Character Sum Estimates in Finite Fields and Applications by Brandon

Total Page:16

File Type:pdf, Size:1020Kb

Character Sum Estimates in Finite Fields and Applications by Brandon Character Sum Estimates in Finite Fields and Applications by Brandon Hanson A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Mathematics University of Toronto c Copyright 2015 by Brandon Hanson Abstract Character Sum Estimates in Finite Fields and Applications Brandon Hanson Doctor of Philosophy Graduate Department of Mathematics University of Toronto 2015 In this thesis we present a number of character sum estimates for sums of various types occurring in finite fields. The sums in question generally have an arithmetic combinatorial flavour and we give applications of such estimates to problems in arithmetic combinatorics and analytic number theory. Conversely, we demonstrate ways in which the theory of arithmetic combinatorics can be used to obtain certain character sum estimates. ii Dedication To my friends, for all the laughs. To my family, for their support. To my teachers, for inspiring me. To John, for his patience and commitment. To Michelle, for everything. iii Acknowledgements First and foremost I must thank John Friedlander, my thesis advisor, for giving me so much of his time and patience. This thesis would not have been possible without all of the helpful discussions we had. I also want to thank Leo Goldmakher for getting me interested in the field and providing much encouragement along the way. Thanks to Kumar Murty and Antal Balog for being a part of my thesis committee and providing fruitful discussion. Finally, like every graduate student in math at the University of Toronto, I am indebted to Ida Bulat and Jemima Merisca. They made my life in the graduate program so much easier. I want to thank them for ensuring that my headaches were purely mathematical ones. iv Contents 1 Introduction and Motivation 1 1.1 Primes in arithmetic progressions: A fundamental example of equidistribution in number theory ............................................... 1 1.2 Random oscillatory sums and the square-root law: The nature of random sequences . 2 1.3 Weyl's Equidistribution Criterion: Fourier analysis enters the scene ............ 3 1.4 The Sum-Product Phenomenon: A source of equidistribution ................ 5 1.5 Character sums: The star of the show ............................. 6 1.6 An outline of this thesis . 8 2 Notation and relevant background 10 2.1 Asymptotic Notation . 10 2.2 Fourier analysis on finite abelian groups . 10 2.3 Finite fields . 13 2.4 Additive combinatorics and the Sum-Product Phenomenon . 14 2.5 Bohr sets and their structure . 18 2.6 Character sums . 21 3 Capturing forms in dense subsets of finite fields 25 3.1 Introduction . 25 3.2 Statement of results . 26 3.3 Upper Bound . 27 3.4 Lower Bound . 29 3.5 Remarks for Composite Modulus . 31 4 Character sum estimates for Bohr sets and applications 33 4.1 Introduction . 33 4.2 Statement of Results and Applications . 33 4.2.1 Main Results . 33 4.2.2 Applications . 34 4.3 The P´olya-Vinogradov Argument . 35 4.4 The Burgess Argument . 36 4.5 Application to Polynomial Recurrence . 38 v 5 Character sum estimates for various convolutions 41 5.1 Introduction . 41 5.2 Statement of Results . 43 5.3 Trivariate sums . 44 5.4 Mixed multivariate sums . 47 Bibliography 49 vi Chapter 1 Introduction and Motivation Much of this thesis is concerned with equidistribution as it pertains to arithmetic. This notion is a fundamental one in number theory which measures the extent to which an object behaves randomly. In the next five sections we illustrate some results in number theory, old and new, which will motivate the thesis. The hope is that through this exposition, our train of thought will be made clear, so that the reader has context for the results of the following chapters. In the first section we present the quintessential example of equidistribution in analytic number theory - the distribution of primes in arithmetic progressions. Though not explicitly related to the results of this thesis, the problem of understanding the distribution of primes seems like the most natural starting point for any discussion about equidistribution in number theory. In the second section we digress a bit in order to recall some of the properties of uniform random sequences. We hope this diversion will suggest which qualities a deterministic object should have in order to deem it random-like. The third section of this introduction is devoted to Weyl's Equidistribution Criterion. This is a basic result which relates the problem of measuring the uniformity of a sequence with its Fourier analytic behaviour. As the criterion suggests, Fourier analysis plays a large r^ole,in analytic number theory and it will be used at length in this book. In the fourth section of the introduction we discuss the Sum-Product Problem of combinatorial number theory. This problem seeks to quantify the extent to which additive structure and multiplicative structure are uncorrelated. The spirit of the Sum-Product Problem was the motivation for work on the character sum estimates proved in Chapters 4 and 5. In the fifth section, we hope to capture the reader's interest in the question of character sum estimates. Such questions began with Dirichlet's work on the distribution of primes in arithmetic progressions, but we hope that throughout this chapter we can convince the reader that these estimates are interesting in their own right. In the final section of this introduction we give an outline for the rest of this thesis and a statement of the results to come. 1.1 Primes in arithmetic progressions: A fundamental example of equidistribution in number theory The first, and perhaps most famous instance of equidistribution of arithmetic objects is the equidistri- bution of the primes into arithmetic progressions. While we do not investigate the distribution of primes in this thesis, the question provides a good starting point for our exposition. The primes are mysterious numbers, mostly because they are defined by what they are not rather than by what they are. As such, 1 Chapter 1. Introduction and Motivation 2 stating facts about primes is rarely easy. We begin by examining some basic properties. Certainly, each prime other than 2 is odd. And no primes other than 3 and 5 should have a common factor with 15. In general, when we divide p by q, which is to say we write p = nq + a with 0 ≤ a ≤ q − 1, the remainder a is necessarily relatively prime with q. Indeed, if q and a had a factor in common, that factor would also divide p. In short, if p = a mod q then (a; q) = 1. Beyond this obvious pattern, it is hard to deduce anything structural about the number a. Arguments going back to Euclid tell us that if we divide the odd primes by 4 then the remainders 1 and 3 occur infinitely often (0 and 2 are forbidden). This fact was famously generalized by Dirichlet, who proved that each of the eligible remainders that come from dividing a prime p by a number q also occur infinitely often as we run over the primes. His work and subsequent work in analytic number theory lead to the Prime Number Theorem in Arithmetic Progressions, which says that each eligible remainder occurs with roughly the same frequency. In other words, primes fall uniformly into the φ(q) eligible residue classes modulo q. Theorem (Prime Number Theorem in Arithmetic Progressions). Let π(x; q; a) denote the number of primes up to x which have remainder a when divided by q, and let π(x) denote to total number of primes up to x. Then as x ! 1 we have π(x; q; a) 1 ! : π(x) φ(q) Suppose we were given a large prime and asked which residue class p lies in modulo q. Without any further information this task seems hopeless - the prime is really, really big. We should not be to hard on ourselves however, because the above theorem is telling us we might do just as well to choose one class at random. So, it is not the case that we do not understand patterns in the distribution of primes beyond the obvious ones, but rather that (at least at this scope) there aren't any. The main tool for the study of primes in arithmetic progressions is the Dirichlet character. These characters will be of central interest in Chapter 4 and Chapter 5. We will give further exposition to Dirichlet characters in Section 1.5. 1.2 Random oscillatory sums and the square-root law: The na- ture of random sequences Most of the equidistribution problems investigated in this thesis are concerned with points on the unit circle in the complex plane, 1 S = fz 2 C : jzj = 1g: We identify the circle S1 with the group R=Z = [0; 1], the group operation being addition modulo 1. This identification is via the map e : R=Z ! S1 defined by e(θ) = e2πiθ. Given a real number α, the expression α mod 1 means the fractional part fαg of α up to translation by integers. We now divert briefly from the topic of equidistribution to discuss what we might expect on random grounds when summing complex unit vectors. Suppose we choose N numbers θ1; : : : ; θN uniformly at random from [0; 1] and send them to the circle by the map e defined above. These new points have uniformly distributed angles and so are likely to point in all sorts of directions. In particular, given an arc C of length l(C) on the circle, we would expect that a proportion l(C)=2π - the proportion of the circle occupied by C - of the points lie in the arc C.
Recommended publications
  • Contents 1 Root Systems
    Stefan Dawydiak February 19, 2021 Marginalia about roots These notes are an attempt to maintain a overview collection of facts about and relationships between some situations in which root systems and root data appear. They also serve to track some common identifications and choices. The references include some helpful lecture notes with more examples. The author of these notes learned this material from courses taught by Zinovy Reichstein, Joel Kam- nitzer, James Arthur, and Florian Herzig, as well as many student talks, and lecture notes by Ivan Loseu. These notes are simply collected marginalia for those references. Any errors introduced, especially of viewpoint, are the author's own. The author of these notes would be grateful for their communication to [email protected]. Contents 1 Root systems 1 1.1 Root space decomposition . .2 1.2 Roots, coroots, and reflections . .3 1.2.1 Abstract root systems . .7 1.2.2 Coroots, fundamental weights and Cartan matrices . .7 1.2.3 Roots vs weights . .9 1.2.4 Roots at the group level . .9 1.3 The Weyl group . 10 1.3.1 Weyl Chambers . 11 1.3.2 The Weyl group as a subquotient for compact Lie groups . 13 1.3.3 The Weyl group as a subquotient for noncompact Lie groups . 13 2 Root data 16 2.1 Root data . 16 2.2 The Langlands dual group . 17 2.3 The flag variety . 18 2.3.1 Bruhat decomposition revisited . 18 2.3.2 Schubert cells . 19 3 Adelic groups 20 3.1 Weyl sets . 20 References 21 1 Root systems The following examples are taken mostly from [8] where they are stated without most of the calculations.
    [Show full text]
  • Sums of Multiplicative Characters with Additive Convolutions
    Sums of multiplicative characters with additive convolutions ∗ I. D. Shkredov, A. S. Volostnov Annotation. In the paper we obtain new estimates for binary and ternary sums of multiplica- tive characters with additive convolutions of characteristic functions of sets, having small additive doubling. In particular, we improve a result of M.–C. Chang. The proof uses Croot–Sisask almost periodicity lemma. 1 Introduction Let p be a prime number, Fp be the prime field and χ be a nontrivial multi- plicative character modulo p. In the paper we consider a problem of obtaining good upper bounds for the exponential sum χ(a + b) , (1) a∈XA, b∈B arXiv:1606.00358v1 [math.NT] 1 Jun 2016 where A, B are arbitrary subsets of the field Fp. Exponential sums of such a type were studied by various authors, see e.g. [2], [4], [8]–[10]. There is a well– known hypothesis on sums (1) which is called the graph Paley conjecture, see the history of the question in [2] or [13], for example. Conjecture (Paley graph). Let δ > 0 be a real number, A, B F be ⊂ p arbitrary sets with A > pδ and B > pδ. Then there exists a number | | | | ∗This work is supported by grant Russian Scientific Foundation RSF 14–11–00433. 1 I. D. Shkredov, A. S. Volostnov 2 τ = τ(δ) such that for any sufficiently large prime number p and all nontrivial characters χ the following holds χ(a + b) <p−τ A B . (2) | || | a∈A, b∈B X Let us say a few words about the name of the hypothesis.
    [Show full text]
  • NOTES for NUMBER THEORY COURSE 1. Unique Factorization
    NOTES FOR NUMBER THEORY COURSE 1. Unique factorization 1.1. All the rings we consider are assumed to have multiplicative unit 1 and almost always they will be commutative. N, Z, Q, R, C will denote the natural numbers, integers, rational numbers, real numbers and complex numbers respectively. A number α 2 C is called an algebraic number, if there exists a polynomial p(x) 2 Q[x] with p(α) = 0. We shall let Q¯ be the set of all algebraic numbers. Fact: \C and Q¯ are algebraically closed". IF R is a ring R[x1; ··· ; xn] will denote the ring of polynomials in n variables with coeffi- cients in R. The letter k will usually denote a field. If R ⊆ S are rings, and α1; ··· ; αk are elements of S, we shall let R[α1; ··· ; αn] be the subring of S generated by R and α1; ··· ; αn. Here are somep examples of rings R of the type we willp be interested in: R = Z, R = k[x], R = Z[i]( i = −1), R = Z[!](! = e2πi=3), R = Z[ 3], or more generally let R = Z[α], where α is an algebraic number. 1.2. First definitions: principal ideals, prime ideals... An element u 2 R is called an unit if there exists v 2 R such that uv = 1. Such a v is necessarily unique (Why?) and is called the inverse of u. The set of units in R will be denoted by U(R). The units in Z are 1 and −1. There are six units in Z[!] (the sixth roots of unity).
    [Show full text]
  • Complex Numbers
    APPENDIX Complex Numbers The complex Bumbers are a set of objects which can be added and multiplied, the sum and product of two complex numbers being also a complex number, and satisfy the following conditions. (1) Every real number is a complex number, and if a, ß are real numbers, then their sum and product as complex numbers are the same as their sum and product as real numbers. (2) There is a complex number denoted by i such that i2 = - 1. (3) Every complex number can be written uniquely in the form a + bi where a, b are real numbers. (4) The ordinary laws of arithmetic concerning addition and multipli­ cation are satisfied. We list these laws: If a, ß, y are complex numbers, then (aß)y = a(ßy) and (a + ß) + Y = a + (ß + y). We have a(ß + y) = aß + ay, and (ß + y)a = ßa + ya. We have aß = ßa, and a + ß = ß + a. If 1 is the real number one, then 1a = a. If 0 is the real number zero, then Oa = o. We have a + (-l)a = o. We shall now draw consequences of these properties. With each complex number a + bi, we associate the vector (a, b) in the plane. Let a = a 1 + a2 i and ß = b1 + b2 i be two complex numbers. Then 278 COMPLEX NUMBERS [APP. I] Hence addition of complex numbers is carried out "componentwise" and corresponds to addition of vectors in the plane. For example, (2 + 3i) + ( - 1 + 5i) = 1 + 8i. In multiplying complex numbers, we use the rule i2 = - 1 to simplify a product and to put it in the form a + bio For instance, let a = 2 + 3i and ß = 1 - i.
    [Show full text]
  • IDENTITIES on QUADRATIC GAUSS SUMS the Multiplicative Group F X
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 321, Number I, September 1990 IDENTITIES ON QUADRATIC GAUSS SUMS PAUL GERARDIN AND WEN-CH 'ING WINNIE LI ABSTRACT. Given a local field F , each multiplicative character () of the split algebra F x F or of a separable quadratic extension of F has an associated generalized Gauss sum )I:. It is a complex valued function on the character group of F X x F, meromorphic in the first variable. We define a pairing between such Gauss sums and study its properties when F is a nonarchimedean local field. This has important applications to the representation theory of GL(2, F) and correspondences [GL3]. INTRODUCTION The multiplicative group F X of a local field F is a split extension of the value group IF x I by the compact group of the units. Hence, the group .91 (Fx) of continuous homomorphisms of F X in CX is a one-dimensional complex Lie group, with connected component of identity the image of C under the map S I---t (t I---t Itn. We have written It I for the normalized absolute value of t. The group F x acts on functions on F by translations: X t: J I---t /, /(x) = J(tx) , t E F • This gives an action of F X on the space sP(F) of Schwartz-Bruhat functions on F, hence also an action on the space sP' (F) of tempered distributions on F: (t.DI/) = (Dlf) . For each X in .91 (F x ), the space of tempered distributions of type X under the action of F X is one-dimensional (e.g.
    [Show full text]
  • UC San Diego Electronic Theses and Dissertations
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Norm-Euclidean Galois fields Permalink https://escholarship.org/uc/item/359664zv Author McGown, Kevin Joseph Publication Date 2010 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Norm-Euclidean Galois Fields A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Mathematics by Kevin Joseph McGown Committee in charge: Professor Harold Stark, Chair Professor Wee Teck Gan Professor Ronald Graham Professor Russell Impagliazzo Professor Cristian Popescu 2010 Copyright Kevin Joseph McGown, 2010 All rights reserved. The dissertation of Kevin Joseph McGown is ap- proved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2010 iii DEDICATION To my wife iv TABLE OF CONTENTS Signature Page . iii Dedication . iv Table of Contents . v List of Tables . vii Acknowledgements . viii Vita . ix Abstract of the Dissertation . x 1 Introduction . 1 1.1 First Notions . 1 1.2 History . 2 1.3 Open Problems . 4 1.4 Main Results . 5 2 Preliminaries . 11 2.1 Algebraic Number Fields . 11 2.2 Dirichlet Characters . 13 2.3 Residue Symbols in Number Fields . 15 2.4 Class Field Theory . 15 2.5 Zeta Functions and L-Functions . 17 2.6 Number Fields with Class Number One . 19 2.7 Heilbronn's Criterion . 21 3 Norm-Euclidean Galois Fields . 22 3.1 Conditions for the Failure of the Euclidean Property . 22 3.2 An Algorithm and Some Computations .
    [Show full text]
  • Character Sums in Finite Fields
    COMPOSITIO MATHEMATICA A. ADOLPHSON STEVEN SPERBER Character sums in finite fields Compositio Mathematica, tome 52, no 3 (1984), p. 325-354 <http://www.numdam.org/item?id=CM_1984__52_3_325_0> © Foundation Compositio Mathematica, 1984, tous droits réservés. L’accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l’accord avec les conditions gé- nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa- tion commerciale ou impression systématique est constitutive d’une in- fraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Compositio Mathematica 52 (1984) 325-354 © 1984 Martinus Nijhoff Publishers, The Hague. Printed in The Netherlands CHARACTER SUMS IN FINITE FIELDS A. Adolphson * and Steven Sperber ** 1. Introduction Let p be a prime, q = pa, and denote by Fqm the field of qm elements. Let ~1,...,~b: Fqm ~ ex be multiplicative characters. Composing with the norm map Nm: F§m - Fq gives multiplicative characters on Fqm: We extend these characters to Fq m by defining ~(m)i(0) = 0. Let X be an algebraic variety over Fq and gl, ... , gb regular functions on X. We define character sums Sm ( X; gl , ... , gb; ~1,...,~b)( = Sm ) by where the sum is over all x E X(Fqm), the Fqm-valued points of X. Such sums have been studied classically by Davenport [6] in the one variable case, and the Brewer and Jacobsthal sums in particular are of this type. More recently, mixed sums involving additive and multiplica- tive characters have been treated p-adically by Gross-Koblitz, Boyarsky, Robba, and Adolphson-Sperber.
    [Show full text]
  • Fourier Analysis on Finite Groups
    FOURIER ANALYSIS ON FINITE GROUPS A Thesis by JOSE MANUEL RIVERA MONTES DE OCA Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Chair of Committee, Matthew Young Committee Members, Matthew Papanikolas Riad Masri Alan Dabney Head of Department, Emil Straube August 2017 Major Subject: Mathematics Copyright 2017 Jose Manuel Rivera Montes de Oca ABSTRACT We start with some Fourier analysis on cyclic groups as the base case. This theory comes along with some basic notions about character theory. So, we develop some prop- erties of the additive characters of Z=qZ. Formulas like the matrix version of the DFT, its inverse formula and Plancherel’s theorem are proved for this case. Then, we give a constructive generalization to any finite abelian group. We also present some work on properties of characters in Z=qZ∗. All these tools are used to define and develop multi- plicative characters. In particular, we mention Dirichlet characters and Gauss and Jacobi sums. The most important result of this work is to note that Fourier transform in Z=qZ gives us a method to write a Dirichlet character in terms of additive characters. Finally, we apply some of this theory to Cayley graphs. ii DEDICATION A mi familia, por haberles tocado el trabajo más difícil. To my family, for they did the real hard work. iii CONTRIBUTORS AND FUNDING SOURCES Contributors This work was supported by a thesis committee consisting of Professor Mathew Young [advisor], Professor Mathew Papanikolas and Professor Riad Masri of the Department of Mathematics and Professor Alan Dabney of the Department of Statistics.
    [Show full text]
  • Character Sums Estimates and an Application to a Problem of Balog
    Character sums estimates and an application to a problem of Balog Tomasz Schoen∗, Ilya D. Shkredov† Abstract We prove new bounds for sums of multiplicative characters over sums of set with small doubling and applying this result we break the square–root barrier in a problem of Balog concerning products of differences in a field of prime order. 1. Introduction For a prime number p let Fp be the prime field and let χ be a nontrivial multiplicative character modulo p. We will deal with a problem of estimating the exponential sum of the form χ(a + b) , (1) a A, b B ∈X∈ where A, B are arbitrary subsets of the field Fp. Such exponential sums were studied by numerous authors, see e.g. [4], [6], [7], [9]–[11], [19], [22]. One of the most important conjecture concerning character sums is the Paley graph conjecture, see [4]. Conjecture 1 For every δ > 0 there is τ = τ(δ) > 0 such that for every prime number p>p(τ) δ δ and for any set A, B Fp with A >p and B >p we have arXiv:2004.01885v1 [math.NT] 4 Apr 2020 ⊆ | | | | τ χ(a + b) <p− A B . (2) | | | | a A, b B ∈X∈ Currently there are very few results regarding the above conjecture. The only affirmative answer was obtained in the following case 1 A >p 2 +δ, B >pδ , (3) | | | | see [9]—[11]. M.–C. Chang [4] proved a result towards the conjecture for sets A and B, where one of them has a small sumset.
    [Show full text]
  • Some Aspects and Applications of the Riemann Hypothesis Over Finite Fields
    SOME ASPECTS AND APPLICATIONS OF THE RIEMANN HYPOTHESIS OVER FINITE FIELDS E. KOWALSKI Abstract. We give a survey of some aspects of the Riemann Hypothe- sis over finite fields, as it was proved by Deligne, and its applications to analytic number theory. In particular, we concentrate on the formalism leading to Deligne's Equidistribution Theorem. 1. Introduction The goal of this survey is to present some aspects of the Riemann Hy- pothesis over finite fields. The context is Deligne's celebrated work ([5], [6]) and its applications, and the text is roughly split in two parts. In the first part, we try to introduce and motivate the framework in which the powerful formalism of ´etalecohomology and the Riemann Hypothesis operate, em- phasizing aspects leading to Deligne's remarkable Equidistribution Theorem. The second part (starting in Section 5) is a discussion of this theorem, which involves naturally \families" of exponential sums and L-functions over finite fields, and of some (mostly) recent applications of the Riemann Hypoth- esis and Deligne's theorem, concluding with a short list of open problems (emphasizing general, \philosophical" issues, rather than specific questions). This is written with a target audience of readers who are not experts in algebraic geometry, in particular analytic number theorists. We use a few basic examples as references, notably Gauss sums, Kloosterman sums (and their average Sato-Tate distribution) and the very simple { but enlighten- ing { case of finite (zero-dimensional) algebraic varieties. The emphasis is throughout in situations which, at least at first sight, are not immediately or obviously analogue to the classical Riemann Hypothesis for the Riemann zeta and Dirichlet L-functions.
    [Show full text]
  • Notes on Character Sums
    NOTES ON CHARACTER SUMS WEN WANG Abstract. In this article, the properties of character sums, including Gauss sums and Jacobi sums are investigated. 1. Introduction{Historical Notes The origin of the Gauss sum and Jacobi sum in the work of C.F. Gauss and C.G.J. Jacobi. Gauss introduced the Gauss sum in his Disquisitione Arithmeticae[Ga1] in July, 1801, and Jacobi introduced the Jacobi sum in a letter to Gauss[Ja1] dated February 8, 1827. The sum introduced by Gauss in 1801 is kX−1 e2휋imn2=k; n=0 which is now called a quadratic Gauss sum. This sum is not easy to evaluate, even in the special case that m = 1 and k is an odd positive integer.p Inp this case, Gauss was easily able to show that this sum has the value ± k or ±i k, according as k is of the form 4u + 1 or 4u + 3, respectively. Specific examples convinced Gauss that the plus sign is always correct. On August 30, 1805, Gauss wrote in his diary he was able to prove his conjecture on the sign of these sums. A few years later, Gauss[Ga2] published an evaluation of his quadratic Gauss sum for all positive integer k. In his study of primes in arithmetic progressions, G.L. Dirichlet [Di1] introduced the multiplicative character 휒 modulo k and the sum kX−1 G(휒) = e2휋imn=k: n=0 This is also called a Gauss sum, as it coincides with the quadratic Gauss sum above in the case that 휒 has order 2 and k is a prime not dividing m.
    [Show full text]
  • Zetapack: a System for the Computation of Zeta and L-Functions with Mathematica
    ZetaPack: A system for the computation of zeta and L-functions with Mathematica Kevin A. Broughan Version: 6th July 2007 2 Contents Contents 3 0.1 Preface . 9 0.2 Description . 9 0.3 Installation . 9 0.4 Acknowledgements . 10 0.5 Dedication . 10 1 Zeta and L-functions 11 1.1 Introduction . 11 1.2 Classes of zeta and L-functions . 12 1.2.1 The Selberg class . 12 1.2.2 Properties of the Selberg Class . 13 1.2.3 Selberg's conjectures . 14 1.2.4 Consequences of the Selberg de nitions and conjectures . 15 1.2.5 Functions in the Selberg class . 15 1.2.6 Dokchitser L-functions . 15 1.2.7 Functions in the Dokchitser class . 16 1.3 Automorphic forms for GL(n; R) ............................. 16 1.3.1 Iwasawa decomposition . 16 1.3.2 Algebras of di erential operators . 17 1.3.3 The power function . 17 1.3.4 Maass forms . 18 1.3.5 Fourier expansions . 18 1.3.6 Jacquet's Whittaker function . 19 1.3.7 Hecke operators . 20 1.3.8 Godement-Jacquet L-function . 21 1.3.9 Functional equation . 22 1.4 Dictionaries . 23 1.5 ZetaPack functions . 23 1.6 The L-function data type . 24 2 A database of elementary Dirichlet Series 27 2.1 Introduction . 27 2.2 Multiplicative Functions . 27 3 4 CONTENTS 2.3 Database summary . 29 2.4 Operations on Dirichlet series . 31 2.5 Inverting a Riemann zeta related Dirichlet series . 32 2.6 Euler Products . 33 2.7 Evaluating the Riemann zeta function .
    [Show full text]