Zetapack: a System for the Computation of Zeta and L-Functions with Mathematica

Total Page:16

File Type:pdf, Size:1020Kb

Zetapack: a System for the Computation of Zeta and L-Functions with Mathematica ZetaPack: A system for the computation of zeta and L-functions with Mathematica Kevin A. Broughan Version: 6th July 2007 2 Contents Contents 3 0.1 Preface . 9 0.2 Description . 9 0.3 Installation . 9 0.4 Acknowledgements . 10 0.5 Dedication . 10 1 Zeta and L-functions 11 1.1 Introduction . 11 1.2 Classes of zeta and L-functions . 12 1.2.1 The Selberg class . 12 1.2.2 Properties of the Selberg Class . 13 1.2.3 Selberg's conjectures . 14 1.2.4 Consequences of the Selberg de nitions and conjectures . 15 1.2.5 Functions in the Selberg class . 15 1.2.6 Dokchitser L-functions . 15 1.2.7 Functions in the Dokchitser class . 16 1.3 Automorphic forms for GL(n; R) ............................. 16 1.3.1 Iwasawa decomposition . 16 1.3.2 Algebras of di erential operators . 17 1.3.3 The power function . 17 1.3.4 Maass forms . 18 1.3.5 Fourier expansions . 18 1.3.6 Jacquet's Whittaker function . 19 1.3.7 Hecke operators . 20 1.3.8 Godement-Jacquet L-function . 21 1.3.9 Functional equation . 22 1.4 Dictionaries . 23 1.5 ZetaPack functions . 23 1.6 The L-function data type . 24 2 A database of elementary Dirichlet Series 27 2.1 Introduction . 27 2.2 Multiplicative Functions . 27 3 4 CONTENTS 2.3 Database summary . 29 2.4 Operations on Dirichlet series . 31 2.5 Inverting a Riemann zeta related Dirichlet series . 32 2.6 Euler Products . 33 2.7 Evaluating the Riemann zeta function . 37 2.8 Historical notes and further reading . 38 3 Dirichlet L functions 39 3.1 Introduction . 39 3.2 De nitions . 39 3.3 The functional equation and Euler product . 40 3.4 ZetaPack functions . 40 3.5 Conjectures . 45 3.5.1 The generalized Riemann hypothesis (GRH) . 45 3.5.2 No Siegel zero conjecture . 45 3.5.3 The ratios conjecture . 45 3.6 Historical notes and further reading . 45 4 Dedekind zeta functions 47 4.1 Introduction . 47 4.2 De nitions . 47 4.3 The functional equation and Euler Product . 50 4.4 Computation in algebraic number elds . 51 4.4.1 Arithmetic operations . 51 4.4.2 Mathematica functions for algebraic numbers: . 51 4.4.3 ZetaPack functions . 51 4.4.4 Number Field Parameters . 52 4.4.5 Class numbers . 52 4.4.6 Prime decomposition . 55 4.5 The Dedekind L function type . 56 4.6 Deriving the Dirichlet coecients . 57 4.7 Conjectures . 58 4.7.1 Class number one conjecture . 58 4.7.2 Regulator conjecture . 58 4.7.3 Siegel zero . 58 4.8 Historical notes and further reading . 58 5 Epstein zeta functions 59 5.1 Introduction . 59 5.2 De nitions . 59 5.3 Functional equation . 59 5.4 ZetaPack functions . 60 5.5 Arithmetic Applications . 61 5.6 Failure of the Riemann hypothesis for Epstein zeta functions . 62 5.7 Conjectures . 62 5.8 Historical notes and further reading . 62 CONTENTS 5 6 Hasse-Weil zeta functions 63 6.1 Introduction . 63 6.2 De nitions . 63 6.3 The functional equation and Euler Product . 63 6.4 Functions for elliptic curves . 64 6.4.1 Mathematica functions . 64 6.4.2 ZetaPack functions . 64 6.5 Conjectures . 70 6.5.1 The Birch and Swinnerton-Dyer conjectures . 70 6.5.2 The Riemann hypothesis . 70 6.5.3 The Sato-Tate conjecture . 71 6.6 Historical notes and further reading . 71 7 Zeta functions for ane and projective hypersurfaces 73 7.1 Introduction . 73 7.2 De nitions . 73 7.3 Functional equation and Euler product . 73 7.4 Computation of the rational function representation . 74 7.5 Veri cation of the Riemann hypothesis . 74 7.6 Conjectures . 74 7.7 Historical notes and further reading . 74 8 Modular forms for SL(2,Z) 75 8.1 Introduction . 75 8.2 De nitions . 75 8.2.1 Holomorphic modular forms . 75 8.2.2 Vector spaces of modular forms . 75 8.2.3 Non-holomorphic modular forms . 76 8.2.4 Hecke Theory . 76 8.3 The functional equation and Euler product . 76 8.4 Computing with modular forms . 76 8.4.1 Mathematica functions . ..
Recommended publications
  • Arithmetic Equivalence and Isospectrality
    ARITHMETIC EQUIVALENCE AND ISOSPECTRALITY ANDREW V.SUTHERLAND ABSTRACT. In these lecture notes we give an introduction to the theory of arithmetic equivalence, a notion originally introduced in a number theoretic setting to refer to number fields with the same zeta function. Gassmann established a direct relationship between arithmetic equivalence and a purely group theoretic notion of equivalence that has since been exploited in several other areas of mathematics, most notably in the spectral theory of Riemannian manifolds by Sunada. We will explicate these results and discuss some applications and generalizations. 1. AN INTRODUCTION TO ARITHMETIC EQUIVALENCE AND ISOSPECTRALITY Let K be a number field (a finite extension of Q), and let OK be its ring of integers (the integral closure of Z in K). The Dedekind zeta function of K is defined by the Dirichlet series X s Y s 1 ζK (s) := N(I)− = (1 N(p)− )− I OK p − ⊆ where the sum ranges over nonzero OK -ideals, the product ranges over nonzero prime ideals, and N(I) := [OK : I] is the absolute norm. For K = Q the Dedekind zeta function ζQ(s) is simply the : P s Riemann zeta function ζ(s) = n 1 n− . As with the Riemann zeta function, the Dirichlet series (and corresponding Euler product) defining≥ the Dedekind zeta function converges absolutely and uniformly to a nonzero holomorphic function on Re(s) > 1, and ζK (s) extends to a meromorphic function on C and satisfies a functional equation, as shown by Hecke [25]. The Dedekind zeta function encodes many features of the number field K: it has a simple pole at s = 1 whose residue is intimately related to several invariants of K, including its class number, and as with the Riemann zeta function, the zeros of ζK (s) are intimately related to the distribution of prime ideals in OK .
    [Show full text]
  • Selberg's Orthogonality Conjecture and Symmetric
    SELBERG'S ORTHOGONALITY CONJECTURE AND SYMMETRIC POWER L-FUNCTIONS PENG-JIE WONG Abstract. Let π be a cuspidal representation of GL2pAQq defined by a non-CM holomorphic newform of weight k ¥ 2. Let K{Q be a totally real Galois extension with Galois group G, and let χ be an irreducible character of G. In this article, we show that Selberg's orthogonality conjecture implies that the symmetric power L-functions Lps; Symm πq are primitive functions in the Selberg class. Moreover, assuming the automorphy for Symm π, we show that Selberg's orthogonality conjecture implies that each Lps; Symm π ˆ χq is automorphic. The key new idea is to apply the work of Barnet-Lamb, Geraghty, Harris, and Taylor on the potential automorphy of Symm π. 1. Introduction Thirty years ago, Selberg [21] introduced a class S of L-functions, called the Selberg class nowadays. The class S consists of functions F psq of a complex variable s enjoying the following properties: (Dirichlet series and Euler product). For Repsq ¡ 1, 8 a pnq 8 F psq “ F “ exp b ppkq{pks ns F n“1 p k“1 ¸ ¹ ´ ¸ ¯ k kθ 1 with aF p1q “ 1 and bF pp q “ Opp q for some θ ă 2 , where the product is over rational primes p. Moreover, both Dirichlet series and Euler product of F converge absolutely on Repsq ¡ 1. (Analytic continuation and functional equation). There is a non-negative integer mF such that ps ´ 1qmF F psq extends to an entire function of finite order. Moreover, there are numbers rF , QF ¡ 0, αF pjq ¡ 0, RepγF pjqq ¥ 0, so that rF s ΛF psq “ QF ΓpαF pjqs ` γF pjqqF psq j“1 ¹ satisfies ΛF psq “ wF ΛF p1 ´ sq for some complex number wF of absolute value 1.
    [Show full text]
  • Class Numbers of Quadratic Fields Ajit Bhand, M Ram Murty
    Class Numbers of Quadratic Fields Ajit Bhand, M Ram Murty To cite this version: Ajit Bhand, M Ram Murty. Class Numbers of Quadratic Fields. Hardy-Ramanujan Journal, Hardy- Ramanujan Society, 2020, Volume 42 - Special Commemorative volume in honour of Alan Baker, pp.17 - 25. hal-02554226 HAL Id: hal-02554226 https://hal.archives-ouvertes.fr/hal-02554226 Submitted on 1 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Hardy-Ramanujan Journal 42 (2019), 17-25 submitted 08/07/2019, accepted 07/10/2019, revised 15/10/2019 Class Numbers of Quadratic Fields Ajit Bhand and M. Ram Murty∗ Dedicated to the memory of Alan Baker Abstract. We present a survey of some recent results regarding the class numbers of quadratic fields Keywords. class numbers, Baker's theorem, Cohen-Lenstra heuristics. 2010 Mathematics Subject Classification. Primary 11R42, 11S40, Secondary 11R29. 1. Introduction The concept of class number first occurs in Gauss's Disquisitiones Arithmeticae written in 1801. In this work, we find the beginnings of modern number theory. Here, Gauss laid the foundations of the theory of binary quadratic forms which is closely related to the theory of quadratic fields.
    [Show full text]
  • Analytic Theory of L-Functions: Explicit Formulae, Gaps Between Zeros and Generative Computational Methods
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2016 Analytic theory of L-functions: explicit formulae, gaps between zeros and generative computational methods Kühn, Patrick Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-126347 Dissertation Published Version Originally published at: Kühn, Patrick. Analytic theory of L-functions: explicit formulae, gaps between zeros and generative computational methods. 2016, University of Zurich, Faculty of Science. UNIVERSITÄT ZÜRICH Analytic Theory of L-Functions: Explicit Formulae, Gaps Between Zeros and Generative Computational Methods Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Patrick KÜHN von Mendrisio (TI) Promotionskomitee: Prof. Dr. Paul-Olivier DEHAYE (Vorsitz und Leitung) Prof. Dr. Ashkan NIKEGHBALI Prof. Dr. Andrew KRESCH Zürich, 2016 Declaration of Authorship I, Patrick KÜHN, declare that this thesis titled, ’Analytic Theory of L-Functions: Explicit Formulae, Gaps Between Zeros and Generative Computational Methods’ and the work presented in it are my own. I confirm that: This work was done wholly or mainly while in candidature for a research degree • at this University. Where any part of this thesis has previously been submitted for a degree or any • other qualification at this University or any other institution, this has been clearly stated. Where I have consulted the published work of others, this is always clearly at- • tributed. Where I have quoted from the work of others, the source is always given. With • the exception of such quotations, this thesis is entirely my own work.
    [Show full text]
  • Li's Criterion and Zero-Free Regions of L-Functions
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Journal of Number Theory 111 (2005) 1–32 www.elsevier.com/locate/jnt Li’s criterion and zero-free regions of L-functions Francis C.S. Brown A2X, 351 Cours de la Liberation, F-33405 Talence cedex, France Received 9 September 2002; revised 10 May 2004 Communicated by J.-B. Bost Abstract −s/ Let denote the Riemann zeta function, and let (s) = s(s− 1) 2(s/2)(s) denote the completed zeta function. A theorem of X.-J. Li states that the Riemann hypothesis is true if and only if certain inequalities Pn() in the first n coefficients of the Taylor expansion of at s = 1 are satisfied for all n ∈ N. We extend this result to a general class of functions which includes the completed Artin L-functions which satisfy Artin’s conjecture. Now let be any such function. For large N ∈ N, we show that the inequalities P1(),...,PN () imply the existence of a certain zero-free region for , and conversely, we prove that a zero-free region for implies a certain number of the Pn() hold. We show that the inequality P2() implies the existence of a small zero-free region near 1, and this gives a simple condition in (1), (1), and (1), for to have no Siegel zero. © 2004 Elsevier Inc. All rights reserved. 1. Statement of results 1.1. Introduction Let (s) = s(s − 1)−s/2(s/2)(s), where is the Riemann zeta function. Li [5] proved that the Riemann hypothesis is equivalent to the positivity of the real parts E-mail address: [email protected].
    [Show full text]
  • And Siegel's Theorem We Used Positivi
    Math 259: Introduction to Analytic Number Theory A nearly zero-free region for L(s; χ), and Siegel's theorem We used positivity of the logarithmic derivative of ζq to get a crude zero-free region for L(s; χ). Better zero-free regions can be obtained with some more effort by working with the L(s; χ) individually. The situation is most satisfactory for 2 complex χ, that is, for characters with χ = χ0. (Recall that real χ were also the characters that gave us the most difficulty6 in the proof of L(1; χ) = 0; it is again in the neighborhood of s = 1 that it is hard to find a good zero-free6 region for the L-function of a real character.) To obtain the zero-free region for ζ(s), we started with the expansion of the logarithmic derivative ζ 1 0 (s) = Λ(n)n s (σ > 1) ζ X − − n=1 and applied the inequality 1 0 (z + 2 +z ¯)2 = Re(z2 + 4z + 3) = 3 + 4 cos θ + cos 2θ (z = eiθ) ≤ 2 it iθ s to the phases z = n− = e of the terms n− . To apply the same inequality to L 1 0 (s; χ) = χ(n)Λ(n)n s; L X − − n=1 it it we must use z = χ(n)n− instead of n− , obtaining it 2 2it 0 Re 3 + 4χ(n)n− + χ (n)n− : ≤ σ Multiplying by Λ(n)n− and summing over n yields L0 L0 L0 0 3 (σ; χ ) + 4 Re (σ + it; χ) + Re (σ + 2it; χ2) : (1) ≤ − L 0 − L − L 2 Now we see why the case χ = χ0 will give us trouble near s = 1: for such χ the last term in (1) is within O(1) of Re( (ζ0/ζ)(σ + 2it)), so the pole of (ζ0/ζ)(s) at s = 1 will undo us for small t .
    [Show full text]
  • Introduction to L-Functions: the Artin Cliffhanger…
    Introduction to L-functions: The Artin Cliffhanger. Artin L-functions Let K=k be a Galois extension of number fields, V a finite-dimensional C-vector space and (ρ, V ) be a representation of Gal(K=k). (unramified) If p ⊂ k is unramified in K and p ⊂ P ⊂ K, put −1 −s Lp(s; ρ) = det IV − Nk=Q(p) ρ (σP) : Depends only on conjugacy class of σP (i.e., only on p), not on P. (general) If G acts on V and H subgroup of G, then V H = fv 2 V : h(v) = v; 8h 2 Hg : IP With ρjV IP : Gal(K=k) ! GL V . −1 −s Lp(s; ρ) = det I − Nk=Q(p) ρjV IP (σP) : Definition For Re(s) > 1, the Artin L-function belonging to ρ is defined by Y L(s; ρ) = Lp(s; ρ): p⊂k Artin’s Conjecture Conjecture (Artin’s Conjecture) If ρ is a non-trivial irreducible representation, then L(s; ρ) has an analytic continuation to the whole complex plane. We can prove meromorphic. Proof. (1) Use Brauer’s Theorem: X χ = ni Ind (χi ) ; i with χi one-dimensional characters of subgroups and ni 2 Z. (2) Use Properties (4) and (5). (3) L (s; χi ) is meromorphic (Hecke L-function). Introduction to L-functions: Hasse-Weil L-functions Paul Voutier CIMPA-ICTP Research School, Nesin Mathematics Village June 2017 A “formal” zeta function Let Nm, m = 1; 2;::: be a sequence of complex numbers. 1 m ! X Nmu Z(u) = exp m m=1 With some sequences, if we have an Euler product, this does look more like zeta functions we have seen.
    [Show full text]
  • On $ P $-Adic String Amplitudes in the Limit $ P $ Approaches To
    On p-adic string amplitudes in the limit p approaches to one M. Bocardo-Gaspara1, H. Garc´ıa-Compe´anb2, W. A. Z´u˜niga-Galindoa3 Centro de Investigaci´on y de Estudios Avanzados del Instituto Polit´ecnico Nacional aDepartamento de Matem´aticas, Unidad Quer´etaro Libramiento Norponiente #2000, Fracc. Real de Juriquilla. Santiago de Quer´etaro, Qro. 76230, M´exico bDepartamento de F´ısica, P.O. Box 14-740, CP. 07000, M´exico D.F., M´exico. Abstract In this article we discuss the limit p approaches to one of tree-level p-adic open string amplitudes and its connections with the topological zeta functions. There is empirical evidence that p-adic strings are related to the ordinary strings in the p → 1 limit. Previously, we established that p-adic Koba-Nielsen string amplitudes are finite sums of multivariate Igusa’s local zeta functions, conse- quently, they are convergent integrals that admit meromorphic continuations as rational functions. The meromorphic continuation of local zeta functions has been used for several authors to regularize parametric Feynman amplitudes in field and string theories. Denef and Loeser established that the limit p → 1 of a Igusa’s local zeta function gives rise to an object called topological zeta func- tion. By using Denef-Loeser’s theory of topological zeta functions, we show that limit p → 1 of tree-level p-adic string amplitudes give rise to certain amplitudes, that we have named Denef-Loeser string amplitudes. Gerasimov and Shatashvili showed that in limit p → 1 the well-known non-local effective Lagrangian (repro- ducing the tree-level p-adic string amplitudes) gives rise to a simple Lagrangian with a logarithmic potential.
    [Show full text]
  • Zeta Functions of Finite Graphs and Coverings, III
    Graph Zeta Functions 1 INTRODUCTION Zeta Functions of Finite Graphs and Coverings, III A. A. Terras Math. Dept., U.C.S.D., La Jolla, CA 92093-0112 E-mail: [email protected] and H. M. Stark Math. Dept., U.C.S.D., La Jolla, CA 92093-0112 Version: March 13, 2006 A graph theoretical analog of Brauer-Siegel theory for zeta functions of number …elds is developed using the theory of Artin L-functions for Galois coverings of graphs from parts I and II. In the process, we discuss possible versions of the Riemann hypothesis for the Ihara zeta function of an irregular graph. 1. INTRODUCTION In our previous two papers [12], [13] we developed the theory of zeta and L-functions of graphs and covering graphs. Here zeta and L-functions are reciprocals of polynomials which means these functions have poles not zeros. Just as number theorists are interested in the locations of the zeros of number theoretic zeta and L-functions, thanks to applications to the distribution of primes, we are interested in knowing the locations of the poles of graph-theoretic zeta and L-functions. We study an analog of Brauer-Siegel theory for the zeta functions of number …elds (see Stark [11] or Lang [6]). As explained below, this is a necessary step in the discussion of the distribution of primes. We will always assume that our graphs X are …nite, connected, rank 1 with no danglers (i.e., degree 1 vertices). Let us recall some of the de…nitions basic to Stark and Terras [12], [13].
    [Show full text]
  • On the Selberg Class of L-Functions
    ON THE SELBERG CLASS OF L-FUNCTIONS ANUP B. DIXIT Abstract. The Selberg class of L-functions, S, introduced by A. Selberg in 1989, has been extensively studied in the past few decades. In this article, we give an overview of the structure of this class followed by a survey on Selberg's conjectures and the value distribution theory of elements in S. We also discuss a larger class of L-functions containing S, namely the Lindel¨ofclass, introduced by V. K. Murty. The Lindel¨ofclass forms a ring and its value distribution theory surprisingly resembles that of the Selberg class. 1. Introduction The most basic example of an L-function is the Riemann zeta-function, which was intro- duced by B. Riemann in 1859 as a function of one complex variable. It is defined on R s 1 as ∞ 1 ( ) > ζ s : s n=1 n It can be meromorphically continued to( the) ∶= wholeQ complex plane C with a pole at s 1 with residue 1. The unique factorization of natural numbers into primes leads to another representation of ζ s on R s 1, namely the Euler product = −1 1 ( ) ( ) > ζ s 1 : s p prime p The study of zeta-function is vital to( ) understanding= M − the distribution of prime numbers. For instance, the prime number theorem is a consequence of ζ s having a simple pole at s 1 and being non-zero on the vertical line R s 1. ( ) = In pursuing the analogous study of distribution( ) = of primes in an arithmetic progression, we consider the Dirichlet L-function, ∞ χ n L s; χ ; s n=1 n ( ) for R s 1, where χ is a Dirichlet character( ) ∶= moduloQ q, defined as a group homomorphism ∗ ∗ χ Z qZ C extended to χ Z C by periodicity and setting χ n 0 if n; q 1.
    [Show full text]
  • International Conference on Number Theory and Discrete Mathematics (ONLINE) (ICNTDM) 11 - 14, DECEMBER-2020
    International Conference on Number Theory and Discrete Mathematics (ONLINE) (ICNTDM) 11 - 14, DECEMBER-2020 Organised by RAMANUJAN MATHEMATICAL SOCIETY Hosted by DEPARTMENT OF MATHEMATICS RAJAGIRI SCHOOL OF ENGINEERING & TECHNOLOGY (AUTONOMOUS) Kochi, India International Conference on Number Theory and Discrete Mathematics PREFACE The International Conference on Number Theory and Discrete Mathematics (ICNTDM), organised by the Ramanujan Mathematical Society (RMS), and hosted by the Rajagiri School of Engineering and Technology (RSET), Cochin is a tribute to the legendary Indian mathematician Srinivasa Ramanujan who prematurely passed away a hundred years ago on 26th April 1920 leaving a lasting legacy. Conceived as any usual conference as early as June 2019, the ICNTDM was compelled to switch to online mode due to the pandemic, like most events round the globe this year. The International Academic Programme Committee, consisting of distinguished mathematicians from India and abroad, lent us a helping hand every possible way, in all aspects of the conference. As a result, we were able to evolve a strong line up of reputed speakers from India, Austria, Canada, China, France, Hungary, Japan, Russia, Slovenia, UK and USA, giving 23 plenary talks and 11 invited talks, in addition to the 39 speakers in the contributed session. This booklet consists of abstracts of all these talks and two invited articles; one describing the various academic activities that RMS is engaged in, tracing history from its momentous beginning in 1985, and a second article on Srinivasa Ramanujan. It is very appropriate to record here that, in conjunction with the pronouncement of the year 2012 { the 125th birth anniversary year of Ramanujan { as the `National Mathematics Year', RMS heralded an excellent initiative of translating the cele- brated book `The Man Who Knew Infinity' into many Indian languages.
    [Show full text]
  • The Riemann Hypothesis for Varieties Over Finite Fields
    The Riemann Hypothesis for Varieties over Finite Fields Sander Mack-Crane 16 July 2015 Abstract We discuss the Weil conjectures, especially the Riemann hypothesis, for varieties over finite fields. Particular detail is devoted to the proof of the Riemann hypothesis for cubic threefolds in projective 4-space, as given by Bombieri and Swinnerton-Dyer. The main idea is to relate the number of points on a cubic threefold to the trace of Frobenius on an associated abelian variety, and we develop the necessary machinery of abelian varieties. 1 Introduction The Weil conjectures are a set of conjectures (now proven) describing the number of points of varieties over finite fields, as encoded in the zeta function of the variety. They give an analog in finite fields of both the Riemann hypothesis of analytic number theory and the cohomology theory of complex varieties. We will introduce both of these perspectives in turn, partly following [2]. But first, we review an element of algebraic geometry that is essential for our discussion. 1.1 Fields of Definition In the classical setting, let n Ak = f(a1,..., an) j ai 2 kg be n-dimensional affine space over a field k, f fig ⊂ k[x1,..., xn] some set of polynomials, and n n V = V( fi) = f(a1,..., an) 2 Ak j fi(a1,..., an) = 0 for all ig ⊂ Ak the variety defined by the polynomials f fig. For any extension K of k, we have k[x0,..., xn] ⊂ K[x0,..., xn], and in particular our polynomials fi defining X are in K[x0,..., xn].
    [Show full text]