Pulmonary Complications in Patients with Liver Cirrhosis

Total Page:16

File Type:pdf, Size:1020Kb

Pulmonary Complications in Patients with Liver Cirrhosis Review Article Pulmonary complications in patients with liver cirrhosis Fabian Benz, Raphael Mohr, Frank Tacke, Christoph Roderburg Charité University Medicine Berlin, Department of Hepatology & Gastroenterology, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany ABSTRACT Patients with advanced chronic liver diseases, particularly with decompensated liver cirrhosis, can develop specific pulmonary complications independently of any pre-existing lung disease. Especially when dyspnea occurs in combination with liver cirrhosis, patients should be evaluated for hepato-pulmonary syndrome (HPS), porto-pulmonary hypertension (PPHT), hepatic hydrothorax and spontaneous bacterial empyema, which represent the clinically most relevant pulmonary complications of liver cirrhosis. Importantly, the pathophysiology, clinical features, diagnosis and the corresponding therapeutic options differ between these entities, highlighting the role of specific diagnostics in patients with liver cirrhosis who present with dyspnea. Liver transplantation may offer a curative therapy, including selected cases of HPS and PPHT. In this review article, we summarize the pathogenesis, clinical features, diagnostic algorithms and treatment options of the 4 specific pulmonary complications in patients with liver cirrhosis. Key words: chronic liver diseases, decompensated liver cirrhosis, dyspnea, hepatopulmonary syndrome (HPS), porto- pulmonary hypertension (PPHT), hepatic hydrothorax, spontaneous bacterial empyema INTRODUCTION degradation of ammonia with development of hepatic encephalopathy), this is called Cirrhotic transformation of the liver is decompensated liver cirrhosis.[2,3] the characteristic outcome in the long run of chronic hepatic inflammation. Liver Pulmonary complications may occur cirrhosis might occur as an end stage in patients either with or without consequence of manifold infectious, toxic, decompensation of liver disease. These metabolic, or autoimmune conditions such specific disorders need to be distinguished as viral hepatitis, alcoholism, non-alcoholic from primary lung diseases, such as chronic steatohepatitis (NASH), autoimmune obstructive pulmonary disease (COPD), which may occur in patients with liver Address for Correspondence: hepatitis (AIH), primary sclerosing Dr. Fabian Benz, Department of diseases as well, but are not pathogenically Hepatology & Gastroenterology, Campus cholangitis (PSC), primary biliary cholangitis Virchow Klinikum and Campus Charité related to the liver cirrhosis. The most Mitte, Charité University Medicine Berlin, (PBC), or a variety of storage disorders like Augustenburger Platz 1, 13353 Berlin, frequent and clinically specific relevant Germany. hemochromatosis, Wilson’s disease and alpha- E-mail: [email protected] [1] pulmonary complications are hepatic 1-antitrypsin deficiency. The functional and hydrothorax, spontaneous pulmonary Access this article online anatomic consequences include: 1) hepatic empyema, hepato-pulmonary syndrome, Website: insufficiency with restricted synthesis www.intern-med.com and portopulmonary hypertension. In and metabolic functions of the liver, 2) the present manuscript, we aimed to give DOI: 10.2478/jtim-2020-0024 portal hypertension, and 3) consecutively an overview of pulmonary complications Quick Response Code: formation of intrahepatic porto-systemic of liver cirrhosis and highlight possible shunts between portal vessels and hepatic treatment strategies. veins.[2,3] If clinically relevant complications and sequelae of portal hypertension occur HEPATIC HYDROTHORAX (e.g., ascites, variceal bleeding, splenomegaly, hepatorenal syndrome) as well as Hepatic hydrothorax (HH) is defined as deteriorating liver function (e.g., limited a pleural transudate in patients with liver formation of coagulation factors, limited cirrhosis and/or portal hypertension, 150 JOURNAL OF TRANSLATIONAL INTERNAL MEDICINE / JUL-SEP 2020 / VOL 8 |ISSUE 3 Benz et al.: Pulmonary complications in patients with liver cirrhosis whenever other etiologies of pleural effusion (e.g., renal increased dyspnea after exertion (7%), non-productive or cardiac decompensation, or primary pulmonal disorder) cough (22%), pleuritic chest pain (8%), or dizziness and have been ruled out (Table 1).[4,5] The presence of an HH fatigue as a consequence of hypoxemia (7%). Respiratory is associated with higher morbidity and mortality when failure and tension hydrothorax with consecutive cardiac compared to ascites alone.[6] A recent study showed that failure have been described.[7,12,13] the appearance of HH is associated with a median survival of 8–12 months.[7] Diagnostic thoracentesis to distinguish between transudate and exudate should be performed at initial diagnosis and if The exact pathophysiological mechanisms involved are recurrent.[7] Complications of diagnostic pleural puncture are yet not completely understood. Since most patients scarce (e.g., pneumothorax < 5%, bleeding <1%, vasovagal have coexisting ascites and hydrothorax, the currently reactions < 1%)[14,15] and can be further diminished by using favored hypothesis is based on a transdiaphragmatic sonographic guided puncture techniques. Prophylactic fluid shift from the peritoneal into the pleural cavity via substitution of blood products (platelet concentrates, diaphragmatic defects. Patients may present microscopic fresh frozen plasma, or coagulation factors) should only be or even macroscopic diaphragmatic lesions,[8] which are considered in patients with grave coagulation disorders (INR observed more frequently in the right hemidiaphragm, > 3, platelets < 25,000/mm³).[16] being thinner and less muscular than the left side. A study including 1038 patients with advanced liver cirrhosis HH is characterized by a total cell count of described the incidence of HH with 5%, mostly right-sided polymorphonuclear cell (PMN) < 250/µL, a total (70%), less frequently left-sided (12%), or bilateral (18%).[9] protein concentration < 2.5 g/dL, an albumin gradient Nevertheless, isolated occurrence of HH without ascites (serum - pleural fluid) > 1.1 g/dL, or an albumin quotient may be conditioned by the negative intrathoracic pressure (pleural fluid/serum) < 0.6. Further optional parameters generated during inspiration, promoting fluid accumulation indicating HH are protein quotient < 0.5 (pleural fluid/ in the pleural space rather than in the abdominal cavity.[10] serum), a LDH gradient < 0.6 (serum - pleural fluid), Ascites is coexisting in 80% of cases with HH but is not and similar pH value as well as glucose concentration in required for diagnosis.[11] serum and pleural fluid.[17,18] As already mentioned above, renal, cardiac, and primary pulmonal causes of pleural Patients may present severe clinical symptoms, even with transudate must been ruled out. Useful tools can be only a little amount of pleural effusion due to the restrictive echocardiography, urine analytics, computed tomography pattern of pulmonary function. Clinical symptoms are not angiography, cytological or microbiological work-up (in very specific and patients may report dyspnea at rest (34%), case of suspected malignancy or tuberculosis, respectively) Table 1: Important clinical, diagnostic and therapeutic options for hepatic hydrothorax and spontaneous bacterial empyema Hepatic hydrothorax Spontaneous bacterial empyema Definition Transudative pleural effusion Spontaneous infection of a preexisting hepatic + liver cirrhosis and/or portal hypertension hydrothorax + exclusion of other reasons of pleural effusion (e.g., primary renal, cardiac and pneumological disease) Prevalence 5% to 15% in patients with cirrhosis In 2% of cirrhotic patients, and 10%-16% among cirrhotic patients with hepatic hydrothorax Diagnostic Sonography, chest X-ray, diagnostic thoracentesis diagnostic thoracentesis Diagnostic criteria 1. a total cell count of PMN < 250/µL Total cell count of PMN of > 250/µL of the pleural 2. a total protein concentration < 2.5 g/dL + a positive pathogen detection effusion 3. an albumin gradient > 1.1 g/dL between serum and pleural or fluid or an albumin quotient (pleura/serum) < 0.6. Total cell count of PMN > 500/µL Optional: a protein quotient < 0.5 (pleura/serum), an LDH + a negative pathogen detection gradient < 0.6 (pleura/serum) and comparable values for pH and glucose in serum and pleural fluid. Clinical features (depending on the amount of pleural effusion) Fever, encephalopathy, hepatorenal dyspnea at rest/after exertion, non-productive cough, pleuritic decompensation chest pain, signs of hypoxemia, respiratory failure and acute tension hydrothorax with cardiac failure Therapy options Sodium restriction, diuretic therapy (furosemide, spironolactone), Intravenous antibiotic and albumin substitution, large-volume paracentesis, thoracentesis, TIPS, liver thoracic drainage transplantation, pleurodesis PMN: polymorphonuclear cell; TIPS: transjugular intrahepatic portosystemic shunt. JOURNAL OF TRANSLATIONAL INTERNAL MEDICINE / JUL-SEP 2020 / VOL 8 |ISSUE 3 151 Benz et al.: Pulmonary complications in patients with liver cirrhosis or specific laboratory tests when chylothorax (triglyceride A continuous transcutaneous thoracic drainage is not level) or pancreatitis (amylase concentration) are considered recommended because of massive protein and electrolyte likely differential diagnoses. depletion, risk of infection, renal failure and bleeding.[33,34] Furthermore, studies show increased risk of mortality in Ultra-sonography and X-ray are valid diagnostic tools. patients who
Recommended publications
  • Hepatic Hydrothorax Without Apparent Ascites and Dyspnea - a Case Report
    Case Report DOI: 10.7860/JCDR/2018/37185.12181 I nternal Medicine Hepatic Hydrothorax without Apparent S ection Ascites and Dyspnea - A Case Report JING HE1, RASHA HAYKAL2, HONGCHUAN COVILLE3, JAYA PRAKASH GADIKOTA4, CHRISTOPHER BRAY5 ABSTRACT A 78-year-old female with a past medical history of alcoholic cirrhosis was hospitalised with recurrent lower gastrointestinal bleeding due to rectal ulcers. The ulcers were successfully treated with cautery and placement of clips. However, a recurrent large right-sided pleural effusion without apparent ascites and dyspnea were found incidentally during the hospitalisation. The initial fluid analysis was exudate based on Light’s criteria with high protein. The fluid analysis was repeated five days later, after rapid reaccumulation which revealed transudates. Other causes of pleural effusion like heart failure, renal failure or primary pulmonary diseases were excluded. Hepatic hydrothorax was considered and the patient was started with the treatment of Furosemide and Spironolactone. The atypical presentation of hepatic hydrothorax may disguise the diagnosis and delay the treatment. Therefore, for a patient with recurrent, unexplained unilateral pleural effusions, even with atypical fluid characterisation and in the absence of ascites, hepatic hydrothorax should still remain on the top differential with underlying cirrhosis to ensure optimal treatment. Keywords: Cirrhosis, Light criteria, Liver, Pleural effusion CASE REPORT Haemogram Levels Normal range A 78-year-old Caucasian female, with a past medical history of alcoholic cirrhosis, admitted for recurrent rectal bleeding secondary WBC 6.9 (4.5-11.0 thousands/mm3) to rectal ulcers and was successfully treated with cautery and Neutrophils % 78 H (50.0-75.0 %) placement of clips.
    [Show full text]
  • Section 8 Pulmonary Medicine
    SECTION 8 PULMONARY MEDICINE 336425_ST08_286-311.indd6425_ST08_286-311.indd 228686 111/7/121/7/12 111:411:41 AAMM CHAPTER 66 EVALUATION OF CHRONIC COUGH 1. EPIDEMIOLOGY • Nearly all adult cases of chronic cough in nonsmokers who are not taking an ACEI can be attributed to the “Pathologic Triad of Chronic Cough” (asthma, GERD, upper airway cough syndrome [UACS; previously known as postnasal drip syndrome]). • ACEI cough is idiosyncratic, occurrence is higher in female than males 2. PATHOPHYSIOLOGY • Afferent (sensory) limb: chemical or mechanical stimulation of receptors on pharynx, larynx, airways, external auditory meatus, esophagus stimulates vagus and superior laryngeal nerves • Receptors upregulated in chronic cough • CNS: cough center in nucleus tractus solitarius • Efferent (motor) limb: expiratory and bronchial muscle contraction against adducted vocal cords increases positive intrathoracic pressure 3. DEFINITION • Subacute cough lasts between 3 and 8 weeks • Chronic cough duration is at least 8 weeks 4. DIFFERENTIAL DIAGNOSIS • Respiratory tract infection (viral or bacterial) • Asthma • Upper airway cough syndrome (postnasal drip syndrome) • CHF • Pertussis • COPD • GERD • Bronchiectasis • Eosinophilic bronchitis • Pulmonary tuberculosis • Interstitial lung disease • Bronchogenic carcinoma • Medication-induced cough 5. EVALUATION AND TREATMENT OF THE COMMON CAUSES OF CHRONIC COUGH • Upper airway cough syndrome: rhinitis, sinusitis, or postnasal drip syndrome • Presentation: symptoms of rhinitis, frequent throat clearing, itchy
    [Show full text]
  • Hepatic Hydrothorax: an Updated Review on a Challenging Disease
    Lung (2019) 197:399–405 https://doi.org/10.1007/s00408-019-00231-6 REVIEW Hepatic Hydrothorax: An Updated Review on a Challenging Disease Toufc Chaaban1 · Nadim Kanj2 · Imad Bou Akl2 Received: 18 February 2019 / Accepted: 27 April 2019 / Published online: 25 May 2019 © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Hepatic hydrothorax is a challenging complication of cirrhosis related to portal hypertension with an incidence of 5–11% and occurs most commonly in patients with decompensated disease. Diagnosis is made through thoracentesis after exclud- ing other causes of transudative efusions. It presents with dyspnea on exertion and it is most commonly right sided. Patho- physiology is mainly related to the direct passage of fuid from the peritoneal cavity through diaphragmatic defects. In this updated literature review, we summarize the diagnosis, clinical presentation, epidemiology and pathophysiology of hepatic hydrothorax, then we discuss a common complication of hepatic hydrothorax, spontaneous bacterial pleuritis, and how to diagnose and treat this condition. Finally, we elaborate all treatment options including chest tube drainage, pleurodesis, surgical intervention, Transjugular Intrahepatic Portosystemic Shunt and the most recent evidence on indwelling pleural catheters, discussing the available data and concluding with management recommendations. Keywords Hepatic hydrothorax · Cirrhosis · Pleural efusion · Thoracentesis Introduction Defnition and Epidemiology Hepatic hydrothorax (HH) is one of the pulmonary com- Hepatic hydrothorax is defned as the accumulation of more plications of cirrhosis along with hepatopulmonary syn- than 500 ml, an arbitrarily chosen number, of transudative drome and portopulmonary hypertension. It shares common pleural efusion in a patient with portal hypertension after pathophysiological pathways with ascites secondary to por- excluding pulmonary, cardiac, renal and other etiologies [4].
    [Show full text]
  • Clinical Management of Severe Acute Respiratory Infections When Novel Coronavirus Is Suspected: What to Do and What Not to Do
    INTERIM GUIDANCE DOCUMENT Clinical management of severe acute respiratory infections when novel coronavirus is suspected: What to do and what not to do Introduction 2 Section 1. Early recognition and management 3 Section 2. Management of severe respiratory distress, hypoxemia and ARDS 6 Section 3. Management of septic shock 8 Section 4. Prevention of complications 9 References 10 Acknowledgements 12 Introduction The emergence of novel coronavirus in 2012 (see http://www.who.int/csr/disease/coronavirus_infections/en/index. html for the latest updates) has presented challenges for clinical management. Pneumonia has been the most common clinical presentation; five patients developed Acute Respira- tory Distress Syndrome (ARDS). Renal failure, pericarditis and disseminated intravascular coagulation (DIC) have also occurred. Our knowledge of the clinical features of coronavirus infection is limited and no virus-specific preven- tion or treatment (e.g. vaccine or antiviral drugs) is available. Thus, this interim guidance document aims to help clinicians with supportive management of patients who have acute respiratory failure and septic shock as a consequence of severe infection. Because other complications have been seen (renal failure, pericarditis, DIC, as above) clinicians should monitor for the development of these and other complications of severe infection and treat them according to local management guidelines. As all confirmed cases reported to date have occurred in adults, this document focuses on the care of adolescents and adults. Paediatric considerations will be added later. This document will be updated as more information becomes available and after the revised Surviving Sepsis Campaign Guidelines are published later this year (1). This document is for clinicians taking care of critically ill patients with severe acute respiratory infec- tion (SARI).
    [Show full text]
  • Redalyc.COMUNICAÇÕES ORAIS
    Revista Portuguesa de Pneumología ISSN: 0873-2159 [email protected] Sociedade Portuguesa de Pneumologia Portugal COMUNICAÇÕES ORAIS Revista Portuguesa de Pneumología, vol. 23, núm. 3, noviembre, 2017 Sociedade Portuguesa de Pneumologia Lisboa, Portugal Disponível em: http://www.redalyc.org/articulo.oa?id=169753668001 Como citar este artigo Número completo Sistema de Informação Científica Mais artigos Rede de Revistas Científicas da América Latina, Caribe , Espanha e Portugal Home da revista no Redalyc Projeto acadêmico sem fins lucrativos desenvolvido no âmbito da iniciativa Acesso Aberto Document downloaded from http://www.elsevier.es, day 06/12/2017. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited. COMUNICAÇÕES ORAIS CO 001 CO 002 COPD EXACERBATIONS IN AN INTERNAL MEDICINE MORTALITY AFTER ACUTE EXACERBATION OF COPD WARD REQUIRING NONINVASIVE VENTILATION C Sousa, L Correia, A Barros, L Brazão, P Mendes, V Teixeira D Maia, D Silva, P Cravo, A Mineiro, J Cardoso Hospital Central do Funchal Serviço de Pneumologia do Hospital de Santa Marta, Centro Hospitalar de Lisboa Central Key-words: COPD, Hospital admissions, Follow-up, Management, Indicators Key-words: AECOPD, NIV, Mortality Introduction: Chronic obstructive pulmonary disease (COPD) Introduction: Acute COPD exacerbations (AECOPD) are serious is a major cause of morbidity and mortality. The occurrence of episodes in the natural history of the disease and are associ - acute exacerbations (AE) contributes to the gravity of the dis - ated with significant mortality. Noninvasive ventilation (NIV) is a ease. Many of these cases are admitted in an Internal Medicine well-established therapy in hypercapnic AECOPD.
    [Show full text]
  • Residency Essentials Full Curriculum Syllabus
    RESIDENCY ESSENTIALS FULL CURRICULUM SYLLABUS Please review your topic area to ensure all required sections are included in your module. You can also use this document to review the surrounding topics/sections to ensure fluidity. Click on the topic below to jump to that page. Clinical Topics • Gastrointestinal • Genitourinary • Men’s Health • Neurological • Oncology • Pain Management • Pediatrics • Vascular Arterial • Vascular Venous • Women’s Health Requisite Knowledge • Systems • Business and Law • Physician Wellness and Development • Research and Statistics Fundamental • Clinical Medicine • Intensive Care Medicine • Image-guided Interventions • Imaging and Anatomy Last revised: November 4, 2019 Gastrointestinal 1. Portal hypertension a) Pathophysiology (1) definition and normal pressures and gradients, MELD score (2) Prehepatic (a) Portal, SMV or Splenic (i) thrombosis (ii) stenosis (b) Isolated mesenteric venous hypertension (c) Arterioportal fistula (3) Sinusoidal (intrahepatic) (a) Cirrhosis (i) ETOH (ii) Non-alcoholic fatty liver disease (iii) Autoimmune (iv) Viral Hepatitis (v) Hemochromatosis (vi) Wilson's disease (b) Primary sclerosing cholangitis (c) Primary biliary cirrhosis (d) Schistosomiasis (e) Infiltrative liver disease (f) Drug/Toxin/Chemotherapy induced chronic liver disease (4) Post hepatic (a) Budd Chiari (Primary secondary) (b) IVC or cardiac etiology (5) Ectopic perianastomotic and stomal varices (6) Splenorenal shunt (7) Congenital portosystemic shunt (Abernethy malformation) b) Measuring portal pressure (1) Direct
    [Show full text]
  • Treatment of Acute Fibrinous Organizing Pneumonia Following Hematopoietic Cell Transplantation with Etanercept
    OPEN Bone Marrow Transplantation (2017) 52, 141–143 www.nature.com/bmt LETTER TO THE EDITOR Treatment of acute fibrinous organizing pneumonia following hematopoietic cell transplantation with etanercept Bone Marrow Transplantation (2017) 52, 141–143; doi:10.1038/ Computed tomography (CT) of the chest showed rapidly bmt.2016.197; published online 15 August 2016 progressive pulmonary infiltrates (Figure 1a). He was admitted to the inpatient bone marrow transplant floor, started on broad- spectrum antimicrobials, and subsequently underwent broncho- Infectious and non-infectious pulmonary complications are scopy that was non-diagnostic. Over the next 2 days he developed reported in 30–60% of all hematopoietic cell transplant (HCT) worsening hypoxemia requiring transfer to the medical intensive – recipients and result in a high morbidity and mortality.1 3 care unit for hypoxemic respiratory failure. High-dose methyl- Non-infectious pulmonary complications encompass a hetero- prednisolone 125 mg every 6 h was initiated. On day +328 he geneous group of conditions including chronic GvHD, frequently underwent video-assisted thoracoscopic surgery (VATS) and left manifested as bronchiolitis obliterans and cryptogenic organizing upper lobe/left lower lobe wedge resection. pneumonia (COP), pulmonary edema, diffuse alveolar hemorrhage He was extubated on day +329, but remained hypoxic, 1 fi and idiopathic pneumonia syndrome. Acute organizing brinous requiring non-invasive ventilation. On day +331 the pathology fi 3 pneumonia (AFOP) was rst described by Beasley et al. in 2002 as from the wedge resections showed Acute organizing fibrinous a unique histological pattern of acute lung injury that is histologically different from diffuse alveolar damage, eosinophilic pneumonia, bronchiolitis obliterans and COP.
    [Show full text]
  • A Phase 3 Multicenter Study of the Long-Term Safety and Tolerability Of
    A Phase 3 Multicenter Study of the Long-term Safety and Tolerability of ALKS 5461 for the Adjunctive Treatment of Major Depressive Disorder in Adults who Have an Inadequate Response to Antidepressant Therapy (the FORWARD-2 Study) Unique Protocol ID: ALK5461-208 NCT Number: NCT02141399 EudraCT Number: 2014-000380-41 Date of Statistical Analysis 15 September 2017 Plan: STATISTICAL ANALYSIS PLAN PHASE III ALK5461-208 A Phase 3 Multicenter Study of the Long-term Safety and Study Title: Tolerability of ALKS 5461 for the Adjunctive Treatment of Major Depressive Disorder in Adults who Have an Inadequate Response to Antidepressant Therapy (the FORWARD-2 Study) Document Status: Final Document Date: 15 September 2017 Based on: Study protocol amendment 3 (dated 03 March 2016) Study protocol amendment 2 (dated 12 May 2015) Study protocol amendment 1 (dated 17 April 2014) Original study protocol (dated 16 December 2013) Sponsor: Alkermes, Inc. 852 Winter Street Waltham, MA 02451 USA CONFIDENTIAL Information and data in this document contain trade secrets and privileged or confidential information, which is the property of Alkermes, Inc. No person is authorized to make it public without the written permission of Alkermes, Inc. These restrictions or disclosures will apply equally to all future information supplied to you that is indicated as privileged or confidential. This study is being conducted in compliance with good clinical practice, including the archiving of essential documents. Alkermes, Inc. ALKS 5461 CONFIDENTIAL SAP-ALK5461-208 TABLE OF CONTENTS LIST OF ABBREVIATIONS ..........................................................................................................5 1. INTRODUCTION ........................................................................................................7 1.1. Study Objectives ...........................................................................................................7 1.2. Summary of the Study Design and Schedule of Assessments ......................................7 1.3.
    [Show full text]
  • Patients with Cirrhosis During the COVID-19 Pandemic: Current Evidence and Future Perspectives Su HY, Hsu YC
    ISSN 2307-8960 (online) World Journal of Clinical Cases World J Clin Cases 2021 May 6; 9(13): 2951-3226 Published by Baishideng Publishing Group Inc World Journal of W J C C Clinical Cases Contents Thrice Monthly Volume 9 Number 13 May 6, 2021 REVIEW 2951 Patients with cirrhosis during the COVID-19 pandemic: Current evidence and future perspectives Su HY, Hsu YC MINIREVIEWS 2969 Immunotherapy for pancreatic cancer Yoon JH, Jung YJ, Moon SH ORIGINAL ARTICLE Retrospective Study 2983 Scrotal septal flap and two-stage operation for complex hypospadias: A retrospective study Chen S, Yang Z, Ma N, Wang WX, Xu LS, Liu QY, Li YQ 2994 Clinical diagnosis of severe COVID-19: A derivation and validation of a prediction rule Tang M, Yu XX, Huang J, Gao JL, Cen FL, Xiao Q, Fu SZ, Yang Y, Xiong B, Pan YJ, Liu YX, Feng YW, Li JX, Liu Y 3008 Prognostic value of hemodynamic indices in patients with sepsis after fluid resuscitation Xu HP, Zhuo XA, Yao JJ, Wu DY, Wang X, He P, Ouyang YH Observational Study 3014 Updated Kimura-Takemoto classification of atrophic gastritis Kotelevets SM, Chekh SA, Chukov SZ SYSTEMATIC REVIEWS 3024 Systematic review and meta-analysis of the impact of deviations from a clinical pathway on outcomes following pancreatoduodenectomy Karunakaran M, Jonnada PK, Barreto SG META-ANALYSIS 3038 Early vs late cholecystectomy in mild gall stone pancreatitis: An updated meta-analysis and review of literature Walayat S, Baig M, Puli SR CASE REPORT 3048 Effects of intravascular laser phototherapy on delayed neurological sequelae after carbon
    [Show full text]
  • Clinical Insights for Hepatology and Liver Transplant Providers During the Covid-19 Pandemic
    CLINICAL INSIGHTS FOR HEPATOLOGY AND LIVER TRANSPLANT PROVIDERS DURING THE COVID-19 PANDEMIC Disclaimer This document represents the collective opinion of its authors and approval of the AASLD Governing Board as of the date of publication. Its use is voluntary, and it is presented primarily for the purpose of providing information to hepatology and liver transplant care providers. This document is not a practice guideline and has not been subject to the methodical rigor of a practice guideline. There has not been a systematic evidence review as defined by the Health and Medicine Division of the National Academies of Sciences, Engineering, and Medicine (formerly the Institute of Medicine), nor is the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) approach utilized. This document does not define a standard of practice or a standard of care. It should not be considered as inclusive of all proper treatments or methods of care, nor is it intended to substitute for the independent professional judgment of the treating provider. Hospitals, clinics and private practices should take into account local standards, practices and environment. Overview Coronavirus disease 2019 (COVID-19), the illness caused by the SARS-CoV-2 virus, is rapidly spreading throughout the world.1 Hospitals and healthcare providers across the United States are preparing for the anticipated surge in critically ill patients but few are wholly equipped to manage this new disease. Nonetheless, we all must do our part to prepare our patients, clinics, and hospitals for the drastic changes necessary to mitigate the spread of SARS-CoV-2 or we risk overwhelming the capacity of our healthcare system.2 In addition, we must continue to manage the care of our patients with liver disease and our liver transplant recipients where unique logistical and pharmacological issues will arise.
    [Show full text]
  • How to Differentiate COVID-19 Pneumonia from Heart Failure with Computed
    medRxiv preprint doi: https://doi.org/10.1101/2020.03.04.20031047; this version posted March 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . How to differentiate COVID-19 pneumonia from heart failure with computed tomography at initial medical contact during epidemic period Running title: CT imaging for COVID-19 and heart failure Zhaowei Zhu1, MD, Jianjun Tang1, MD, Xiangping Chai2, MD, Zhenfei Fang1, MD, Qiming Liu3, MD, Xinqun Hu1, MD, Danyan Xu1, MD, Jia He1, MD, Liang Tang1, MD, Shi Tai1, MD, Yuzhi Wu3#, MD, Shenghua Zhou1#, MD 1.Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China. 2. Department of Emergency, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China. 3. Department of Radiology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China. # These authors share the correspondence authorship. Correspondence to: Shenghua Zhou, MD, PhD Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China. NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.03.04.20031047; this version posted March 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Pulmonary Hypertension in Acute and Chronic High Altitude Maladaptation Disorders
    International Journal of Environmental Research and Public Health Review Pulmonary Hypertension in Acute and Chronic High Altitude Maladaptation Disorders Akylbek Sydykov 1,2 , Argen Mamazhakypov 1 , Abdirashit Maripov 2,3, Djuro Kosanovic 4, Norbert Weissmann 1, Hossein Ardeschir Ghofrani 1, Akpay Sh. Sarybaev 2,3,† and Ralph Theo Schermuly 1,*,† 1 Member of the German Center for Lung Research (DZL), Department of Internal Medicine, Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; [email protected] (A.S.); [email protected] (A.M.); [email protected] (N.W.); [email protected] (H.A.G.) 2 National Center of Cardiology and Internal Medicine, Department of Mountain and Sleep Medicine and Pulmonary Hypertension, Bishkek 720040, Kyrgyzstan; [email protected] (A.M.); [email protected] (A.S.S.) 3 Kyrgyz-Indian Mountain Biomedical Research Center, Bishkek 720040, Kyrgyzstan 4 Department of Pulmonology, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia; [email protected] * Correspondence: [email protected]; Tel.: +49-6419942421; Fax: +49-6419942419 † These authors contributed equally to this work. Abstract: Alveolar hypoxia is the most prominent feature of high altitude environment with well- known consequences for the cardio-pulmonary system, including development of pulmonary hy- Citation: Sydykov, A.; pertension. Pulmonary hypertension due to an exaggerated hypoxic pulmonary vasoconstriction Mamazhakypov, A.; Maripov, A.; contributes to high altitude pulmonary edema (HAPE), a life-threatening disorder, occurring at high Kosanovic, D.; Weissmann, N.; altitudes in non-acclimatized healthy individuals.
    [Show full text]