A History of Gravitational Wave Research

Total Page:16

File Type:pdf, Size:1020Kb

A History of Gravitational Wave Research A history of gravitational wave research Chiang-Mei Chen1 & James M. Nester1,2 1Department of Physics, National Central University, Taiwan 2LeCosPA, National Taiwan University, Taiwan [email protected], [email protected] 12 July 2016 @ GSROC GR101, NTNU, Taipei A history of gravitational wave research Outline Mainly a brief (and inadequate) history of the development of the theory Early history: Einstein, Eddington Einstein & Rosen (1937) Theoretical disputes: skeptics & non-skeptics binary pulsar Weber and bar detectors Laser interferometry and LIGO GW150914 References: D. Kennefick: Traveling at the Speed of Thought: Einstein and the quest for gravitational waves (Princeton Univ Press, 2007) H. Collins: Gravity’s Shadow: the search for gravity waves (U of Chicago Press, 2004) Collected Papers of Albert Einstein (CPAE) http://einsteinpapers.press.princeton.edu A history of gravitational wave research Forerunners Clifford (1876): Curvature waves: “I hold that (1) small portions of space are in fact of a nature analogous to little hills on a surface which is on average flat; namely that the ordinary laws of geometry are not valid for them. (2) That the property of being curved or distorted is continually being passed on from one portion of space to another after the manner of a wave. ...” Poincare´ (1908) speculated about (special) relativistic gravity, with gravitational waves of acceleration that propagated at speed c Nordstrom¨ (1913): a relativistic scalar theory of gravity, with waves that propagate at speed c: Einstein & Fokker (1914): R = 24πGT & Weyl = 0. A history of gravitational wave research Einstein’s predictions: 1916, 1918 AE to Schwarzschild, 19 Feb 1916, Doc 194 CPAE, Vol. 8 [http://einsteinpapers.press.princeton.edu]: “Since then [Nov 4], I have handled Newton’s case differently according to the final theory.—Thus there are no gravitational waves analogous to light waves. This is probably also related to the one-sidedness of the sign of scalar T , incidently. (Nonexistence of the “dipole”.)” de Sitter (1916) gave AE the hint, AE June 1916, a paper predicting GWs, includes the quadruple formula magnitude 1/24π, several mistakes, including confusing h¯µν and hµν correspondence with Nordstrom¨ (1918) −→ AE 1918, magnitude 1/80π, 3 types of waves, 2 recognized as coordinate waves, carry no energy Eddington (1922): curvature propagation, corrects AE by a factor of 2: 1/40π. A history of gravitational wave research Do gravitational waves carry energy? This has been debated since the beginning. The issue of gravitational energy is not so simple. Einstein used his pseudotensor, and found energy propagation Many objected to the pseudotensor including Schrodinger,¨ Bauer, Levi-Civita From the work of Hilbert, Klein and Nother it was established that there is no proper energy density Eddington & Pauli both argued that gravitational energy was non-localizable. Nowadays it is regarded as quasi-local—associated with a closed 2-surface. There are 2 issues: (1) no unique expression, (2) depends on the reference frame they are both addressed in our Hamiltonian boundary approach A history of gravitational wave research A history of gravitational wave research Do gravity waves exist?: not accepted by Phys Rev From Kennefick Ch 5 In 1936 Einstein submitted with Nathan Rosen a paper to Phys Rev entitled “Do gravity waves exist” which apparently came to a surprising conclusion: gravitational plane waves cannot exist. The Phys Rev editor [Tate] received a detailed referee report [see Appendix A in Kennefick Traveling at the speed of thought] He sent it to Einstein with the mild request that he “would be glad to have your reaction to the various comments and criticisms the referee has made” A history of gravitational wave research Einstein wrote back Dear Sir, We (Mr Rosen and I) had sent you our manuscript for publication and had not authorized you to show it to specialists before it is printed. I see no reason to address the—in any case erroneous—comments of your anonymous expert. On the basis of this incident I prefer to publish the paper elsewhere. Tate replied that he regretted Einstein’s decision to withdraw the paper but stated that he would not set aside the the journal’s review procedure. Einstein’s annoyance was such that he never published in Phys Rev again. In fairness to Einstein, such a review procedure was not then used by the German journals he had been using in the past. A history of gravitational wave research Einstein submitted the paper to the Journal of the Franklin Institute and it was accepted By then Rosen had gone to Russia. Einstein’s new assistant, Infeld, received a visit from H.P. Robertson (recently it came to light that he was the referee) who persuaded Infeld of problems in the paper. When Infeld went to tell Einstein, Einstein said that he himself had just discovered some problems. He had to modify the talk he had prepared for the next day. The paper was revised in proof to have the opposite of its original conclusion: it showed the existence of cylindrical gravity waves. Published as “On Gravitational Waves” They were looking for an exact plane wave solution, but actually found cylindrical waves. [they had been found earlier: Beck 1925, Baldwin & Jeffery 1926] Rosen did not know of the revision or publication (a friend had sent him a newspaper clipping) and meanwhile had also found some error but was not happy with the revisions. He published a paper in a Soviet journal in 1937 arguing that GWs do not exist because of a singularity in the solution. In 1955 at a conference he argued that gravitational waves cannot transport energy. In 1979 he published a paper “Does Gravitational Radiation Exist?” A history of gravitational wave research some theory Since Faraday and Maxwell we think in terms of interaction fields, local action and propagating fields Maxwell’s electrodynamics is now our prototype the electromagnetic analogy J.J. Thompson argument Landau & Lifshitz derivation of the Einstein quadrupole formula A history of gravitational wave research Berne 1955, Chapel Hill 1957 Berne 1955: Synge, Pirani, geodesic deviation/tidal force Chapel Hill 1957 (Cecile DeWitt-Morette & Bryce DeWitt) Bondi waving two dumbbells Sticky bead argument: “Mr. Smith” (Richard Feynman) and Hermann Bondi. gravitational waves carrying energy, unlike EM, not dipole but rather quadrupole Pirani, Trautman, Robinson A history of gravitational wave research skeptics and non-skeptics regarding the EM analogy a/o carrying energy, free fall binary systems skeptics: Eddington, Rosen, Infeld, Havas, Bondi, Cooperstock, Pereira non-skeptics: Landau, Wheeler, Pirani binary rate of energy loss, 2.5 order post-Newtonian, Einstein-Infeld-Hoffman complicated calculations issues include (i) advanced vs retarded vs half advanced–half retarded (ii) boundary conditions many different answers, some gain energy, Bondi: inductive energy transport Newtonian and GR A modern example: Io tidal heating Bondi news A history of gravitational wave research quadrupole formula quadrupole formula: controversial Infeld, Goldberg, Havas, Fock, Peres, Trautman, Plebansky, Burke & Thorne, Walker & Will, Damour, Anderson boundary conditions, radiation reaction 2 approaches: PPN (slow) Linearized (fast) would binary stars radiate gravitational waves? quasars, collapse, black holes, pulsars 1967, A history of gravitational wave research binary pulsar binary pulsar PSR B1913+16 (1974), Taylor & Hulse Nobel Prize (1993) indirect evidence for GW, fits the quadrupole formula A history of gravitational wave research Christodoulou 2009 Christodoulou in 2009 proved that asymptotically flat vacuum initial data could be such that it would in the future form a trapped surface thus GWs could be focused to form a trapped surface and thus a Black Hole so certainly gravity waves carry energy since they can condense and act like a “mass” (Wheeler had asked him to try to show this about 40 years earlier) A history of gravitational wave research resonant mass detectors room temperature bars: Weber Joseph Weber 1960 1969 claim many other groups cyrogenic bars spheres were also proposed MTW Section 37.3: 8 types of mechanical detectors A history of gravitational wave research Laser interferometers MTW p 1014: “...or by laser interferometry. Several features of such detectors are explored in exercises 37.6 and 37.7. As shown in exercise 37.7, such detectors have so low a sensitivity that they are of little experimental interest.” History: Weber, Ray Weiss, Forward, Schutz, Thorne, Drever LIGO, VIRGO Kennefick (2007) “Today it is widely expected that the first direct detection of gravitational waves will take place within the decade” p1 A history of gravitational wave research GW150914 GW150914 It offers direct evidence for (i) gravitational waves, propagating waves of curvature (ii) black holes (iii) binary black holes (iv) black hole coalescence some constraints on (i) the speed of the wave, (ii) limits on massive gravity, (iii) polarizations (iv) on certain types of proposed Lorentz violations seems to be consistent with orthodox theory A history of gravitational wave research conclusion Thank you for your attention and patience. A history of gravitational wave research A final thought Gravity is the universal attractive interaction, A history of gravitational wave research A final thought Gravity is the universal attractive interaction, moreover it connects all of existence together and is the prime cause of the order in the cosmos A history of gravitational wave research A final thought Gravity is the universal attractive interaction, moreover it connects all of existence together and is the prime cause of the order in the cosmos gravity is like A history of gravitational wave research A final thought Gravity is the universal attractive interaction, moreover it connects all of existence together and is the prime cause of the order in the cosmos gravity is like Is there a deeper meaning to this similarity? I think so. With appreciation for your attention..
Recommended publications
  • Could Minkowski Have Discovered the Cause of Gravitation Before Einstein?
    2 Could Minkowski have discovered the cause of gravitation before Einstein? Vesselin Petkov Abstract There are two reasons for asking such an apparently unanswer- able question. First, Max Born’s recollections of what Minkowski had told him about his research on the physical meaning of the Lorentz transformations and the fact that Minkowski had created the full-blown four-dimensional mathematical formalism of space- time physics before the end of 1907 (which could have been highly improbable if Minkowski had not been developing his own ideas), both indicate that Minkowski might have arrived at the notion of spacetime independently of Poincaré (who saw it as nothing more than a mathematical space) and at a deeper understanding of the basic ideas of special relativity (which Einstein merely postulated) independently of Einstein. So, had he lived longer, Minkowski might have employed successfully his program of regarding four- dimensional physics as spacetime geometry to gravitation as well. Moreover, Hilbert (Minkowski’s closest colleague and friend) had derived the equations of general relativity simultaneously with Ein- stein. Second, even if Einstein had arrived at what is today called Einstein’s general relativity before Minkowski, Minkowski would have certainly reformulated it in terms of his program of geometriz- ing physics and might have represented gravitation fully as the man- ifestation of the non-Euclidean geometry of spacetime (Einstein re- garded the geometrical representation of gravitation as pure math- ematics) exactly like he reformulated Einstein’s special relativity in terms of spacetime. 1 Introduction On January 12, 1909, only several months after his Cologne lecture Space and Time [1], at the age of 44 Hermann Minkowski untimely left this world.
    [Show full text]
  • Gravitational Waves and Binary Black Holes
    Ondes Gravitationnelles, S´eminairePoincar´eXXII (2016) 1 { 51 S´eminairePoincar´e Gravitational Waves and Binary Black Holes Thibault Damour Institut des Hautes Etudes Scientifiques 35 route de Chartres 91440 Bures sur Yvette, France Abstract. The theoretical aspects of the gravitational motion and radiation of binary black hole systems are reviewed. Several of these theoretical aspects (high-order post-Newtonian equations of motion, high-order post-Newtonian gravitational-wave emission formulas, Effective-One-Body formalism, Numerical-Relativity simulations) have played a significant role in allowing one to compute the 250 000 gravitational-wave templates that were used for search- ing and analyzing the first gravitational-wave events from coalescing binary black holes recently reported by the LIGO-Virgo collaboration. 1 Introduction On February 11, 2016 the LIGO-Virgo collaboration announced [1] the quasi- simultaneous observation by the two LIGO interferometers, on September 14, 2015, of the first Gravitational Wave (GW) event, called GW150914. To set the stage, we show in Figure 1 the raw interferometric data of the event GW150914, transcribed in terms of their equivalent dimensionless GW strain amplitude hobs(t) (Hanford raw data on the left, and Livingston raw data on the right). Figure 1: LIGO raw data for GW150914; taken from the talk of Eric Chassande-Mottin (member of the LIGO-Virgo collaboration) given at the April 5, 2016 public conference on \Gravitational Waves and Coalescing Black Holes" (Acad´emiedes Sciences, Paris, France). The important point conveyed by these plots is that the observed signal hobs(t) (which contains both the noise and the putative real GW signal) is randomly fluc- tuating by ±5 × 10−19 over time scales of ∼ 0:1 sec, i.e.
    [Show full text]
  • A Brief History of Gravitational Waves
    universe Review A Brief History of Gravitational Waves Jorge L. Cervantes-Cota 1, Salvador Galindo-Uribarri 1 and George F. Smoot 2,3,4,* 1 Department of Physics, National Institute for Nuclear Research, Km 36.5 Carretera Mexico-Toluca, Ocoyoacac, C.P. 52750 Mexico, Mexico; [email protected] (J.L.C.-C.); [email protected] (S.G.-U.) 2 Helmut and Ana Pao Sohmen Professor at Large, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077 Hong Kong, China 3 Université Sorbonne Paris Cité, Laboratoire APC-PCCP, Université Paris Diderot, 10 rue Alice Domon et Leonie Duquet, 75205 Paris Cedex 13, France 4 Department of Physics and LBNL, University of California; MS Bldg 50-5505 LBNL, 1 Cyclotron Road Berkeley, 94720 CA, USA * Correspondence: [email protected]; Tel.:+1-510-486-5505 Academic Editors: Lorenzo Iorio and Elias C. Vagenas Received: 21 July 2016; Accepted: 2 September 2016; Published: 13 September 2016 Abstract: This review describes the discovery of gravitational waves. We recount the journey of predicting and finding those waves, since its beginning in the early twentieth century, their prediction by Einstein in 1916, theoretical and experimental blunders, efforts towards their detection, and finally the subsequent successful discovery. Keywords: gravitational waves; General Relativity; LIGO; Einstein; strong-field gravity; binary black holes 1. Introduction Einstein’s General Theory of Relativity, published in November 1915, led to the prediction of the existence of gravitational waves that would be so faint and their interaction with matter so weak that Einstein himself wondered if they could ever be discovered.
    [Show full text]
  • Gravitational Waves
    Bachelor Project: Gravitational Waves J. de Valen¸caunder supervision of J. de Boer 4th September 2008 Abstract The purpose of this article is to investigate the concept of gravita- tional radiation and to look at the current research projects designed to measure this predicted phenomenon directly. We begin by stat- ing the concepts of general relativity which we will use to derive the quadrupole formula for the energy loss of a binary system due to grav- itational radiation. We will test this with the famous binary pulsar PSR1913+16 and check the the magnitude and effects of the radiation. Finally we will give an outlook to the current and future experiments to measure the effects of the gravitational radiation 1 Contents 1 Introduction 3 2 A very short introduction to the Theory of General Relativ- ity 4 2.1 On the left-hand side: The energy-momentum tensor . 5 2.2 On the right-hand side: The Einstein tensor . 6 3 Working with the Einstein equations of General Relativity 8 4 A derivation of the energy loss due to gravitational radiation 10 4.1 Finding the stress-energy tensor . 10 4.2 Rewriting the quadrupole formula to the TT gauge . 13 4.3 Solving the integral and getting rid of the TT’s . 16 5 Testing the quadrupole radiation formula with the pulsar PSR 1913 + 16 18 6 Gravitational wave detectors 24 6.1 The effect of a passing gravitational wave on matter . 24 6.2 The resonance based wave detector . 26 6.3 Interferometry based wave detectors . 27 7 Conclusion and future applications 29 A The Einstein summation rule 32 B The metric 32 C The symmetries in the Ricci tensor 33 ij D Transversal and traceless QTT 34 2 1 Introduction Waves are a well known phenomenon in Physics.
    [Show full text]
  • Einstein's Quadrupole Formula from the Kinetic-Conformal Horava Theory
    Einstein’s quadrupole formula from the kinetic-conformal Hoˇrava theory Jorge Bellor´ına,1 and Alvaro Restucciaa,b,2 aDepartment of Physics, Universidad de Antofagasta, 1240000 Antofagasta, Chile. bDepartment of Physics, Universidad Sim´on Bol´ıvar, 1080-A Caracas, Venezuela. [email protected], [email protected] Abstract We analyze the radiative and nonradiative linearized variables in a gravity theory within the familiy of the nonprojectable Hoˇrava theories, the Hoˇrava theory at the kinetic-conformal point. There is no extra mode in this for- mulation, the theory shares the same number of degrees of freedom with general relativity. The large-distance effective action, which is the one we consider, can be given in a generally-covariant form under asymptotically flat boundary conditions, the Einstein-aether theory under the condition of hypersurface orthogonality on the aether vector. In the linearized theory we find that only the transverse-traceless tensorial modes obey a sourced wave equation, as in general relativity. The rest of variables are nonradiative. The result is gauge-independent at the level of the linearized theory. For the case of a weak source, we find that the leading mode in the far zone is exactly Einstein’s quadrupole formula of general relativity, if some coupling constants are properly identified. There are no monopoles nor dipoles in arXiv:1612.04414v2 [gr-qc] 21 Jul 2017 this formulation, in distinction to the nonprojectable Horava theory outside the kinetic-conformal point. We also discuss some constraints on the theory arising from the observational bounds on Lorentz-violating theories. 1 Introduction Gravitational waves have recently been detected [1, 2, 3].
    [Show full text]
  • A Brief History of Gravitational Waves
    Review A Brief History of Gravitational Waves Jorge L. Cervantes-Cota 1, Salvador Galindo-Uribarri 1 and George F. Smoot 2,3,4,* 1 Department of Physics, National Institute for Nuclear Research, Km 36.5 Carretera Mexico-Toluca, Ocoyoacac, Mexico State C.P.52750, Mexico; [email protected] (J.L.C.-C.); [email protected] (S.G.-U.) 2 Helmut and Ana Pao Sohmen Professor at Large, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, 999077 Kowloon, Hong Kong, China. 3 Université Sorbonne Paris Cité, Laboratoire APC-PCCP, Université Paris Diderot, 10 rue Alice Domon et Leonie Duquet 75205 Paris Cedex 13, France. 4 Department of Physics and LBNL, University of California; MS Bldg 50-5505 LBNL, 1 Cyclotron Road Berkeley, CA 94720, USA. * Correspondence: [email protected]; Tel.:+1-510-486-5505 Abstract: This review describes the discovery of gravitational waves. We recount the journey of predicting and finding those waves, since its beginning in the early twentieth century, their prediction by Einstein in 1916, theoretical and experimental blunders, efforts towards their detection, and finally the subsequent successful discovery. Keywords: gravitational waves; General Relativity; LIGO; Einstein; strong-field gravity; binary black holes 1. Introduction Einstein’s General Theory of Relativity, published in November 1915, led to the prediction of the existence of gravitational waves that would be so faint and their interaction with matter so weak that Einstein himself wondered if they could ever be discovered. Even if they were detectable, Einstein also wondered if they would ever be useful enough for use in science.
    [Show full text]
  • The Efficiency of Gravitational Bremsstrahlung Production in The
    The Efficiency of Gravitational Bremsstrahlung Production in the Collision of Two Schwarzschild Black Holes R. F. Aranha∗ Centro Brasileiro de Pesquisas F´ısicas-CFC Rua Dr. Xavier Sigaud 150, Urca, Rio de Janeiro CEP 22290-180-RJ, Brazil H. P. de Oliveira† Instituto de F´ısica - Universidade do Estado do Rio de Janeiro CEP 20550-013 Rio de Janeiro, RJ, Brazil I. Dami˜ao Soares‡ Centro Brasileiro de Pesquisas F´ısicas Rua Dr. Xavier Sigaud 150, Urca, Rio de Janeiro CEP 22290-180-RJ, Brazil E. V. Tonini§ Centro Federal de Educa¸c˜ao Tecnol´ogica do Esp´ırito Santo Avenida Vit´oria, 1729, Jucutuquara, Vit´oria CEP 29040-780-ES, Brazil (Dated: October 28, 2018) We examine the efficiency of gravitational bremsstrahlung production in the process of head-on collision of two boosted Schwarzschild black holes. We constructed initial data for the character- istic initial value problem in Robinson-Trautman spacetimes, that represent two instantaneously stationary Schwarzschild black holes in motion towards each other with the same velocity. The Robinson-Trautman equation was integrated for these initial data using a numerical code based on the Galerkin method. The final resulting configuration is a boosted black hole with Bondi mass greater than the sum of the individual mass of each initial black hole. Two relevant aspects of the process are presented. The first relates the efficiency ∆ of the energy extraction by gravitational wave emission to the mass of the final black hole. This relation is fitted by a distribution function of non-extensive thermostatistics with entropic parameter q 1/2; the result extends and validates analysis based on the linearized theory of gravitational wa≃ve emission.
    [Show full text]
  • Einstein's Discovery of Gravitational Waves 1916-1918
    1 Einstein’s Discovery of Gravitational Waves 1916-1918 Galina Weinstein 12/2/16 In his 1916 ground-breaking general relativity paper Einstein had imposed a restrictive coordinate condition; his field equations were valid for a system –g = 1. Later, Einstein published a paper on gravitational waves. The solution presented in this paper did not satisfy the above restrictive condition. In his gravitational waves paper, Einstein concluded that gravitational fields propagate at the speed of light. The solution is the Minkowski flat metric plus a small disturbance propagating in a flat space-time. Einstein calculated the small deviation from Minkowski metric in a manner analogous to that of retarded potentials in electrodynamics. However, in obtaining the above derivation, Einstein made a mathematical error. This error caused him to obtain three different types of waves compatible with his approximate field equations: longitudinal waves, transverse waves and a new type of wave. Einstein added an Addendum in which he suggested that in a system –g = 1 only waves of the third type occur and these waves transport energy. He became obsessed with his system –g = 1. Einstein’s colleagues demonstrated to him that in the coordinate system –g = 1 the gravitational wave of a mass point carry no energy, but Einstein tried to persuade them that he had actually not made a mistake in his gravitational waves paper. Einstein, however, eventually accepted his colleagues results and dropped the restrictive condition –g = 1. This finally led him to discover plane transverse gravitational waves. Already in 1913, at the eighty-fifth congress of the German Natural Scientists and Physicists in Vienna, Einstein started to think about gravitational waves when he worked on the Entwurf theory.
    [Show full text]
  • The Newtonian and Relativistic Theory of Orbits and the Emission of Gravitational Waves
    108 The Open Astronomy Journal, 2011, 4, (Suppl 1-M7) 108-150 Open Access The Newtonian and Relativistic Theory of Orbits and the Emission of Gravitational Waves Mariafelicia De Laurentis1,2,* 1Dipartimento di Scienze Fisiche, Universitá di Napoli " Federico II",Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, I-80126, Napoli, Italy 2INFN Sez. di Napoli, Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, I-80126, Napoli, Italy Abstract: This review paper is devoted to the theory of orbits. We start with the discussion of the Newtonian problem of motion then we consider the relativistic problem of motion, in particular the post-Newtonian (PN) approximation and the further gravitomagnetic corrections. Finally by a classification of orbits in accordance with the conditions of motion, we calculate the gravitational waves luminosity for different types of stellar encounters and orbits. Keywords: Theroy of orbits, gravitational waves, post-newtonian (PN) approximation, LISA, transverse traceless, Elliptical orbits. 1. INTRODUCTION of General Relativity (GR). Indeed, the PN approximation method, developed by Einstein himself [1], Droste and de Dynamics of standard and compact astrophysical bodies could be aimed to unravelling the information contained in Sitter [2, 3] within one year after the publication of GR, led the gravitational wave (GW) signals. Several situations are to the predictions of i) the relativistic advance of perihelion of planets, ii) the gravitational redshift, iii) the deflection possible such as GWs emitted by coalescing compact binaries–systems of neutron stars (NS), black holes (BH) of light, iv) the relativistic precession of the Moon orbit, that driven into coalescence by emission of gravitational are the so–called "classical" tests of GR.
    [Show full text]
  • General Relativity 2020–2021 1 Overview
    N I V E R U S E I T H Y T PHYS11010: General Relativity 2020–2021 O H F G E R D John Peacock I N B U Room C20, Royal Observatory; [email protected] http://www.roe.ac.uk/japwww/teaching/gr.html Textbooks These notes are intended to be self-contained, but there are many excellent textbooks on the subject. The following are especially recommended for background reading: Hobson, Efstathiou & Lasenby (Cambridge): General Relativity: An introduction for Physi- • cists. This is fairly close in level and approach to this course. Ohanian & Ruffini (Cambridge): Gravitation and Spacetime (3rd edition). A similar level • to Hobson et al. with some interesting insights on the electromagnetic analogy. Cheng (Oxford): Relativity, Gravitation and Cosmology: A Basic Introduction. Not that • ‘basic’, but another good match to this course. D’Inverno (Oxford): Introducing Einstein’s Relativity. A more mathematical approach, • without being intimidating. Weinberg (Wiley): Gravitation and Cosmology. A classic advanced textbook with some • unique insights. Downplays the geometrical aspect of GR. Misner, Thorne & Wheeler (Princeton): Gravitation. The classic antiparticle to Weinberg: • heavily geometrical and full of deep insights. Rather overwhelming until you have a reason- able grasp of the material. It may also be useful to consult background reading on some mathematical aspects, especially tensors and the variational principle. Two good references for mathematical methods are: Riley, Hobson and Bence (Cambridge; RHB): Mathematical Methods for Physics and Engi- • neering Arfken (Academic Press): Mathematical Methods for Physicists • 1 Overview General Relativity (GR) has an unfortunate reputation as a difficult subject, going back to the early days when the media liked to claim that only three people in the world understood Einstein’s theory.
    [Show full text]
  • The Confrontation Between General Relativity and Experiment
    The Confrontation between General Relativity and Experiment Clifford M. Will Department of Physics University of Florida Gainesville FL 32611, U.S.A. email: [email protected]fl.edu http://www.phys.ufl.edu/~cmw/ Abstract The status of experimental tests of general relativity and of theoretical frameworks for analyzing them are reviewed and updated. Einstein’s equivalence principle (EEP) is well supported by experiments such as the E¨otv¨os experiment, tests of local Lorentz invariance and clock experiments. Ongoing tests of EEP and of the inverse square law are searching for new interactions arising from unification or quantum gravity. Tests of general relativity at the post-Newtonian level have reached high precision, including the light deflection, the Shapiro time delay, the perihelion advance of Mercury, the Nordtvedt effect in lunar motion, and frame-dragging. Gravitational wave damping has been detected in an amount that agrees with general relativity to better than half a percent using the Hulse–Taylor binary pulsar, and a growing family of other binary pulsar systems is yielding new tests, especially of strong-field effects. Current and future tests of relativity will center on strong gravity and gravitational waves. arXiv:1403.7377v1 [gr-qc] 28 Mar 2014 1 Contents 1 Introduction 3 2 Tests of the Foundations of Gravitation Theory 6 2.1 The Einstein equivalence principle . .. 6 2.1.1 Tests of the weak equivalence principle . .. 7 2.1.2 Tests of local Lorentz invariance . .. 9 2.1.3 Tests of local position invariance . 12 2.2 TheoreticalframeworksforanalyzingEEP. ....... 16 2.2.1 Schiff’sconjecture ................................ 16 2.2.2 The THǫµ formalism .............................
    [Show full text]
  • Albert Einstein - Wikipedia, the Free Encyclopedia Page 1 of 27
    Albert Einstein - Wikipedia, the free encyclopedia Page 1 of 27 Albert Einstein From Wikipedia, the free encyclopedia Albert Einstein ( /ælbərt a nsta n/; Albert Einstein German: [albt a nʃta n] ( listen); 14 March 1879 – 18 April 1955) was a German-born theoretical physicist who developed the theory of general relativity, effecting a revolution in physics. For this achievement, Einstein is often regarded as the father of modern physics.[2] He received the 1921 Nobel Prize in Physics "for his services to theoretical physics, and especially for his discovery of the law of the photoelectric effect". [3] The latter was pivotal in establishing quantum theory within physics. Near the beginning of his career, Einstein thought that Newtonian mechanics was no longer enough to reconcile the laws of classical mechanics with the laws of the electromagnetic field. This led to the development of his special theory of relativity. He Albert Einstein in 1921 realized, however, that the principle of relativity could also be extended to gravitational fields, and with his Born 14 March 1879 subsequent theory of gravitation in 1916, he published Ulm, Kingdom of Württemberg, a paper on the general theory of relativity. He German Empire continued to deal with problems of statistical Died mechanics and quantum theory, which led to his 18 April 1955 (aged 76) explanations of particle theory and the motion of Princeton, New Jersey, United States molecules. He also investigated the thermal properties Residence Germany, Italy, Switzerland, United of light which laid the foundation of the photon theory States of light. In 1917, Einstein applied the general theory of relativity to model the structure of the universe as a Ethnicity Jewish [4] whole.
    [Show full text]