Label for Adderall
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
EL PASO INTELLIGENCE CENTER DRUG TREND Synthetic Stimulants Marketed As Bath Salts
LAW ENFORCEMENT SENSITIVE EPIC Tactical Intelligence Bulletins EL PASO INTELLIGENCE CENTER DRUG TREND TACTICAL INTELLIGENCE BULLETIN EB11-16 ● Synthetic Stimulants Marketed as Bath Salts ● March 8, 2011 This document is the property of the Drug Enforcement Administration (DEA) and is marked Law Enforcement Sensitive (LES). Further dissemination of this document is strictly forbidden except to other law enforcement agencies for criminal law enforcement purposes. The following information must be handled and protected accordingly. Summary Across the United States, synthetic stimulants that are sold as “bath salts”¹ have become a serious drug abuse threat. These products are produced under a variety of faux brand names, and they are indirectly marketed as legal alternatives to cocaine, amphetamine, and Ecstasy (MDMA or 3,4-Methylenedioxymethamphetamine). Poison control centers nationwide have received hundreds of calls related to the side-effects of, and overdoses from, the use of these potent and unpredictable products. Numerous media reports have cited bath salt stimulant overdose incidents that have resulted in emergency room visits, hospitalizations, and severe psychotic episodes, some of which, have led to violent outbursts, self-inflicted wounds, and even suicides. A number of states have imposed emergency measures to ban bath salt stimulant products (or the chemicals in them) including Florida, Louisiana, North Dakota, and West Virginia; and similar measures are pending in Hawaii, Kentucky, Michigan, and Mississippi. A prominent U.S. -
Dextroamphetamine PI 202006
HIGHLIGHTS OF PRESCRIBING INFORMATION • Glaucoma (4) 5.4 Long-Term Suppression of Growth Cardiovascular • Agitated states (4) Monitor growth in children during treatment with stimulants. Patients who are not growing or gaining weight as expected may need to have their treatment interrupted. Palpitations. There have been isolated reports of cardiomyopathy associated with chronic amphetamine use. These highlights do not include all the information needed to use DEXTROAMPHETAMINE saccharate, AMPHET- • History of drug abuse (4) Careful follow-up of weight and height in children ages 7 to 10 years who were randomized to either methylphenidate or non-medication treatment groups over Central Nervous System AMINE aspartate monohydrate, DEXTROAMPHETAMINE sulfate, AMPHETAMINE sulfate extended-release capsules • During or within 14 days following the administration of monoamine oxidase inhibitors (MAOI) (4, 7.1) 14 months, as well as in naturalistic subgroups of newly methylphenidate-treated and non-medication treated children over 36 months (to the ages of 10 to 13 years), Psychotic episodes at recommended doses, overstimulation, restlessness, irritability, euphoria, dyskinesia, dysphoria, depression, tremor, tics, aggression, anger, safely and effectively. See full prescribing information for DEXTROAMPHETAMINE saccharate, AMPHETAMINE aspar- suggests that consistently medicated children (i.e., treatment for 7 days per week throughout the year) have a temporary slowing in growth rate (on average, a total of logorrhea, dermatillomania, paresthesia (including formication), and bruxism. tate monohydrate, DEXTROAMPHETAMINE sulfate, AMPHETAMINE sulfate extended-release capsules. ----------------------------------------------------------- WARNINGS AND PRECAUTIONS ----------------------------------------------------------- about 2 cm less growth in height and 2.7 kg less growth in weight over 3 years), without evidence of growth rebound during this period of development. -
Subchronic Continuous Phencyclidine Administration Potentiates Amphetamine-Induced Frontal Cortex Dopamine Release
Neuropsychopharmacology (2003) 28, 34–44 & 2003 Nature Publishing Group All rights reserved 0893-133X/03 $25.00 www.neuropsychopharmacology.org Subchronic Continuous Phencyclidine Administration Potentiates Amphetamine-Induced Frontal Cortex Dopamine Release Andrea Balla1, Henry Sershen1,2, Michael Serra1, Rajeth Koneru1 and Daniel C Javitt*,1,2 1 2 Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry, New York University School of Medicine, New York, NY, USA Functional dopaminergic hyperactivity is a key feature of schizophrenia. Etiology of this dopaminergic hyperactivity, however, is unknown. We have recently demonstrated that subchronic phencyclidine (PCP) treatment in rodents induces striatal dopaminergic hyperactivity similar to that observed in schizophrenia. The present study investigates the ability of PCP to potentiate amphetamine-induced dopamine release in prefrontal cortex (PFC) and nucleus accumbens (NAc) shell. Prefrontal dopaminergic hyperactivity is postulated to underlie cognitive dysfunction in schizophrenia. In contrast, the degree of NAc involvement is unknown and recent studies have suggested that PCP-induced hyperactivity in rodents may correlate with PFC, rather than NAc, dopamine levels. Rats were treated with 5–20 mg/kg/day PCP for 3–14 days by osmotic minipump. PFC and NAc dopamine release to amphetamine challenge (1 mg/kg) was monitored by in vivo microdialysis and HPLC-EC. Doses of 10 mg/kg/day and above produced serum PCP concentrations (50–150 ng/ml) most associated with PCP psychosis in humans. PCP-treated rats showed significant, dose-dependent enhancement in amphetamine-induced dopamine release in PFC but not NAc, along with significantly enhanced locomotor activity. Enhanced response was observed following 3-day, as well as 14-day, treatment and resolved within 4 days of PCP treatment withdrawal. -
(Ssris) SEROTONIN and NOREPHINEPHRINE REUPTAKE INHIBITORS DOPAMINE and NOREPINEPHRINE RE
VA / DOD DEPRESSION PRACTICE GUIDELINE PROVIDER CARE CARD ANTIDEPRESSANT MEDICATION TABLE CARD 7 Refer to pharmaceutical manufacturer’s literature for full prescribing information SEROTONIN SELECTIVE REUPTAKE INHIBITORS (SSRIs) GENERIC BRAND NAME ADULT STARTING DOSE MAX EXCEPTION SAFETY MARGIN TOLERABILITY EFFICACY SIMPLICITY Citalopram Celexa 20 mg 60 mg Reduce dose Nausea, insomnia, Fluoxetine Prozac 20 mg 80 mg for the elderly & No serious systemic sedation, those with renal toxicity even after headache, fatigue Paroxetine Paxil 20 mg 50 mg or hepatic substantial overdose. dizziness, sexual AM daily dosing. failure Drug interactions may dysfunction Response rate = Can be started at Sertraline Zoloft 50 mg 200 mg include tricyclic anorexia, weight 2 - 4 wks an effective dose First Line Antidepressant Medication antidepressants, loss, sweating, GI immediately. Drugs of this class differ substantially in safety, tolerability and simplicity when used in patients carbamazepine & distress, tremor, warfarin. restlessness, on other medications. Can work in TCA (tricyclic antidepressant) nonresponders. Useful in agitation, anxiety. several anxiety disorders. Taper gradually when discontinuing these medications. SEROTONIN and NOREPHINEPHRINE REUPTAKE INHIBITORS GENERIC BRAND NAME ADULT STARTING DOSE MAX EXCEPTION SAFETY MARGIN TOLERABILITY EFFICACY SIMPLICITY Reduce dose Take with food. Venlafaxine IR Effexor IR 75 mg 375 mg Comparable to BID or TID for the elderly & No serious systemic SSRIs at low dose. dosing with IR. those with renal toxicity. Nausea, dry mouth, Response rate = Daily dosing or hepatic Downtaper slowly to Venlafaxine XR Effexor XR 75 mg 375 mg insomnia, anxiety, 2 - 4 wks with XR. failure prevent clinically somnolence, head- (4 - 7 days at Can be started at significant withdrawal ache, dizziness, ~300 mg/day) an effective dose Dual action drug that predominantly acts like a Serotonin Selective Reuptake inhibitor at low syndrome. -
Preparation of Amphetamines From
Europäisches Patentamt *EP001442006B1* (19) European Patent Office Office européen des brevets (11) EP 1 442 006 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.7: C07C 209/00 of the grant of the patent: 24.08.2005 Bulletin 2005/34 (86) International application number: PCT/US2002/034400 (21) Application number: 02802245.7 (87) International publication number: (22) Date of filing: 28.10.2002 WO 2003/037843 (08.05.2003 Gazette 2003/19) (54) PREPARATION OF AMPHETAMINES FROM PHENYLPROPANOLAMINES VERFAHREN ZUR HERSTELLUNG VON AMPHETAMINEN AUS PHENYLPROPANOLAMINEN PREPARATION D’AMPHETAMINES A PARTIR DE PHENYLPROPANOLAMINES (84) Designated Contracting States: • REINER LUCKENBACH: "Beilstein Handbuch AT BE BG CH CY CZ DE DK EE ES FI FR GB GR der Organischen Chemie, vol. XII, 4th Ed., 4th IE IT LI LU MC NL PT SE SK TR Suppl., p. 2586 to 2591" 1984 , SPRINGER VERLAG , BERLIN . HEIDELBERG . NEW YORK (30) Priority: 29.10.2001 US 20488 TOKYO XP002235852 page 2586 -page 2591 • HANS-G. BOIT: "Beilsteins Handbuch der (43) Date of publication of application: Organischen Chemie, vol. XII, 4th Ed., Third 04.08.2004 Bulletin 2004/32 Suppl. page 2664 to page 2669" 1973 , SPRINGER VERLAG , BERLIN . HEIDELBERG . (73) Proprietor: Boehringer Ingelheim Chemicals, Inc. NEW YORK XP002235853 page 2664 -page 2669 Peterburg, VA 23805 (US) • DATABASE CROSSFIRE BEILSTEIN [Online] BEILSTEIN INSTITUT ZUR FOEDERUNG DER (72) Inventors: CHEMISCHEN WISSENSCHAFTEN, • BOSWELL, Robert F., FRANKFURT AM MAIN, DE; Boehringer Ingelheim Chem. -
Metabolomics Analysis Reveals Large Effects of Gut Microflora on Mammalian Blood Metabolites
Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites William R. Wikoffa, Andrew T. Anforab, Jun Liub, Peter G. Schultzb,1, Scott A. Lesleyb, Eric C. Petersb, and Gary Siuzdaka,1 aDepartment of Molecular Biology and Center for Mass Spectrometry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037; and bGenomics Institute of the Novartis Research Foundation, San Diego, CA 92121 Communicated by Steve A. Kay, University of California at San Diego, La Jolla, CA, December 19, 2008 (received for review December 12, 2008) Although it has long been recognized that the enteric community of found to extract energy from their food more efficiently compared bacteria that inhabit the human distal intestinal track broadly impacts with lean counterparts due to alterations in the composition of their human health, the biochemical details that underlie these effects gut microflora that resulted in an increased complement of genes remain largely undefined. Here, we report a broad MS-based metabo- for polysaccharide metabolism (10). It has also been observed that lomics study that demonstrates a surprisingly large effect of the gut bile salt hydrolase encoding genes are enriched in the gut micro- ‘‘microbiome’’ on mammalian blood metabolites. Plasma extracts biome, and that enteric bacteria carry out a wide range of bile acid from germ-free mice were compared with samples from conventional modifications (6, 14). These metagenomic studies suggest that the (conv) animals by using various MS-based methods. Hundreds of metabolites derived from this diverse microbial community can features were detected in only 1 sample set, with the majority of have a direct role in human health and disease. -
(19) United States (12) Patent Application Publication (10) Pub
US 20130289061A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0289061 A1 Bhide et al. (43) Pub. Date: Oct. 31, 2013 (54) METHODS AND COMPOSITIONS TO Publication Classi?cation PREVENT ADDICTION (51) Int. Cl. (71) Applicant: The General Hospital Corporation, A61K 31/485 (2006-01) Boston’ MA (Us) A61K 31/4458 (2006.01) (52) U.S. Cl. (72) Inventors: Pradeep G. Bhide; Peabody, MA (US); CPC """"" " A61K31/485 (201301); ‘4161223011? Jmm‘“ Zhu’ Ansm’ MA. (Us); USPC ......... .. 514/282; 514/317; 514/654; 514/618; Thomas J. Spencer; Carhsle; MA (US); 514/279 Joseph Biederman; Brookline; MA (Us) (57) ABSTRACT Disclosed herein is a method of reducing or preventing the development of aversion to a CNS stimulant in a subject (21) App1_ NO_; 13/924,815 comprising; administering a therapeutic amount of the neu rological stimulant and administering an antagonist of the kappa opioid receptor; to thereby reduce or prevent the devel - . opment of aversion to the CNS stimulant in the subject. Also (22) Flled' Jun‘ 24’ 2013 disclosed is a method of reducing or preventing the develop ment of addiction to a CNS stimulant in a subj ect; comprising; _ _ administering the CNS stimulant and administering a mu Related U‘s‘ Apphcatlon Data opioid receptor antagonist to thereby reduce or prevent the (63) Continuation of application NO 13/389,959, ?led on development of addiction to the CNS stimulant in the subject. Apt 27’ 2012’ ?led as application NO_ PCT/US2010/ Also disclosed are pharmaceutical compositions comprising 045486 on Aug' 13 2010' a central nervous system stimulant and an opioid receptor ’ antagonist. -
Methylphenidate Versus Dexamphetamine in Children with Attention Deficit Hyperactivity Disorder: a Double-Blind, Crossover Trial
Methylphenidate Versus Dexamphetamine in Children With Attention Deficit Hyperactivity Disorder: A Double-blind, Crossover Trial Daryl Efron, FRACP; Frederick Jarman, FRACP; and Melinda Barker, Grad Dip Ed Psych ABSTRACT. Objective. To compare methylphenidate behavioral, academic, and social functioning. Many (MPH) and dexamphetamine (DEX) in a sample of chil- well-designed, placebo-controlled studies have dem- dren with attention deficit hyperactivity disorder onstrated beyond doubt the benefits of stimulants in (ADHD). the vast majority of children with ADHD.2–4 In a Method. A total of 125 children with ADHD received review of 110 studies on the effects of stimulant both MPH (0.3 mg/kg twice daily) and DEX (0.15 mg/kg drugs on more than 4200 children with ADHD, twice daily) for 2 weeks a double-blind, crossover study. 4 ; Outcome measures were Conners’ Parent Rating Scale– Barkley found that 75% of subjects were regarded Revised, Conners’ Teacher Rating Scale–Revised, a Par- as improved on stimulants. The mean placebo re- ent Global Perceptions questionnaire, the Continuous sponse was 39%. Performance Test, and the Barkley Side Effects Rating Methylphenidate (MPH) and dexamphetamine Scale. (DEX) are the two stimulants prescribed most fre- Results. There were significant group mean im- quently and have been shown to have similar types provements from baseline score on all measures for of positive effects in children with ADHD. However, both stimulants. On the Conners’ Teacher Rating Scal- it is not known whether one is more efficacious than e–Revised, response was greater on MPH than DEX on the other in terms of probability of producing a the conduct problems and hyperactivity factors, as well positive response, magnitude of response, quality of as on the hyperactivity index. -
Pharmacology and Toxicology of Amphetamine and Related Designer Drugs
Pharmacology and Toxicology of Amphetamine and Related Designer Drugs U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES • Public Health Service • Alcohol Drug Abuse and Mental Health Administration Pharmacology and Toxicology of Amphetamine and Related Designer Drugs Editors: Khursheed Asghar, Ph.D. Division of Preclinical Research National Institute on Drug Abuse Errol De Souza, Ph.D. Addiction Research Center National Institute on Drug Abuse NIDA Research Monograph 94 1989 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Alcohol, Drug Abuse, and Mental Health Administration National Institute on Drug Abuse 5600 Fishers Lane Rockville, MD 20857 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, DC 20402 Pharmacology and Toxicology of Amphetamine and Related Designer Drugs ACKNOWLEDGMENT This monograph is based upon papers and discussion from a technical review on pharmacology and toxicology of amphetamine and related designer drugs that took place on August 2 through 4, 1988, in Bethesda, MD. The review meeting was sponsored by the Biomedical Branch, Division of Preclinical Research, and the Addiction Research Center, National Institute on Drug Abuse. COPYRIGHT STATUS The National Institute on Drug Abuse has obtained permission from the copyright holders to reproduce certain previously published material as noted in the text. Further reproduction of this copyrighted material is permitted only as part of a reprinting of the entire publication or chapter. For any other use, the copyright holder’s permission is required. All other matieral in this volume except quoted passages from copyrighted sources is in the public domain and may be used or reproduced without permission from the Institute or the authors. -
Selective Serotonin Reuptake Inhibitors, Fluoxetine and Paroxetine, Attenuate the Expression of the Established Behavioral Sensitization Induced by Methamphetamine
Neuropsychopharmacology (2007) 32, 658–664 & 2007 Nature Publishing Group All rights reserved 0893-133X/07 $30.00 www.neuropsychopharmacology.org Selective Serotonin Reuptake Inhibitors, Fluoxetine and Paroxetine, Attenuate the Expression of the Established Behavioral Sensitization Induced by Methamphetamine 1 1 1 1 1 ,1 Yujiro Kaneko , Atsushi Kashiwa , Takashi Ito , Sumikazu Ishii , Asami Umino and Toru Nishikawa* 1 Section of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Yushima, Bunkyo-ku, Tokyo, Japan To obtain an insight into the development of a new pharmacotherapy that prevents the treatment-resistant relapse of psychostimulant- induced psychosis and schizophrenia, we have investigated in the mouse the effects of selective serotonin reuptake inhibitors (SSRI), fluoxetine (FLX) and paroxetine (PRX), on the established sensitization induced by methamphetamine (MAP), a model of the relapse of these psychoses, because the modifications of the brain serotonergic transmission have been reported to antagonize the sensitization phenomenon. In agreement with previous reports, repeated MAP treatment (1.0 mg/kg a day, subcutaneously (s.c.)) for 10 days induced a long-lasting enhancement of the increasing effects of a challenge dose of MAP (0.24 mg/kg, s.c.) on motor activity on day 12 or 29 of withdrawal. The daily injection of FLX (10 mg/kg, s.c.) or PRX (8 mg/kg, s.c.) from 12 to 16 days of withdrawal of repeated MAP administration markedly attenuated the ability of the MAP pretreatment to augment the motor responses to the challenge dose of the stimulant 13 days after the SSRI injection. The repeated treatment with FLX or PRX alone failed to affect the motor stimulation following the challenge of saline and MAP 13 days later. -
Methamphetamine (Canadian Drug Summary)
www.ccsa.ca • www.ccdus.ca March 2020 Canadian Drug Summary Methamphetamine Key Points • The prevalence of methamphetamine use in the Canadian population is low (~0.2%). • Several jurisdictions report at least a three-fold increase in the use of methamphetamine over the past five years among individuals accessing treatment or harm reduction services. • Notable increases for rates of criminal violations involving methamphetamine have been observed in the last five years (2013–2018). Introduction Methamphetamine is a synthetic drug classified as a central nervous system (CNS) stimulant or psychostimulant. CNS stimulants cover a wide range of substances that act on the body by increasing the level of activity of the CNS and include caffeine, nicotine, amphetamine (e.g., Adderall®), methylphenidate (e.g., Ritalin®), MDMA (“ecstasy”), cocaine (including crack cocaine) and methamphetamine (including crystal meth).1,2 While both methamphetamine and amphetamine are psychostimulants and often grouped together, they are different drugs. A slight chemical modification of amphetamine produces methamphetamine, which has a different pharmacological profile that results in a larger release of certain neurochemicals in the brain and a stronger and more rapid physiological response. Some amphetamines are prescribed in Canada for attention-deficit hyperactivity disorder (ADHD) and narcolepsy (e.g., Adderall and Vyvanse®), but methamphetamine use is currently illegal. Methamphetamine is often made in illegal, clandestine laboratories with commonly available, inexpensive chemicals, such as ephedrine and pseudoephedrine, found in medications, among other sources. The use of these medications as precursor chemicals for methamphetamine led to stricter regulations introduced in Canada in 2006, limiting access to them by requiring they be kept behind the counter of pharmacies.3 Illegal production can be dangerous due to the toxicity of the chemicals used and the high risk of explosions. -
Amphetamine/Dextroamphetamine IR Generic
GEORGIA MEDICAID FEE-FOR-SERVICE STIMULANT AND RELATED AGENTS PA SUMMARY Preferred Non-Preferred Amphetamine/dextroamphetamine IR generic Adzenys ER (amphetamine ER oral suspension) Armodafinil generic Adzenys XR (amphetamine ER dispersible tab) Atomoxetine generic Amphetamine/dextroamphetamine ER (generic Concerta (methylphenidate ER/SA) Adderall XR) Dextroamphetamine IR tablets generic Aptensio XR (methylphenidate ER) Focalin (dexmethylphenidate) Clonidine ER generic Focalin XR (dexmethylphenidate ER) Cotempla XR (methylphenidate ER disintegrating Guanfacine ER generic tablet) Methylin oral solution (methylphenidate) Daytrana (methylphenidate TD patch) Methylphenidate CD/CR/ER generic by Lannett Desoxyn (methamphetamine) [NDCs 00527-####-##] and Kremers Urban [NDCs Dexmethylphenidate IR generic 62175-####-##] (generic Metadate CD) Dexmethylphenidate ER generic Methylphenidate IR generic Dextroamphetamine ER capsules generic Modafinil generic Dextroamphetamine oral solution generic Quillichew ER (methylphenidate ER chew tabs) Dyanavel XR (amphetamine ER oral suspension) Quillivant XR (methylphenidate ER oral suspension) Evekeo (amphetamine tablets) Vyvanse (lisdexamfetamine) Methamphetamine generic Zenzedi 5 mg, 10 mg IR tablets (dextroamphetamine) Methylphenidate IR chewable tablets generic Methylphenidate ER/SA (generic Concerta) Methylphenidate ER/LA/SR (generic Ritalin LA, Ritalin SR, Metadate ER) Methylphenidate ER/SA 72 mg generic Methylphenidate oral solution generic Mydayis (amphetamine/dextroamphetamine ER) Ritalin LA 10 mg