Molecular Biology and Pathogenesis of Retroviruses
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Non-Primate Lentiviral Vectors and Their Applications in Gene Therapy for Ocular Disorders
viruses Review Non-Primate Lentiviral Vectors and Their Applications in Gene Therapy for Ocular Disorders Vincenzo Cavalieri 1,2,* ID , Elena Baiamonte 3 and Melania Lo Iacono 3 1 Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Edificio 16, 90128 Palermo, Italy 2 Advanced Technologies Network (ATeN) Center, University of Palermo, Viale delle Scienze Edificio 18, 90128 Palermo, Italy 3 Campus of Haematology Franco e Piera Cutino, Villa Sofia-Cervello Hospital, 90146 Palermo, Italy; [email protected] (E.B.); [email protected] (M.L.I.) * Correspondence: [email protected] Received: 30 April 2018; Accepted: 7 June 2018; Published: 9 June 2018 Abstract: Lentiviruses have a number of molecular features in common, starting with the ability to integrate their genetic material into the genome of non-dividing infected cells. A peculiar property of non-primate lentiviruses consists in their incapability to infect and induce diseases in humans, thus providing the main rationale for deriving biologically safe lentiviral vectors for gene therapy applications. In this review, we first give an overview of non-primate lentiviruses, highlighting their common and distinctive molecular characteristics together with key concepts in the molecular biology of lentiviruses. We next examine the bioengineering strategies leading to the conversion of lentiviruses into recombinant lentiviral vectors, discussing their potential clinical applications in ophthalmological research. Finally, we highlight the invaluable role of animal organisms, including the emerging zebrafish model, in ocular gene therapy based on non-primate lentiviral vectors and in ophthalmology research and vision science in general. Keywords: FIV; EIAV; BIV; JDV; VMV; CAEV; lentiviral vector; gene therapy; ophthalmology; zebrafish 1. -
The Expression of Human Endogenous Retroviruses Is Modulated by the Tat Protein of HIV‐1
The Expression of Human Endogenous Retroviruses is modulated by the Tat protein of HIV‐1 by Marta Jeannette Gonzalez‐Hernandez A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Immunology) in The University of Michigan 2012 Doctoral Committee Professor David M. Markovitz, Chair Professor Gary Huffnagle Professor Michael J. Imperiale Associate Professor David J. Miller Assistant Professor Akira Ono Assistant Professor Christiane E. Wobus © Marta Jeannette Gonzalez‐Hernandez 2012 For my family and friends, the most fantastic teachers I have ever had. ii Acknowledgements First, and foremost, I would like to thank David Markovitz for his patience and his scientific and mentoring endeavor. My time in the laboratory has been an honor and a pleasure. Special thanks are also due to all the members of the Markovitz laboratory, past and present. It has been a privilege, and a lot of fun, to work near such excellent scientists and friends. You all have a special place in my heart. I would like to thank all the members of my thesis committee for all the valuable advice, help and jokes whenever needed. Our collaborators from the Bioinformatics Core, particularly James Cavalcoli, Fan Meng, Manhong Dai, Maureen Sartor and Gil Omenn gave generous support, technical expertise and scientific insight to a very important part of this project. Thank you. Thanks also go to Mariana Kaplan’s and Akira Ono’s laboratory for help with experimental designs and for being especially generous with time and reagents. iii Table of Contents Dedication ............................................................................................................................ ii Acknowledgements ............................................................................................................. iii List of Figures ................................................................................................................... -
HIV 101: Pathogenesis and Treatment
HIV 101: Pathogenesis and Treatment Stephen Raffanti MD MPH Professor of Medicine Vanderbilt University School of Medicine . Dr. Raffanti has no financial disclosures to make. Objectives . After this presentation the attendee should be able to: . Describe current issues in the epidemiology of the HIV epidemic. Describe the life cycle of HIV; . Describe the way that HIV interacts with its host, producing disease. Describe the principles of treatment. Describe Acute HIV infection . Describe the initial evaluation of an HIV infected patient Testing, linkage to care, effective treatment and effective PrEP could stop the epidemic today. Percentages of Diagnoses of HIV Infection among Adults and Adolescents, by Region and Population of Area of Residence, 2015—United States Note. Data include persons with a diagnosis of HIV infection regardless of stage of disease at diagnosis. Data for the year 2015 are preliminary and based on 6 months reporting delay. Data exclude persons whose county of residence is unknown. Percentages of Diagnoses of HIV Infection among Adults and Adolescents, by Population of Area of Residence and Age at Diagnosis, 2015—United States Note. Data include persons with a diagnosis of HIV infection regardless of stage of disease at diagnosis. Data for the year 2015 are preliminary and based on 6 months reporting delay. Data exclude persons whose county of residence is unknown. Diagnoses of HIV Infection among Men Who Have Sex with Men, by Age Group, 2010–2014—United States and 6 Dependent Areas Note. Data include persons with a diagnosis of HIV infection regardless of stage of disease at diagnosis. All displayed data have been statistically adjusted to account for reporting delays and missing transmission category, but not for incomplete reporting. -
VMC 321: Systematic Veterinary Virology Retroviridae Retro: from Latin Retro,"Backwards”
VMC 321: Systematic Veterinary Virology Retroviridae Retro: from Latin retro,"backwards” - refers to the activity of reverse RETROVIRIDAE transcriptase and the transfer of genetic information from RNA to DNA. Retroviruses Viral RNA Viral DNA Viral mRNA, genome (integrated into host genome) Reverse (retro) transfer of genetic information Usually, well adapted to their hosts Endogenous retroviruses • RNA viruses • single stranded, positive sense, enveloped, icosahedral. • Distinguished from all other RNA viruses by presence of an unusual enzyme, reverse transcriptase. Retroviruses • Retro = reversal • RNA is serving as a template for DNA synthesis. • One genera of veterinary interest • Alpharetrovirus • • Family - Retroviridae • Subfamily - Orthoretrovirinae [Ortho: from Greek orthos"straight" • Genus -. Alpharetrovirus • Genus - Betaretrovirus Family- • Genus - Gammaretrovirus • Genus - Deltaretrovirus Retroviridae • Genus - Lentivirus [ Lenti: from Latin lentus, "slow“ ]. • Genus - Epsilonretrovirus • Subfamily - Spumaretrovirinae • Genus - Spumavirus Retroviridae • Subfamily • Orthoretrovirinae • Genus • Alpharetrovirus Alpharetrovirus • Species • Avian leukosis virus(ALV) • Rous sarcoma virus (RSV) • Avian myeloblastosis virus (AMV) • Fujinami sarcoma virus (FuSV) • ALVs have been divided into 10 envelope subgroups - A , B, C, D, E, F, G, H, I & J based on • host range Avian • receptor interference patterns • neutralization by antibodies leukosis- • subgroup A to E viruses have been divided into two groups sarcoma • Noncytopathic (A, C, and E) • Cytopathic (B and D) virus (ALV) • Cytopathic ALVs can cause a transient cytotoxicity in 30- 40% of the infected cells 1. The viral envelope formed from host cell membrane; contains 72 spiked knobs. 2. These consist of a transmembrane protein TM (gp 41), which is linked to surface protein SU (gp 120) that binds to a cell receptor during infection. 3. The virion has cone-shaped, icosahedral core, Structure containing the major capsid protein 4. -
Assessment and Analysis of the Restriction of Retroviral Infection by the Murine APOBEC3 Protein
Assessment and Analysis of the Restriction of Retroviral Infection by the Murine APOBEC3 Protein Halil Aydin Thesis submitted to the Faculty of Graduate and Postdoctoral Studies of the University of Ottawa in partial fulfillment of the requirements for the degree of Masters of Science Department of Biochemistry, Microbiology and Immunology Faculty of Medicine ©Halil Aydin, Ottawa, Ontario, Canada, 2011 Learning the rules is hard work and lengthy but playing the game is exciting and fun. John Polanyi Nobel Prize Winner in Chemistry ii ABSTRACT Human APOBEC3 proteins are host-encoded intrinsic restriction factors that can prevent the replication of a broad range of human and animal retroviruses such as HIV, SIV, FIV, MLVs and XMRV. The main pathway of the restriction is believed to occur as a result of the cytidine deaminase activity of these proteins that converts cytidines into uridines in single- stranded DNA retroviral replication intermediates. Uridines in these DNA intermediates disrupt the viral replication cycle and also alter retrovirus infectivity because of the C-to-T transition mutations generated as a result of the deaminase activity on the minus strand DNA. In addition, human APOBEC3 proteins also exhibit a deamination-independent pathway to restrict retroviruses that is not currently well understood. Although the restriction of retroviruses by human APOBEC3 proteins has been intensely studied in vitro, our understanding of how the murine APOBEC3 (mA3) protein restricts retroviruses and/or prevents zoonotic infections in vivo is very limited. In contrast to humans and primates that have 7 APOBEC3 genes, mice have but a single copy. My study of the function and structure of mA3 revealed that it has an inverted functional organization for cytidine deamination in comparison to the human A3G catalytic sites. -
Lentiviral Integration Site Targeting: Host Determinants and Consequences
University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations Spring 2010 Lentiviral Integration Site Targeting: Host Determinants and Consequences Keshet Ronen University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Virology Commons Recommended Citation Ronen, Keshet, "Lentiviral Integration Site Targeting: Host Determinants and Consequences" (2010). Publicly Accessible Penn Dissertations. 174. https://repository.upenn.edu/edissertations/174 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/174 For more information, please contact [email protected]. Lentiviral Integration Site Targeting: Host Determinants and Consequences Abstract A necessary step in the retroviral lifecycle is integration, the covalent insertion of the viral cDNA into the genome of the infected cell. This means that retroviruses, for example HIV, establish life-long infection. It also means that retroviruses are used as gene-delivery vectors to treat genetic diseases. Integration events are distributed non-randomly in the genome of the infected cell, with characteristic genus-specific preferences. In this dissertation, we focus on the lentiviral class of retroviruses, and explore two aspects of their integration: the means by which integration is targeted to its favored sites, and the consequences of integration at these sites for the host cell. The host protein LEDGF/p75 has been shown to interact with lentiviral integrases and contribute to their preference for integration in genes. We sought to establish the extent to which integration site selection is determined by LEDGF/p75 tethering. We first asked whether LEDGF/p75 was an essential integration tether, by analyzing integration site distribution in cells stringently depleted for LEDGF/p75. -
Mechanisms of HIV-1 Restriction by the Host Protein SAMHD1
Mechanisms of HIV-1 Restriction by the Host Protein SAMHD1 Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Jenna Marie Antonucci Graduate Program in Microbiology The Ohio State University 2018 Dissertation Committee Li Wu, Ph.D., Advisor Irina Artsimovitch, Ph.D. Jesse Kwiek, Ph.D. Karin Musier-Forsyth, Ph.D. Copyrighted by Jenna Marie Antonucci 2018 Abstract Human immunodeficiency virus type 1 (HIV-1) is a human retrovirus that replicates in cells via a well-characterized viral lifecycle. Inhibition at any step in the viral lifecycle results in downstream effects that can impair HIV-1 replication and restrict infection. For decades, researchers have been unable to determine the cause of myeloid-cell specific block in HIV-1 infection. In 2011, the discovery of the first mammalian deoxynucleoside triphosphate (dNTP) triphosphohydrolase (dNTPase) sterile alpha motif and HD domain containing protein 1 (SAMHD1) answered that question and introduced an entirely novel field of study focused on determining the mechanism and control of SAMHD1-mediated restriction of HIV-1 replication. Since then, the research on SAMHD1 has become a timely and imperative topic of virology. The following body of work includes studies furthering the field by confirming the established model and introducing a novel mechanism of SAMHD1-mediated suppression of HIV-1 replication. SAMHD1 was originally identified as a dGTP-dependent dNTPase that restricts HIV-1 infection by hydrolyzing intracellular dNTPs to a level that inhibits efficient reverse transcription of HIV-1 genomic RNA into complementary DNA (cDNA). -
Endogenous Retroviruses and the Immune System
Endogenous Retroviruses and the Immune System George Robert Young Submitted to University College London in part fulfilment of the requirements for the degree of Doctor of Philosophy 2012 Division of Infection and Immunity Division of Immunoregulation University College London National Institute for Medical Research Gower Street The Ridgeway London London WC1E 6BT NW7 1AA 2 I, George Robert Young, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 3 Abstract ABSTRACT 4 Initial sequencing of the human and mouse genomes revealed that substantial fractions were composed of retroelements (REs) and endogenous retroviruses (ERVs), the latter being relics of ancestral retroviral infection. Further study revealed ERVs constitute up to 10% of many mammalian genomes. Despite this abundance, comparatively little is known about their interactions, beneficial or detrimental, with the host. This thesis details two distinct sets of interactions with the immune system. Firstly, the presentation of ERV-derived peptides to developing lymphocytes was shown to exert a control on the immune response to infection with Friend Virus (FV). A self peptide encoded by an ERV negatively selected a significant fraction of polyclonal FV- specific CD4+ T cells and resulted in an impaired immune response. However, CD4+ T cell-mediated antiviral activity was fully preserved and repertoire analysis revealed a deletional bias according to peptide affinity, resulting in an effective enrichment of high-affinity CD4+ T cells. Thus, ERVs exerted a significant influence on the immune response, a mechanism that may partially contribute to the heterogeneity seen in human immune responses to retroviral infections. -
Contents Part 1 DNA TUMOR VIRUSES
Contents Part 1 DNA TUMOR VIRUSES Symposium Participants V Foreword xvii Viral Oncogenes H. M. Temin Synopses Transforming Genes of DNA Tumor Viruses L. V. Crawford 9 Transforming Genes of Retroviruses P.H. Duesberg 13 DNA Tumor Viruses: Early RNAs and Early Proteins Transcription of the SV40 Genome in Virus-transformed Cells and Early Lytic Infection P. K. Ghosh, M. Piatak, V. B. Reddy, J. Swinscoe, P. Lebowitz, and S. M. Weissman 31 Regulation of SV40 Gene Expression through RNA Splicing G. Khoury, J. C. Alwine, R. Dhar, P. Gruss, C-J. Lai, S. Segal, and I. Seif 41 A Third Splice Site in SV40 Early mRNA D.F. Mark and P. Berg 55 Comparison of Polyoma Virus Transcription in Productively Infected Mouse Cells and Transformed Rodent Cell Lines R. Kamen, J. Favalom, J. Parker, R. Treisman, L. Lania, M. Fried, and A. Mellor 63 Transcription of SV40 DNA in Transformed Rat Cells M. Grigoryan, P. Chumakov, and E. Lukanidin 77 Expression of Transforming Viral Genes in Semipermissive Cells Transformed by SV40 or Adenovirus Type 2 or Type 5 S. J. Flint and G. A. Beltz 89 Catalytic Properties of the SV40 Large T Antigen R. Tfian, A. Robbins, and R. Clark 103 Enzymatic Activities Associated with the SV40 Large T Antigen J.D. Griffin, G. Spangler, and D. M. Livingston 113 DNA Binding and Sedimentation Properties of SV40 T Antigens Synthesized In Vivo and In Vitro C. Prives, Y. Beck, D. Gidoni, M. Oren, and it. Shure 123 Organization of T Antigens in the Polyoma Virus Genome T. Hunter, M. -
Molecular Analysis of the Complete Genome of a Simian Foamy Virus Infecting Hylobates Pileatus (Pileated Gibbon) Reveals Ancient Co-Evolution with Lesser Apes
viruses Article Molecular Analysis of the Complete Genome of a Simian Foamy Virus Infecting Hylobates pileatus (pileated gibbon) Reveals Ancient Co-Evolution with Lesser Apes Anupama Shankar 1, Samuel D. Sibley 2, Tony L. Goldberg 2 and William M. Switzer 1,* 1 Laboratory Branch, Division of HIV/AIDS Prevention, Center for Disease Control and Prevention, Atlanta, GA 30329, USA 2 Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA * Correspondence: [email protected]; Tel.: +1-404-639-2019 Received: 1 April 2019; Accepted: 30 June 2019; Published: 3 July 2019 Abstract: Foamy viruses (FVs) are complex retroviruses present in many mammals, including nonhuman primates, where they are called simian foamy viruses (SFVs). SFVs can zoonotically infect humans, but very few complete SFV genomes are available, hampering the design of diagnostic assays. Gibbons are lesser apes widespread across Southeast Asia that can be infected with SFV, but only two partial SFV sequences are currently available. We used a metagenomics approach with next-generation sequencing of nucleic acid extracted from the cell culture of a blood specimen from a lesser ape, the pileated gibbon (Hylobates pileatus), to obtain the complete SFVhpi_SAM106 genome. We used Bayesian analysis to co-infer phylogenetic relationships and divergence dates. SFVhpi_SAM106 is ancestral to other ape SFVs with a divergence date of ~20.6 million years ago, reflecting ancient co-evolution of the host and SFVhpi_SAM106. Analysis of the complete SFVhpi_SAM106 genome shows that it has the same genetic architecture as other SFVs but has the longest recorded genome (13,885-nt) due to a longer long terminal repeat region (2,071 bp). -
Presence and Expression of Friend Erythroleukemia Virus-Related Sequences in Normal and Leukemic Mouse Tissues
Proc. Natl. Acad. Sci. USA Vol. 76, No. 9, pp. 4455-4459, September 1979 Cell Biology Presence and expression of Friend erythroleukemia virus-related sequences in normal and leukemic mouse tissues (RNA tumor viruses/Friend spleen focus-forming virus/mechanism of transformation/differentiation/gene expression) ALAN BERNSTEIN, CATHERINE GAMBLE, DONNA PENROSE, AND TAK W. MAK The Ontario Cancer Institute, and Department of Medical Biophysics, University of Toronto, 500 Sherbourne Street, Toronto, Ontario, Canada M4X 1K9 Communicated by J. Tuzo Wilson, May 22, 1979 ABSTRACT The nature and distribution of sequences re- Although the origin and nature of sarcoma virus-specific lated to the murine erythroleukemia virus, Friend spleen sequences have been well characterized, no comparable studies focus-forming virus (SFFV), have been analyzed by using a ra- have been reported on the rapidly transforming mammalian dioactive cDNA probe specific for the SFFV genome (cDNAsff). From the proportion of high molecular weight viral [32PJRNA leukemia viruses. These viruses, which include the murine which hybridized to cDNAsff, it was estimated that these se- Abelson (9) and Friend (10-12) leukemia viruses, are replica- quences represent about 50% of the SFFV genome, indicating tion-defective and hence require helper virus to produce in- a genetic complexity of about 3300 nucleotides. cDNAff hy- fectious progeny. Immunological and molecular hybridization bridized extensively (80-95%) to SFFV virion RNA and to cel- analyses of cell clones nonproductively infected with the de- lular RNA from murine and rat cells productively or nonpro- fective Friend focus- ductively infected with SFFV. Only background homology was erythroleukemia-inducing virus, spleen detected between cDNAff and viral RNA from a number of forming virus (SFFV), have indicated that the SFFV genome murine [Friend murine leukemia virus (MuLV), Moloney-MuLV, contains some, but not all, of the sequences found on its helper and Kirsten sarcoma virus] and nonmurine (Rous sarcoma virus, lymphoid leukemia virus (13, 14). -
Retroviruses:Retroviruses: Endogenousendogenous MLVMLV Andand XMRVXMRV
Retroviruses:Retroviruses: EndogenousEndogenous MLVMLV andand XMRVXMRV JohnJohn M.M. CoffinCoffin TuftsTufts UniversityUniversity Tufts University Presented at the 1st Intl. Workshop on XMRV 7-8 September, Bethesda USA The Retrovirus Family Tree Virus Genus HFV Spumaretrovirinae bel1, bel2 MLV GammaretrovirusGammaretroviru FeLV HERV-C WDS Epsilonretrovirus orfA, orfB, orfC HIV-1 tat, rev HIV-2 Lentivirus EIAV VMV dut MPMV sag new env MMTV Betaretrovirus HERV-K IAP ASLV Alpharetrovirus BLV HTLV-1 Deltaretrovirus tax, rex HTLV-2 New Genes Presented at the 1st Intl. Workshop on XMRV At least 30 million years ago! 7-8 September, Bethesda USA EndogenousEndogenous RetrovirusesRetroviruses 1.1. Remnants Remnants ofof germgerm lineline infectionsinfections byby exogenousexogenous (infectious)(infectious) retroviruses.retroviruses. 2.2. BecameBecame fixedfixed inin thethe hosthost speciespecies.Somes.Some conferconfer protectionprotection againstagainst futurefuture infectionsinfections byby thethe samesame oror similarsimilar viviruses.ruses. AA fewfew othersothers havehave salutarysalutary effects.effects. 3.3. InheritedInherited likelike normalnormal genes.genes. 4.4. PresentPresent inin everyevery vertebratevertebrate andand manymany invertebrates.invertebrates. 5.5. CompriseComprise 6-8%6-8% ofof thethe humanhuman genome.genome. (More(More virusesviruses thanthan us).us). Presented at the 1st Intl. Workshop on XMRV 7-8 September, Bethesda USA EndogenousEndogenous RetrovirusesRetroviruses 6. Provide a fossil record of pathogen-host interactioninteraction unavailableunavailable inin anyany other system. 7. Can participateparticipate in evolutionary processescesses asas wellwell asas informinform usus aboutabout them. 8. Involved in disease in some animals. Humans? Presented at the 1st Intl. Workshop on XMRV 7-8 September, Bethesda USA XMRVXMRV 1.1. First First describeddescribed aboutabout 55 yearsyears agoago inin aa fewfew patientspatients withwith prostateprostate cancer.cancer. 2.2.