms – with gasoline power lured into the green camp with a bio- frame chassis for a two litre, four – next year. fuelled concept. cylinder EcoBoost motor and car-like However, just to prove business Notable, too, was the advance of eco unitary construction, giving a projected as usual continues in Detroit, Ford thinking into the gas-guzzling world of 30 per cent fuel saving. unwrapped a fresh V8 F150 pickup, the SUV. Land Rover struck the perfect Premium nameplate Cadillac took Chrysler showed its big bold new Ram note with its smaller, lighter LRX concept, two major steps forward with its pickup and Chevrolet revealed its most its combined electric and diesel drive Provoq, another crossover SUV. It will powerful Corvette ever. Chrysler shows eco concepts ewly independent Chrysler LLC Nshowed an eco-minded concept for each of its three brands. Jeep’s Renegade is electric, with a Bluetec diesel engine as a range extender, the Chrysler ecoVoyager (right) is a roomy electric people carrier with its batteries topped up by a fuel cell, while the all- electric Dodge Zeo is a sporty 2+2 coupe with a claimed range of 400 km. BMW joins DCT set Ford: hybrids to make money Ferrari burns ethanol Go-it-alone hybrid The new M3 convertible is the Ford’s hybrid vehicle operations Surprising the crowds at Detroit Ex-Aston Martin and BMW fi rst BMW model to feature the will move into profi t by the end was a Ferrari F430 Spider tuned designer Henrik Fisker has company’s new M Double Clutch of 2008, according to Nancy to run on E85 bioethanol. Race- developed a pure electric luxury Transmission. The seven speed Gioia, director of sustainable derived modifi cations to the fuel sports coupé for his California gearbox has six different shift technologies. The company has feed and engine management organisation Fisker Automotive. programs, allowing the driver to reduced the cost of hybrids by systems allow the engine to The Karma claims 0-100 km/h in News in brief in News fi ne-tune the change. about 30 per cent since 2004. produce an extra 10 hp. 5.8 seconds. 4 RICARDO QUARTERLY REVIEW • Q1, 2008 RICARDO $2500 People’s Car QUARTERLY stuns auto industry REVIEW erhaps for the fi rst time ever, equipment levels, weighs just 580 kg The task of RQ is to highlight the latest Pthe world car business turned – enabling it to claim 5 litres per 100 thinking in automotive engineering and its focus on New Delhi in January km consumption. The gasoline version technology worldwide – both within for the presentation of Tata’s long- meets Euro 4 emissions standards as Ricardo and among other leading companies. By presenting an up-to-date awaited People’s Car. Priced at $2500, well as local Indian crash safety norms. mix of news, profi les and interviews a fi gure many analysts said would be Tata is working on a diesel version with top business leaders we paint an impossible to achieve, the four-seater as well as better-equipped, more interesting and exciting picture of R&D Nano has a rear-mounted twin-cylinder expensive editions for export. These activity at a world-class automotive gasoline engine and CVT transmission. will have airbags and other safety engineering services provider. The four-door hatchback runs on tiny features not required for the Indian It is a formula that has certainly been a hit with the worldwide automotive 12-inch wheels and, market. Tata Motors sees an community: in the fi ve years since RQ thanks to eventual volume of one was launched we have had to increase simplifi ed million units a year. our print run to 14,000 copies to keep pace with the demand to read about Ricardo and its activities. Client confi dentiality is of the utmost importance to Ricardo, which means that we can only report on a small fraction of the work carried out by the company. So we are especially grateful to those Ricardo customers who have kindly agreed to co-operate with RQ and allow their programmes to be highlighted in print: without such help from customers it would not be possible to present such a fascinating insight into the way vehicles are conceived and developed. uses spark ignition only for start-up and concept combines a lithium-ion battery Technology trends under full load. with a 120 kW electric motor and a 1.3 litre n what has been a remarkable few GM and Volkswagen have also shown diesel engine to give a range of 55 km in Imonths for engineering innovations, combined consumption systems, allowing zero-emission electric mode before the new combustion systems and plug-in gasoline-type engines to use compression combustion engine has to be fi red up. Audi’s hybrids have emerged as important trends ignition under certain conditions; further Metroproject quattro will be the basis for the approaching production feasibility. away is VW’s CCS, which runs on special new A1 small car, the Tokyo show concept Mercedes-Benz claims a 127 g/km CO2 synthetic fuel for very low emissions. being a through-the-road hybrid with a emissions fi gure for its DiesOtto engine in Detroit saw the second showing of GM’s conventional 1.4 litre gasoline drivetrain at the S-Class-sized F700 concept car: the 1.8 Flextreme plug-in hybrid proposal, this the front and a 30 kW electric motor driving litre four-cylinder unit runs on gasoline but time wearing the US Saturn badge. The the rear wheels. Supersports cars go diesel ne trend, two extremes: Audi has created the world’s Ofi rst diesel-engined supercar by installing its race-inspired V12 diesel into the R8 two-seater (far right), while Mitsubishi’s Concept RA (right), despite its mid- engined looks, uses the new Lancer four wheel drive platform with the 2.2 litre clean diesel mounted up front.
Recommended publications
  • Wisdom & Woe from the Workshop
    Worn camshaft wisdom & woe from the workshop This month we will be looking at camshafts and how to select the correct camshaft for your application. Most TVR applications utilise relatively high performance camshafts, so the longevity of these components is often compromised. This means that most TVR engines will require camshaft replacement at some point in their lifetime... Many TVR engines (e.g. Rover V8 and Cologne or Essex V6) have a single camshaft located in the centre of the engine block, with both intake and exhaust lobes on the same camshaft. This type of set-up translates the motion of the cam lobes to the intake and exhaust valves via followers, pushrods and rocker arms. Other TVR engines (e.g. Speed Six) have two separate camshafts located in the top of the cylinder head, with the intake lobes on one camshaft and the exhaust lobes on the other camshaft. This type of set-up translates the motion of the cam lobes to the intake and exhaust valves via solid finger followers. Rover V8 When selecting a non-standard camshaft for your application you first need to ensure that you have the ability to modify the fuel quantity and ignition timing, particularly at full load and preferably throughout the entire load/rpm range. If the camshaft is not significantly different from the original specification, then a slight adjustment of the fuel pressure and ignition advance at peak torque may be sufficient. If the camshaft is significantly different from the original then you may require some significant work in terms of fuel and ignition adjustments, to ensure that you get the most out of your chosen camshaft (e.g.
    [Show full text]
  • Modeling and Analysis of Composite Automotive V8
    MODELING AND ANALYSIS OF COMPOSITE AUTOMOTIVE V8 ENGINE B.Sreenivasulu1, K.Anil Kumar2, P.Paramesh3 1,2,3 Assistant Professor In Mechanical Engineering Dept, Sphoorthy Enginering College, Hyderabad, (India) ABSTRACT Heat losses are a major limiting factor for the efficiency of internal combustion engines. Furthermore, heat transfer phenomena cause thermally induced mechanical stresses compromising the reliability of engine components. The ability to predict heat transfer in engines plays an important role in engine development. Today, predictions are increasingly being done with numerical simulations at an ever earlier stage of engine development. These methods must be based on the understanding of the principles of heat transfer. In the present work V type multi cylinder engine assembly is modeled. This model is imported to ANSYS and done the steady state Thermal and Structural analysis for predicting thermal stress, temperature distribution, heat flux by comparing with two different material (FU 2451) from existing material (Aluminium).Heat transfer is one major important aspect of energy transformation in internal combustion (IC) engines. Locating hot spots in a solid wall can be used as an impetus to design a better cooling system. Fast transient heat flux between the combustion chamber and the solid wall must be investigated to understand the effects of the non-steady thermal environment. Keywords: Cylinder, Combustion Chamber, FU 2451. I INTRODUCTION A V8 engine is a V engine with eight barrels mounted on the crankcase in two banks of four chambers, much of the time set at a privilege plot to one another yet frequently at a narrower edge, with each of the eight cylinders driving a typical crankshaft.
    [Show full text]
  • Lean and Mean India Armed Forces Order New Light-Attack Chopper Developed by HAL
    MOBILITY ENGINEERINGTM ENGLISH QUARTERLY Vol : 5 Issue : 1 January - March 2018 Free Distribution Lean and mean India armed forces order new light-attack chopper developed by HAL HCCI Hands-off engines driving is here Overcoming Cadillac’s Super Cruise, the challenges autonomous-vehicle tech overview ME Altair Ad 0318.qxp_Mobility FP 1/5/18 2:58 PM Page 1 CONTENTS Features 33 Advancing toward driverless cars 46 Electrification not a one-size- AUTOMOTIVE AUTONOMY fits-all solution OFF-HIGHWAY Autonomous-driving technology is set to revolutionize the ELECTRIFICATION auto industry. But getting to a true “driverless” future will Efforts in the off-highway industry have been under way be an iterative process based on merging numerous for decades, but electrification technology still faces individual innovations. implementation challenges. 36 Overcoming the challenges of 50 700 miles, hands-free! HCCI combustion AUTOMOTIVE ADAS AUTOMOTIVE PROPULSION GM’s Super Cruise turns Cadillac drivers into passengers in a Homogenous-charge compression ignition (HCCI) holds well-engineered first step toward greater vehicle autonomy. considerable promise to unlock new IC-engine efficiencies. But HCCI’s advantages bring engineering obstacles, particularly emissions control. 40 Simulation for tractor cabin vibroacoustic optimization OFF-HIGHWAY SIMULATION Cover The Indian Army and Air Foce recently ordered more than a 43 Method of identifying and dozen copies of the new Light stopping an electronically Combat Helicopter (LCH) controlled diesel engine in developed
    [Show full text]
  • Electric Drive Vehicles and Their Infrastructure Issues (March 2010)
    U.S. Department of Energy’s Vehicle Technologies Program - Clean Cities Webinar – Electric Drive Vehicles and Their Infrastructure Issues (March 2010) Jim Francfort and Don Karner Advanced Vehicle Testing Activity March 24, 2010 This presentation does not contain any proprietary or sensitive information Presentation Outline • AVTA Background and Testing • Regulations, Codes & Standards • OSHA, National Electric Code, UL, SAE • Permitting • Industry Status • BEV, EREV, PHEV, HEV technologies • Capital & Fuel Costs per Mile • BEV & PHEV Announcements • Smart Charging • Fleet Infrastructure • Acknowledgement & Questions 2 AVTA Background and Goals • Background – The Advanced Vehicle Testing Activity (AVTA) is part of DOE’s Vehicle Technologies Program – The Idaho National Laboratory (INL) and Electric Transportation Engineering Corporation (ETEC) conduct the AVTA per DOE guidance • The AVTA goals: – Provide benchmark data to technology modelers, research and development programs, vehicle manufacturers (via VSATT), and target and goal setters – Assist fleet managers in making informed early adaptor vehicle purchase, deployment and operating decisions 3 AVTA Testing Process • Testing includes: – Baseline performance via closed test tracks and dynamometers – Accelerated testing uses dedicated drivers to accumulate high mileage in compressed times – Fleet testing allows large numbers of vehicles to be tested in many environments / missions at low cost – Battery testing when appropriate at new and new of life • Different testing methods are used
    [Show full text]
  • Cylinder Deactivation: a Technology with a Future Or a Niche Application?: Schaeffler Symposium
    172 173 Cylinder Deactivation A technology with a future or a niche application? N O D H I O E A S M I O U E N L O A N G A D F J G I O J E R U I N K O P J E W L S P N Z A D F T O I E O H O I O O A N G A D F J G I O J E R U I N K O P O A N G A D F J G I O J E R O I E U G I A F E D O N G I U A M U H I O G D N O I E R N G M D S A U K Z Q I N K J S L O G D W O I A D U I G I R Z H I O G D N O I E R N G M D S A U K N M H I O G D N O I E R N G E Q R I U Z T R E W Q L K J P B E Q R I U Z T R E W Q L K J K R E W S P L O C Y Q D M F E F B S A T B G P D R D D L R A E F B A F V N K F N K R E W S P D L R N E F B A F V N K F N T R E C L P Q A C E Z R W D E S T R E C L P Q A C E Z R W D K R E W S P L O C Y Q D M F E F B S A T B G P D B D D L R B E Z B A F V R K F N K R E W S P Z L R B E O B A F V N K F N J H L M O K N I J U H B Z G D P J H L M O K N I J U H B Z G B N D S A U K Z Q I N K J S L W O I E P ArndtN N BIhlemannA U A H I O G D N P I E R N G M D S A U K Z Q H I O G D N W I E R N G M D A M O E P B D B H M G R X B D V B D L D B E O I P R N G M D S A U K Z Q I N K J S L W O Q T V I E P NorbertN Z R NitzA U A H I R G D N O I Q R N G M D S A U K Z Q H I O G D N O I Y R N G M D E K J I R U A N D O C G I U A E M S Q F G D L N C A W Z Y K F E Q L O P N G S A Y B G D S W L Z U K O G I K C K P M N E S W L N C U W Z Y K F E Q L O P P M N E S W L N C T W Z Y K M O T M E U A N D U Y G E U V Z N H I O Z D R V L G R A K G E C L Z E M S A C I T P M O S G R U C Z G Z M O Q O D N V U S G R V L G R M K G E C L Z E M D N V U S G R V L G R X K G T N U G I C K O
    [Show full text]
  • Extreme Hybrid™, XH™, XH150™, XH250™, Fast Energy™, Fast Energy Storage™, Powered by XH™, Just Plug It In™ Are Trademarks Pending of AFS Trinity Power Corporation
    1 Extreme Hybrid™, XH™, XH150™, XH250™, Fast Energy™, Fast Energy Storage™, Powered by XH™, Just Plug It In™ are trademarks pending of AFS Trinity Power Corporation. © 2007 AFS Trinity Power Corporation. The First Hybrid that Will Pay for Itself The Extreme Hybrid™ Drive Train by AFS Trinity. Above: Schematic of Power Electronics & Controls of XH™ Drive Train from AFS Trinity Patent Filings, September 14, 2006. The low-cost lithium batteries—protected from excessive resistive heating by the ultracapacitors— will make the XH-150™ much less expensive to purchase. In addition, its much greater fuel economy and extremely low maintenance will make it much less expensive to operate. Consequently, the XH™ drive train will, for the first time, make it possible for hybrid cars to pay for themselves. 2 2 Extreme Hybrid™, XH™, XH150™, XH250™, Fast Energy™, Fast Energy Storage™, Powered by XH™, Just Plug It In™ are trademarks pending of AFS Trinity Power Corporation. © 2007 AFS Trinity Power Corporation. XH-150™ Consumer Payback Analysis 4 + Major Dividends to Business and Labor Cumulative savings with gas $40,000 @ $5.00/gal & electricity @ $0.10/kWh ($37,628) $35,000 Payback est. in 3.5 years @ $2.85/gal $30,000 Cumulative savings with $25,000 Payback est. in gas @ $2.85/gal & 2.5 years @ $5.00/gal electricity @ $0.06/kWh $20,000 ($22,956) $15,000 $8,666 drive train $10,000 price premium Cumulative Operating Savings Cumulative $5,000 $4,666 price premium $- (reflects est. $4,000 of 1 2 3 4 5 6 7 8 9 10 hybrid tax incentives) 1.
    [Show full text]
  • California's Clean Vehicle Industry
    California’s Clean Vehicle Industry How the Drive to Reduce Automotive Global Warming Pollution Can Benefit the California Economy A Report by: © 2004 CALSTART, Inc. This report was independently researched and the assessment and analysis independently performed by CALSTART staff. Matt Peak served as the principal investigator and writer, in collaboration with Chris Buntine. Bill Van Amburg and John Boesel provided oversight and editorial review. Funding for this report was provided primarily by the Energy Foundation, with supplemental funding from the Natural Resources Defense Council. California’s Clean Vehicle Industry Table of Contents Executive Summary................................................................................... 4 1. Introduction ........................................................................................... 8 2. California’s Emerging Clean Car Cluster ...........................................10 2.1 The Origins and Essential Building Blocks of California’s Clean Car Cluster ......10 2.2 California’s Strategic Strengths: Recognized Leader in High Tech Investments...11 3. Market Drivers for Greenhouse Gas Reduction Technologies...........13 3.1 Past Market Drivers of California’s Air Pollution Control Industry......................13 3.1.1 Past California Passenger Vehicle Standards ............................................................14 3.2 Future Market Drivers for GHG Technologies.....................................................16 3.2.1 California Zero Emission Vehicle Program...............................................................16
    [Show full text]
  • And Heavy-Duty Truck Fuel Efficiency Technology Study – Report #2
    DOT HS 812 194 February 2016 Commercial Medium- and Heavy-Duty Truck Fuel Efficiency Technology Study – Report #2 This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings and conclusions expressed in this publication are those of the author and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its content or use thereof. If trade or manufacturers’ names or products are mentioned, it is because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers. Suggested APA Format Citation: Reinhart, T. E. (2016, February). Commercial medium- and heavy-duty truck fuel efficiency technology study – Report #2. (Report No. DOT HS 812 194). Washington, DC: National Highway Traffic Safety Administration. TECHNICAL REPORT DOCUMENTATION PAGE 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. DOT HS 812 194 4. Title and Subtitle 5. Report Date Commercial Medium- and Heavy-Duty Truck Fuel Efficiency February 2016 Technology Study – Report #2 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Thomas E. Reinhart, Institute Engineer SwRI Project No. 03.17869 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Southwest Research Institute 6220 Culebra Rd. 11. Contract or Grant No. San Antonio, TX 78238 GS-23F-0006M/DTNH22- 12-F-00428 12. Sponsoring Agency Name and Address 13.
    [Show full text]
  • The 4.7 Liter “Next Generation” and “Semi-Hemi” V8 Engine (Dodge - Jeep)
    The 4.7 Liter “Next Generation” and “semi-Hemi” V8 Engine (Dodge - Jeep) Chrysler’s first truly new V-8 since the 1960s, the “Corsair” 4.7 had better power, gas mileage, and emissions than the 5.2 liter engine it replaced; a new truck V6, the 3.7 , was based on it, replacing the 3.9 liter V6 based on the 5.2. The engine was reportedly designed as a replacement for the venerable 4-liter AMC I-6, with the 3.7 to replace the AMC 2.5. EGR and knock sensors were added in 2005. In 2007 (model year 2008), Chrysler replaced the 4.7 liter V8 with a new version. Power went from 230 hp to 290 hp (and up to 320 lb-feet of torque) with that move; gas mileage went up, and noise and vibration went down. The new 4.7-liter V-8 features 5.7-Hemi features such as two spark plugs per cylinder, with a high 9.8:1 compression ratio, and better port flow; but it has a new slant/squish combustion system design. Refinements included significant revisions to the induction system, reduced reciprocating mass via a lightweight piston/rod assembly, and reduced accessory drive speed. A new normally open valve lash adjuster system smooths the engine at idle, while electronic throttle control is needed for new stability systems. The engine will be manufactured at the Mack Avenue Engine Complex in Detroit. Chrysler's New Cammer: Mopar’s first all-new production V8 in 41 years By RICK EHRENBERG. Copyright © 1999 by Rick Ehrenberg.
    [Show full text]
  • Review of Advancement in Variable Valve Actuation of Internal Combustion Engines
    applied sciences Review Review of Advancement in Variable Valve Actuation of Internal Combustion Engines Zheng Lou 1,* and Guoming Zhu 2 1 LGD Technology, LLC, 11200 Fellows Creek Drive, Plymouth, MI 48170, USA 2 Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA; [email protected] * Correspondence: [email protected] Received: 16 December 2019; Accepted: 22 January 2020; Published: 11 February 2020 Abstract: The increasing concerns of air pollution and energy usage led to the electrification of the vehicle powertrain system in recent years. On the other hand, internal combustion engines were the dominant vehicle power source for more than a century, and they will continue to be used in most vehicles for decades to come; thus, it is necessary to employ advanced technologies to replace traditional mechanical systems with mechatronic systems to meet the ever-increasing demand of continuously improving engine efficiency with reduced emissions, where engine intake and the exhaust valve system represent key subsystems that affect the engine combustion efficiency and emissions. This paper reviews variable engine valve systems, including hydraulic and electrical variable valve timing systems, hydraulic multistep lift systems, continuously variable lift and timing valve systems, lost-motion systems, and electro-magnetic, electro-hydraulic, and electro-pneumatic variable valve actuation systems. Keywords: engine valve systems; continuously variable valve systems; engine valve system control; combustion optimization 1. Introduction With growing concerns on energy security and global warming, there are global efforts to develop more efficient vehicles with lower regulated emissions, including hybrid electrical vehicles, electrical vehicles, and fuel cell vehicles. Hybrid electrical vehicles became a significant part of vehicle production because of their overall efficiency, and they still pose a significant cost penalty, resulting in a stagnant market penetration of 3.2% and 2.7% in 2013 and 2018, respectively, in the United States (US), for example [1].
    [Show full text]
  • Engineering the Motivo Way Praveen Penmetsa’S U.S.-Based Team Develops Unique Mobility Solutions
    MOBILITY ENGINEERINGTM ENGLISH QUARTERLY Vol : 5 Issue : 2 April - June 2018 Free Distribution Engineering the Motivo Way Praveen Penmetsa’s U.S.-based team develops unique mobility solutions New-age stationary power Developing Mazda’s drones for SpCCI engine passenger transport ready for production ME Altair Ad 0618.qxp_Mobility FP 3/29/18 2:49 PM Page 1 CONTENTS Features 30 Roadmap for future Indian 46 Developing an alternative engine passenger drone sector concept COMMERCIAL VEHICLE PROPULSION AEROSPACE AUTONOMY Ricardo’s CryoPower engine leverages two unique combustion techniques for reduced emissions and fuel consumption—liquid nitrogen and split combustion. 32 Internet of Vehicles: connected Long-haul trucking and stationary power generation will vehicles & data - driven solutions be the first beneficiaries of the technologies. AUTOMOTIVE CONNECTIVITY 49 Spark of genius AUTOMOTIVE PROPULSION 34 Development and verification of Mazda’s Skyactiv-X—the nexus of gasoline and diesel electronic braking system ECU tech—remains on track for 2019 production. We test-drive software for commercial vehicle recent prototypes to check development status. COMMERCIAL VEHICLE CHASSIS 52 Plain bearings for aerospace 42 Engineering the Motivo Way applications AEROSPACE MATERIALS AUTOMOTIVE ENGINEERING Broad capabilities, unparalleled project diversity and an innovative culture have put this thriving California “idea factory” in high demand. Cover Sway Motorsports’ three- wheeled electric motorcycle leans into a curve thanks to a suspension design developed
    [Show full text]
  • Phevs) Overview
    U.S. Department of Energy, Vehicle Technologies Program, Advanced Vehicle Testing Activity (AVTA) Plug-in Hybrid Electric Vehicles (PHEVs) Overview Jim Francfort AVTA Principle Investigator Clean Cities Coalition Webcast April 2009 This presentation does not contain any proprietary, confidential, or otherwise restricted information AVTA Background and Goals • The Advanced Vehicle Testing Activity (AVTA) is part of DOE’s Vehicle Technologies Program • The Idaho National Laboratory (INL) and Electric Transportation Engineering Corporation (ETEC) conduct the AVTA for DOE. Argonne National Laboratory performs dynamometer testing for the AVTA • The AVTA goals: – Provide benchmark data to DOE, technology modelers, research and development programs, vehicle manufacturers (via VSATT), and target and goal setters – Assist fleet managers in making informed early adaptor vehicle purchase, deployment and operating decisions 2 AVTA Testing History • Plug-in hybrid electric vehicles (PHEV) – 12 models, ~150 vehicles, 400,000 fleet test miles • Hybrid electric vehicles (HEV) – 14 models, 39 vehicles, 4.5 million test miles • Hydrogen ICE (internal combustion engine) vehicles – 7 models, 400,000 test miles • Full-size battery electric vehicles (BEVs) – 40 EV models, 5+ million test miles • Neighborhood electric vehicles – 21 models, 200,000 test miles • Urban electric vehicles – 3 models, 1 million test miles 3 PHEV Advantages • Reduced petroleum consumption and emissions • Optimized fuel efficiency and performance • Recover energy during regenerative
    [Show full text]