Noncontact Body Temperature Measurement: Uncertainty Evaluation and Screening Decision Rule to Prevent the Spread of COVID-19
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Basal Digital Thermometer How to Use Instructions for Use 1
BASAL DIGITAL THERMOMETER HOW TO USE INSTRUCTIONS FOR USE 1. The probe is folded into the body of the thermometer for storage. Unfold the probe and Please read thoroughly before using KD-2160 disinfect with rubbing alcohol before using. FEATURES 2. Press and release the on/off button. The display will read or 3. Next the display will show L°F or L°C with the °F or °C flashing. This basal digital thermometer is intended to measure the human body temperature for 4. Place the probe under the tongue as described and shown below. women. It’s precise digital display is for using in a household environment. 5. Once the degree sign °F (°C) on the display has stopped flashing, the measured temperature is indicated. 1. Oral temperature measurement in approximately 30 seconds with proper use. 2. 40 sets of memories. Recall all memories using NFC (Near Field Communication) or the 6. The unit will automatically turn off in approx. 3 minutes. However, to prolong battery life, headset jack adaptor on your mobile device. it is best to turn off the thermometer by pressing the ON/OFF button once the 3. Very sensitive unit, easy to read digital LCD (liquid crystal display). temperature has been noted. 4. Compact, accurate and durable LSI (large scale integration) unit. 5. If the thermometer is inadvertently left on after temperature stabilization, it will automatically ORAL USE shut off after approximately 3 minutes. Place the probe well under the patient's tongue with the probe 6. Small, light weight unit with “store-away” probe and a handy carry case. -
244LD Levelstar Intelligent Buoyancy Transmitter for Level
Master Instruction 11.2016 MI EML0710 G-(en) 244LD LevelStar Intelligent Buoyancy Transmitter for Vers. 6.2.x Level, Interface and Density with Torque Tube and displacer – HART and Foundation Fieldbus – The intelligent transmitter 244LD LevelStar is designed to perform continuous measurements for liquid level, interface or density of liquids in the process of all industrial applications. The measurement is based on the proven Archimedes buoyancy principle and thus extremely robust and durable. Measuring values can be transferred analog and digital. Digital communication facilitates complete operation and configuration via PC or control system. Despite extreme temperatures, high process pressure and corrosive liquids, the 244LD measures with consistent reliability and high precision. It is approved for installations in contact with explosive atmospheres. The 244LD combines the abundant experience of FOXBORO with most advanced digital technology. FEATURES • HART Communication, 4 to 20 mA, or • Backdocumentation of measuring point Foundation Fieldbus • Continuous self-diagnostics, Status and diagnostic • Configuration via FDT-DTM messages • Multilingual full text graphic LCD • Configurable safety value • IR communication as a standard • Local display in %, mA or physical units • Easy adaptation to the measuring point • Process temperature from –196 °C to +500 °C without calibration at the workshop • Materials for use with aggressive media • Linear or customized characteristic • Micro sintermetal sensor technology • 32 point linearisation -
Calcitonin Receptors Are Ancient Modulators for Rhythms of Preferential Temperature in Insects and Body Temperature in Mammals
Downloaded from genesdev.cshlp.org on October 7, 2021 - Published by Cold Spring Harbor Laboratory Press Calcitonin receptors are ancient modulators for rhythms of preferential temperature in insects and body temperature in mammals Tadahiro Goda,1,5 Masao Doi,2,5 Yujiro Umezaki,1 Iori Murai,2 Hiroyuki Shimatani,2 Michelle L. Chu,1 Victoria H. Nguyen,1 Hitoshi Okamura,2 and Fumika N. Hamada1,3,4,6 1Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA; 2Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; 3Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA; 4Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45229, USA Daily body temperature rhythm (BTR) is essential for maintaining homeostasis. BTR is regulated separately from locomotor activity rhythms, but its molecular basis is largely unknown. While mammals internally regulate BTR, ectotherms, including Drosophila, exhibit temperature preference rhythm (TPR) behavior to regulate BTR. Here, we demonstrate that the diuretic hormone 31 receptor (DH31R) mediates TPR during the active phase in Drosophila. DH31R is expressed in clock cells, and its ligand, DH31, acts on clock cells to regulate TPR during the active phase. Surprisingly, the mouse homolog of DH31R, calcitonin receptor (Calcr), is expressed in the suprachiasmatic nucleus (SCN) and mediates body temperature fluctuations during the active phase in mice. Importantly, DH31R and Calcr are not required for coordinating locomotor activity rhythms. Our results represent the first molecular evidence that BTR is regulated distinctly from locomotor activity rhythms and show that DH31R/Calcr is an ancient specific mediator of BTR during the active phase in organisms ranging from ectotherms to endotherms. -
Rethinking the Normal Human Body Temperature
CART FREE HEALTHBEAT SIGNUP SHOP ▼ SIGN IN What can we help you 繠nd? HEART HEALTH MIND & MOOD PAIN STAYING CANCER DISEASES & MEN'S HEALTH WOMEN'S HEALTHY CONDITIONS HEALTH Normal Body Temperature : Rethinking the normal human body temperature The 98.6° F "normal" benchmark for body temperature comes to us from Dr. Carl Wunderlich, a 19th-century German physician who collected and analyzed over a million armpit temperatures for 25,000 patients. Some of Wunderlich's observations have stood up over time, but his de繠nition of normal has been debunked, says the April issue of the Harvard Health Letter {http://www.health.harvard.edu/newsletters/Harvard_Health_Letter.htm}. A study published years ago in the Journal of the American Medical Association found the average normal temperature for adults to be 98.2°, not 98.6°, and replaced the 100.4° fever mark with fever thresholds based on the time of day. Now, researchers at Winthrop University Hospital in Mineola, N.Y., have found support for another temperature truism doctors have long recognized: Older people have lower temperatures. In a study of 150 older people with an average age of about 81, they found that the average temperature never reached 98.6°. These 繠ndings suggest that even when older people are ill, their body temperature may not reach levels that people recognize as fever. On the other hand, body temperatures that are too low (about 95°) can also be a sign of illness. The bottom line is that individual variations in body temperature should be taken into account, reports the Harvard Health Letter. -
Decreasing Human Body Temperature in the United States Since the Industrial Revolution
bioRxiv preprint doi: https://doi.org/10.1101/729913; this version posted August 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Decreasing human body temperature in the United States since the Industrial Revolution Myroslava Protsiv1, Catherine Ley1, Joanna Lankester2, Trevor Hastie3,4, Julie Parsonnet1,5,* Affiliations: 5 1Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305. 2 Division of Cardiovascular Medicine, Stanford University, School of Medicine CA 94305. 3Department of Statistics, Stanford University, Stanford, CA 94305. 4Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, 10 CA, 94305. 5Division of Epidemiology, Department of Health Research and Policy, Stanford University School of Medicine, Stanford, CA, 94305 *Correspondence to: Julie Parsonnet, 300 Pasteur Dr., Lane L134, Stanford University, Stanford, CA 94305. [email protected]. bioRxiv preprint doi: https://doi.org/10.1101/729913; this version posted August 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 15 ABSTRACT In the US, the normal, oral temperature -
IQ Sensornet Nitravis 701 & 705 IQ Sensors User Manual
OPERATIONS MANUAL ba76078e03 05/2017 NitraVis 701 IQ NitraVis 705 IQ OPTICAL SENSOR FOR NITRATE NitraVis 70x IQ Contact YSI 1725 Brannum Lane Yellow Springs, OH 45387 USA Tel: +1 937-767-7241 800-765-4974 Email: [email protected] Internet: www.ysi.com Copyright © 2017 Xylem Inc. 2 ba76078e03 05/2017 NitraVis 70x IQ Contents Contents 1 Overview . 5 1.1 How to use this component operating manual . 5 1.2 Field of application . 6 1.3 Measuring principle of the sensor NitraVis 70x IQ . 6 1.4 Structure of the sensor NitraVis 70x IQ . 7 2 Safety . 8 2.1 Safety information . 8 2.1.1 Safety information in the operating manual . 8 2.1.2 Safety signs on the product . 8 2.1.3 Further documents providing safety information . 8 2.2 Safe operation . 9 2.2.1 Authorized use . 9 2.2.2 Requirements for safe operation . 9 2.2.3 Unauthorized use . 9 3 Commissioning . 10 3.1 IQ SENSORNET system requirements . 10 3.2 Scope of delivery of the NitraVis 70x IQ . 10 3.3 Installation . 11 3.3.1 Mounting the sensor . 11 3.3.2 Mounting the shock protectors . 13 3.3.3 Connecting the sensor to the IQ SENSORNET . 14 3.4 Initial commissioning . 16 3.4.1 General information . 16 3.4.2 Settings . 17 4 Measurement / Operation . 21 4.1 Determination of measured values . 21 4.2 Measurement operation . 22 4.3 Calibration . 22 4.3.1 Overview . 22 4.3.2 User calibration . 25 4.3.3 Sensor check/Zero adjustment . -
Industrial Measuring Devices a Passion for Precision
Industrial Measuring Devices A Passion for Precision a passion for precision · passion pour la précision · pasión por la precisión · passione per la precisione · a passion for precision · passion pour la précision · pasión por la precisión · www.lufft.com Measure and record data easily and precisely. Quality made in Germany without compromises. PalmPrecision in the of your Hand The highly demanding and complex measuring tasks of today can only be mastered with high-precision devices. The special requirements placed on hand-held measuring devices are the result of the spectrum of physical measurements that are to be measured, as well as the decisions that are based on this measured data. Architects, specialists and surveyors, engineers, climate experts and many other professionals bear the responsibility for people, technology, goods and processes. Whether you are investigating or recording the temperature of a surface without contact, the dew point temperature of air on walls, the moisture content of oil, air pressure or air fl ow, Lufft hand-held devices are easy to operate and – above all – precise! The XA1000 hand-held-measuring device is an all-round device that ful ls the highest demands. Various high-precision climatic measuring technology sensors can be alternatively connected. The measurement results are displayed in high resolution colour displays both in graphic and numeric formats. The integrated data re- corder allows the measurement results to be transferred to a computer; for this purpose the Lufft software Smart- Graph3 is ready and waiting. The XP Series consists of hand-held measuring de- The Software vices for specialists. The highest temperature precision SmartGraph3 manages and les measured data from combined with the most modern handling of measured both hand-held measuring devices and dataloggers. -
The Kelvin and Temperature Measurements
Volume 106, Number 1, January–February 2001 Journal of Research of the National Institute of Standards and Technology [J. Res. Natl. Inst. Stand. Technol. 106, 105–149 (2001)] The Kelvin and Temperature Measurements Volume 106 Number 1 January–February 2001 B. W. Mangum, G. T. Furukawa, The International Temperature Scale of are available to the thermometry commu- K. G. Kreider, C. W. Meyer, D. C. 1990 (ITS-90) is defined from 0.65 K nity are described. Part II of the paper Ripple, G. F. Strouse, W. L. Tew, upwards to the highest temperature measur- describes the realization of temperature able by spectral radiation thermometry, above 1234.93 K for which the ITS-90 is M. R. Moldover, B. Carol Johnson, the radiation thermometry being based on defined in terms of the calibration of spec- H. W. Yoon, C. E. Gibson, and the Planck radiation law. When it was troradiometers using reference blackbody R. D. Saunders developed, the ITS-90 represented thermo- sources that are at the temperature of the dynamic temperatures as closely as pos- equilibrium liquid-solid phase transition National Institute of Standards and sible. Part I of this paper describes the real- of pure silver, gold, or copper. The realiza- Technology, ization of contact thermometry up to tion of temperature from absolute spec- 1234.93 K, the temperature range in which tral or total radiometry over the tempera- Gaithersburg, MD 20899-0001 the ITS-90 is defined in terms of calibra- ture range from about 60 K to 3000 K is [email protected] tion of thermometers at 15 fixed points and also described. -
What Is Temperature
City Research Online City, University of London Institutional Repository Citation: Kyriacou, P. A. (2010). Temperature sensor technology. In: Jones, D. P. (Ed.), Biomedical Sensors. (pp. 1-38). New York: Momentum Press. ISBN 9781606500569 This is the accepted version of the paper. This version of the publication may differ from the final published version. Permanent repository link: https://openaccess.city.ac.uk/id/eprint/3539/ Link to published version: Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to. Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. City Research Online: http://openaccess.city.ac.uk/ [email protected] Biomedical Sensors: Temperature Sensor Technology P A Kyriacou, PhD Reader in Biomedical Engineering School of Engineering and Mathematical Sciences City University, London EC1V 0HB “...the clinical thermometer ranks in importance with the stethoscope. A doctor without his thermometer is like a sailor without his compass” Family Physician, 1882 Celsius thermometer (attached to a barometer) made by J.G. Hasselström, Stockholm, late 18th century Page 1 of 39 1. Introduction Human body temperature is of vital importance to the well being of the person and therefore it is routinely monitored to indicate the state of the person’s health. -
Thermometry (Temperature Measurement)
THERMOMETRY Thermometry ................................................................................................................................................. 1 Applications .............................................................................................................................................. 2 Temperature metrology ............................................................................................................................. 2 The primary standard: the TPW-cell ..................................................................................................... 5 Temperature and the ITS-90 ..................................................................................................................... 6 The Celsius scale ................................................................................................................................... 6 Thermometers and thermal baths .......................................................................................................... 7 Metrological properties ............................................................................................................................. 7 Types of thermometers.............................................................................................................................. 9 Liquid-in-glass ...................................................................................................................................... 9 Thermocouple .................................................................................................................................... -
TEMPERATURE © 2019, 2008, 2004, 1990 by David A
TEMPERATURE © 2019, 2008, 2004, 1990 by David A. Katz. All rights reserved. A BRIEF HISTORY OF TEMPERATURE MEASUREMENT Ancient people were physically aware of hot and cold and probably related temperature by the size of the fire needed, and how close to sit, to keep warm. An Australian tribe, still primitive, uses dogs instead of blankets to keep warm, thus, they can relate temperature by the dog. (See Figure 1.) A moderately cool night may require two dogs to keep warm, thus it is a two-dog night. An icy night would be a six-dog night. Early people were, at first, fire tenders, maintaining fires originally Figure 1. Australian started by natural causes. Later, they learned how to make fire and aborginies use dogs became fire makers. Eventually, they became fire managers as they to keep warm. learned to work with fire to gain the heat needed to boil water, cook meat, fire pottery (500°F or 257°C), work with copper, tin, bronze (an alloy of copper and tin) and iron, and to make glass. (See Figure 2) Although they had no quantitative measuring devices to determine how hot a fire was, they developed recipes for building different types of fires and probably used a physical indicator, such as some mineral or metal melting, to indicate the correct Figure 2. Early people temperature for a particular process. used fire to cook food and later to work with The ancient Greeks knew that air expanded when heated and metals. applied the principle mechanically, but they developed no means of measuring temperature or amount of heat needed and devised no measuring instruments. -
The Science Behind Meaningful Temperature Measurement, Part 1: Introduction
Calibrating Thermometers: The Science Behind Meaningful Temperature Measurement, Part 1: Introduction By Maria Knake, Laboratory Assessment Program Manager Posted: May 2012 A Promise is a Promise I've said it myself: without calibration, we have no confidence in the measurements that we take. And if a measurement isn’t meaningful, why even bother? Nevertheless, if you’ve read my previous articles, "The Anatomy of a Liquid-in-Glass Thermometer" and "Let’s Get Digital," you know that, up to this point, I have (intentionally) avoided the subject of thermometer calibration. So, if calibration is such an important subject, why have I been avoiding it for so long? The answer is simple: I’ve been procrastinating. As I promised at the end of my last article, it’s time to finally talk about thermometer calibration, or what I like to call “the science behind meaningful temperature measurement.” If the cornerstone of any good measurement is calibration, then the cornerstone of any good calibration is the method(s) used to complete the calibration. Over my next few posts, I will explain some of the details of thermometer calibration. Units of Temperature Throughout history, many units and scales of temperature measurement have been developed for various applications around the world. In fact, historical accounts claim that over 35 different temperature scales had been developed by the 18th century. One of the most famous scales was developed by Daniel Gabriel Fahrenheit around 1714. Fahrenheit was the first scientist to use mercury in a liquid-in-glass thermometer. He used three fixed points to create his temperature scale.