FAM46C and FNDC3A Are Multiple Myeloma Tumor Suppressors That Act in Concert to Impair Clearing of Protein Aggregates and Autophagy

Total Page:16

File Type:pdf, Size:1020Kb

FAM46C and FNDC3A Are Multiple Myeloma Tumor Suppressors That Act in Concert to Impair Clearing of Protein Aggregates and Autophagy Author Manuscript Published OnlineFirst on September 22, 2020; DOI: 10.1158/0008-5472.CAN-20-1357 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. FAM46C and FNDC3A are multiple myeloma tumor suppressors that act in concert to impair clearing of protein aggregates and autophagy Nicola Manfrini1,2,*, Marilena Mancino1,3,*, Annarita Miluzio1, Stefania Oliveto1,2, Matteo Balestra1, Piera Calamita1,2, Roberta Alfieri1,#, Riccardo L. Rossi1, Marco Sassoè-Pognetto4, Chiara Salio5, Alessandro Cuomo6, Tiziana Bonaldi6, Marcello Manfredi7,8,9 , Emilio Marengo7,8,10, Elia Ranzato10, Simona Martinotti10, Davide Cittaro11, Giovanni Tonon11,12 and Stefano Biffo1,2. 1 INGM, National Institute of Molecular Genetics, “Fondazione Romeo ed Enrica Invernizzi”, Milan, Italy. 2 Dept. of Biological Sciences, University of Milan, Milan, Italy. 3 Dept. of Clinical Sciences and Community, University of Milan, Milan, Italy 4 Dept. of Neuroscience “Rita Levi Montalcini”, University of Turin, C.so Massimo d’Azeglio 52, 10126 Torino, Italy 5 Dept. of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (To), Italy 6 Dept. of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy 7 Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Corso Trieste 15, 28100 Novara, Italy; 8 ISALIT, Via Canobio 4/6, 28100 Novara, Italy; 9 Dept. of Translation Medicine, University of Piemonte Orientale, 28100 Novara, Italy; 10 Dept. of Sciences and Technological Innovation, University of Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy; 11 Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy. 12 Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy. # Current address: IGM- Institute of Molecular Genetics – CNR, Pavia, Italy. * The two authors contributed equally to the work. Running title: Role of the FAM46C/FNDC3A complex in multiple myeloma. Keywords: UPR, proteasome, FNDC3A, lysosome, secretion. Additional information: This paper was supported by grant AIRC IG 19973 to SB, by grant AIRC 9965 5 ‰ to GT and by unrestricted grant from “Fondazione Romeo ed Enrica Invernizzi”. Correspondence: Stefano Biffo, INGM National Institute of Molecular Genetics, “Fondazione Romeo ed Enrica Invernizzi”, Via Francesco Sforza 35, 20122 Milano, Italy. Tel: +390200660304; Email: [email protected]; [email protected] Competing interests: The authors declare no competing interests. Number of words in main text: 7607, figures: 7. 1 Downloaded from cancerres.aacrjournals.org on September 24, 2021. © 2020 American Association for Cancer Research. Author Manuscript Published OnlineFirst on September 22, 2020; DOI: 10.1158/0008-5472.CAN-20-1357 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Abstract Multiple myeloma (MM) is a plasma cell neoplasm characterized by the production of unfolded immunoglobulins which cause endoplasmic reticulum (ER) stress and sensitivity to proteasome inhibition. The genomic landscape of MM is characterized by the loss of several genes rarely mutated in other cancers that may underline specific weaknesses of MM cells. One of these is FAM46C that is lost in more than 10% of MM patients. We show here that FAM46C is part of a new complex containing the ER-associated protein FNDC3A which regulates trafficking and secretion and, by impairing autophagy, exacerbates proteostatic stress. Reconstitution of FAM46C in MM cells that had lost it induced apoptosis and ER stress. Apoptosis was preceded by an increase of intracellular aggregates, which was not linked to increased translation of IgG mRNA but rather to impairment of autophagy. Biochemical analysis showed that FAM46C requires interaction with ER-bound protein FNDC3A in order to reside in the cytoplasmic side of the ER. FNDC3A was lost in some MM cell lines. Importantly, depletion of FNDC3A increased the fitness of FAM46C-expressing cells, and expression of FNDC3A in cells that had lost it recapitulated the effects of FAM46C, inducing aggregates and apoptosis. FAM46C and FNDC3A formed a complex that modulates secretion routes, increasing lysosome exocytosis. The cellular landscape generated by FAM46C/FNDC3A expression predicted sensitivity to sphingosine kinase inhibition. These results suggest that MM cells remodel their trafficking machinery to cope with ER stress. Significance This study identifies a new multiple myeloma-specific tumor suppressor complex that regulates autophagy and unconventional secretion, highlighting the sensitivity of multiple myeloma cells to the accumulation of protein aggregates. 2 Downloaded from cancerres.aacrjournals.org on September 24, 2021. © 2020 American Association for Cancer Research. Author Manuscript Published OnlineFirst on September 22, 2020; DOI: 10.1158/0008-5472.CAN-20-1357 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Introduction Multiple Myeloma (MM), the second most common hematologic malignancy, is caused by the accumulation of abnormal plasma cells. MM cells retain the plasma cell capability to synthesize and secrete immunoglobulins (Ig)s (1). Ig mRNAs are translated by endoplasmic reticulum (ER) resident ribosomes and undergo conventional secretion. Nascent Ig chains translocate to the ER lumen where they are folded. During this process, fractions of immunoglobulins remain unfolded. The accumulation of unfolded proteins triggers the unfolded protein response (UPR), a three-branch mechanisms which maintains ER homeostasis (2). As part of the UPR process, unfolded proteins are retro-translocated from the ER to the cytoplasm and degraded by the proteasome (3). Indeed, proteasome inhibitors are highly effective for MM treatment (4,5), before clinically resistance develops (6). Accumulation of cytoplasmic proteins that escape proteasome digestion can trigger the formation of intracellular aggregates, aka aggresomes. Aggresomes can be degraded by autophagy, an intricated pathway of cellular events that results in the clearing of doubled- membrane vesicles by the lysosomal degradative pathway. Nowadays, most studies converge on the concept that autophagy and the ubiquitin-proteasome system are integrated (7) and cooperate to clear ubiquitinylated targets. In addition, autophagy-relevant proteins possess activities that intervene on cellular functions linked to membrane biology, such as endocytosis, intracellular vesicular trafficking and conventional and non-conventional secretion (8). Genetic analysis has shown that MM cells have frequent loss of function mutations in genes that are rarely mutated in other cancers (9-11). One of these genes is FAM46C that is mutated in more than 10% of patients of MM (9-11). FAM46C induces apoptosis in MM cell lines (12). FAM46C is a member of a gene family composed of four highly similar proteins, FAM46A, FAM46B, FAM46C, and FAM46D. With the exception of FAM46D, which is lost in 3% of gastric 3 Downloaded from cancerres.aacrjournals.org on September 24, 2021. © 2020 American Association for Cancer Research. Author Manuscript Published OnlineFirst on September 22, 2020; DOI: 10.1158/0008-5472.CAN-20-1357 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. cancer patients (13), no mutations of other FAM46 family members have been observed in cancer. Understanding the reason that underlies the specific loss of FAM46C in MM, may open the avenue for specific therapies. Unbiased high throughput screening picked up FAM46C as an interferon-regulated modulator of viral production. In some cases, FAM46C overexpression mildly increased viral production, as for yellow fever virus, or had no effect, as with hepatic HCV (14). In other cases, FAM46C strongly inhibited viral propagation, as in the case of the influenza virus H1N1 (15). These observations suggest that the proviral or antiviral effect of FAM46C may depend from specific differences in the way viral particles are replicated and egressed, rather than from a common process. In this context, autophagy modulation plays important roles in viral intracellular amplification (16). An early in silico analysis predicted that FAM46 proteins constituted a non-canonical terminal transferase (NT) family containing PAP/OAS1 SBD domains (17). Structural resolution of FAM46B, a FAM46C paralog, did not confirm the existence of PAP/OAS1 domains (18) and suggested structural homology to bacterial nucleotidyl transferases. Interestingly, motif analysis of FAM46B scores the presence of VHS (19), GAT (20) and GAE domains. These domains regulate trafficking pathways for cargo retrieval and degradation (21). In short, structural studies suggest that FAM46 family members may also interact with the trafficking machinery. The NT activity of FAM46C was reported to add short A-tails to the 3’UTR of ER-bound mRNAs encoding for immunoglobulins (22,23). These data favored the model that FAM46C increases mRNA stability and translation of immunoglobulin(s) mRNA at the ER, increasing IgG secretion (22-24). These studies, largely based on the comparison of wt FAM46C to mock controls, did not show whether all ER-bound mRNAs increased their translational efficiency, and left the 4 Downloaded from cancerres.aacrjournals.org on September 24, 2021. © 2020 American Association for Cancer
Recommended publications
  • Transcriptome-Wide Identification of Transient RNA G-Quadruplexes In
    ARTICLE DOI: 10.1038/s41467-018-07224-8 OPEN Transcriptome-wide identification of transient RNA G-quadruplexes in human cells Sunny Y. Yang1, Pauline Lejault2, Sandy Chevrier3, Romain Boidot 3, A. Gordon Robertson4, Judy M.Y. Wong 1 & David Monchaud 2 Guanine-rich RNA sequences can fold into four-stranded structures, termed G-quadruplexes (G4-RNAs), whose biological roles are poorly understood, and in vivo existence is debated. 1234567890():,; To profile biologically relevant G4-RNA in the human transcriptome, we report here on G4RP-seq, which combines G4-RNA-specific precipitation (G4RP) with sequencing. This protocol comprises a chemical crosslinking step, followed by affinity capture with the G4- specific small-molecule ligand/probe BioTASQ, and target identification by sequencing, allowing for capturing global snapshots of transiently folded G4-RNAs. We detect wide- spread G4-RNA targets within the transcriptome, indicative of transient G4 formation in living human cells. Using G4RP-seq, we also demonstrate that G4-stabilizing ligands (BRACO-19 and RHPS4) can change the G4 transcriptomic landscape, most notably in long non-coding RNAs. G4RP-seq thus provides a method for studying the G4-RNA landscape, as well as ways of considering the mechanisms underlying G4-RNA formation, and the activity of G4-stabilizing ligands. 1 Faculty of Pharmaceutical Sciences, University of British Columbia, Pharmaceutical Sciences Building, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada. 2 Institut de Chimie Moléculaire (ICMUB), UBFC Dijon, CNRS UMR6302, 9, Rue Alain Savary, 21078 Dijon, France. 3 Platform of Transfer in Cancer Biology, Centre Georges-François Leclerc, BP 77980, 1, Rue Professeur Marion, 21079 Dijon, France.
    [Show full text]
  • The Role of Type I Interferon in the Immunobiology of Chikungunya Virus
    The role of type I interferon in the immunobiology of chikungunya virus Jane Amelia Clare Wilson B. App. Sc. (Human Biology), B. App. Sc. (Hons) A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2015 School of Medicine & QIMR Berghofer Medical Research Institute I Abstract Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that can cause explosive outbreaks of a febrile, arthritic/arthralgic disease usually lasting weeks to months, and in rare cases, more than a year. In 2004, the largest ever CHIKV outbreak began in Kenya, spreading to islands of the Indian Ocean, India, South East Asia and major outbreaks have recently occurred in the South Pacific Islands and the Caribbean. The host type I interferon (IFN) response is crucial for effective control of CHIKV infection. Herein, the dynamics, source and responses generated by the type I IFNs following CHIKV infection were investigated. Interferon regulatory factors 3 (IRF3) and IRF7 are key transcription factors for the type I IFN response. While CHIKV infection of wild-type mice is non-lethal, infection of mice deficient in both IRF3 and IRF7 (IRF3/7-/-) resulted in mortality, illustrating that these factors are essential for protection. Using knockout mice for the adaptor molecules upstream of IRF3 and 7, IPS1 was found to be the most important for type I IFN production, with TRIF and MyD88 also contributing to the response. Mortality in IRF3/7-/- mice was also associated with type I IFN suppression of pathological levels of IFNγ and haemorrhagic shock. Heterozygous reporter mice, in which eGFP was expressed under the control of either the IFNβ or the IFNα6 promoter on one chromosome, were employed to try and identify the cellular source of type I IFN production following CHIVK infection.
    [Show full text]
  • FAM46C Inhibits Cell Proliferation and Cell Cycle Progression And
    www.aging-us.com AGING 2020, Vol. 12, No. 7 Research Paper FAM46C inhibits cell proliferation and cell cycle progression and promotes apoptosis through PTEN/AKT signaling pathway and is associated with chemosensitivity in prostate cancer Libin Ma1,*, Huadong He2,*, Kang Jiang2, Peiwu Jiang3, Han He2, Shengjia Feng4, Kean Chen5, Jia Shao2, Gang Deng2 1Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China 2Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China 3Surgical Department I, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310007, Zhejiang, China 4Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang, China 5Department of Urology, The Second Hospital of Jiaxing, Jiaxing 314001, Zhejiang, China *Equal contribution Correspondence to: Gang Deng; email: [email protected] Keywords: prostate cancer, tumorigenesis, ubiquitination, FAM46C, PTEN Received: September 27, 2019 Accepted: February 23, 2020 Published: April 13, 2020 Copyright: Ma et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Family with sequence similarity 46 member C (FAM46C) is a non-canonical poly(A) polymerase that is associated with tumorigenesis. However, its role in prostate cancer development is not fully understood. Herein, we determined expression pattern of FAM46C in prostate cancer and further identified its effect on the tumorigenesis and chemosensitivity. FAM46C expression was decreased in prostate cancer tissues and cell lines compared with corresponding controls.
    [Show full text]
  • Triplet Repeat Length Bias and Variation in the Human Transcriptome
    Triplet repeat length bias and variation in the human transcriptome Michael Mollaa,1,2, Arthur Delcherb,1, Shamil Sunyaevc, Charles Cantora,d,2, and Simon Kasifa,e aDepartment of Biomedical Engineering and dCenter for Advanced Biotechnology, Boston University, Boston, MA 02215; bCenter for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742; cDepartment of Medicine, Division of Genetics, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115; and eCenter for Advanced Genomic Technology, Boston University, Boston, MA 02215 Contributed by Charles Cantor, July 6, 2009 (sent for review May 4, 2009) Length variation in short tandem repeats (STRs) is an important family including Huntington’s disease (10) and hereditary ataxias (11, 12). of DNA polymorphisms with numerous applications in genetics, All Huntington’s patients exhibit an expanded number of copies in medicine, forensics, and evolutionary analysis. Several major diseases the CAG tandem repeat subsequence in the N terminus of the have been associated with length variation of trinucleotide (triplet) huntingtin gene. Moreover, an increase in the repeat length is repeats including Huntington’s disease, hereditary ataxias and spi- anti-correlated to the onset age of the disease (13). Multiple other nobulbar muscular atrophy. Using the reference human genome, we diseases have also been associated with copy number variation of have catalogued all triplet repeats in genic regions. This data revealed tandem repeats (8, 14). Researchers have hypothesized that inap- a bias in noncoding DNA repeat lengths. It also enabled a survey of propriate repeat variation in coding regions could result in toxicity, repeat-length polymorphisms (RLPs) in human genomes and a com- incorrect folding, or aggregation of a protein.
    [Show full text]
  • NCTD Elicits Proapoptotic and Antiglycolytic Effects on Colorectal Cancer Cells Via Modulation of Fam46c Expression and Inhibition of ERK1/2 Signaling
    774 MOLECULAR MEDICINE REPORTS 22: 774-782, 2020 NCTD elicits proapoptotic and antiglycolytic effects on colorectal cancer cells via modulation of Fam46c expression and inhibition of ERK1/2 signaling SHIQIANG ZHANG1,2*, YUN YANG1,2*, YUNWEI HUA3, CHEN HU4 and YI ZHONG2 1Shanghai University of Traditional Chinese Medicine; Departments of 2Oncology and 3Gastroenterology, Shanghai Traditional Chinese Medicine-Integrated Hospital; 4School of Life Sciences and Technology, Tongji University, Shanghai 200082, P.R. China Received April 18, 2019; Accepted November 1, 2019 DOI: 10.3892/mmr.2020.11151 Abstract. Colorectal cancer is a digestive tract malignancy identified a novel therapeutic target of NCTD in the clinical and the third leading cause of cancer-related mortality treatment of colorectal cancer. worldwide. Norcantharidin (NCTD), the demethylated form of cantharidin, has been reported to possess anticancer Introduction properties. Family-with-sequence-similarity-46c (Fam46c), a non-canonical poly(A) polymerase, has been reported to Colorectal cancer was the third leading cause of cancer-related be critical in NCTD‑mediated effects in numerous types of deaths worldwide in 2016 (1,2). Its pathogenesis is closely cancer, including hepatoma. In the current study, it was found related to various factors, including lifestyle, heredity and that Fam46c expression was reduced in colorectal cancer colorectal adenoma (3,4). Colorectal cancer often arises at tissues and cells. Treatment with NCTD was observed to the age of 40-50 years, with the ratio of men to women being significantly enhance apoptosis and inhibit glycolysis in 1.65:1 (1). According to previous studies, the incidence of colorectal cancer cells. In addition, Fam46c and cleaved colorectal cancer has been steadily increasing in China over caspase 3 expression levels were found to be increased in the years, especially in underdeveloped areas (5-7).
    [Show full text]
  • Analysis of the Indacaterol-Regulated Transcriptome in Human Airway
    Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2018/04/13/jpet.118.249292.DC1 1521-0103/366/1/220–236$35.00 https://doi.org/10.1124/jpet.118.249292 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 366:220–236, July 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Analysis of the Indacaterol-Regulated Transcriptome in Human Airway Epithelial Cells Implicates Gene Expression Changes in the s Adverse and Therapeutic Effects of b2-Adrenoceptor Agonists Dong Yan, Omar Hamed, Taruna Joshi,1 Mahmoud M. Mostafa, Kyla C. Jamieson, Radhika Joshi, Robert Newton, and Mark A. Giembycz Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Received March 22, 2018; accepted April 11, 2018 Downloaded from ABSTRACT The contribution of gene expression changes to the adverse and activity, and positive regulation of neutrophil chemotaxis. The therapeutic effects of b2-adrenoceptor agonists in asthma was general enriched GO term extracellular space was also associ- investigated using human airway epithelial cells as a therapeu- ated with indacaterol-induced genes, and many of those, in- tically relevant target. Operational model-fitting established that cluding CRISPLD2, DMBT1, GAS1, and SOCS3, have putative jpet.aspetjournals.org the long-acting b2-adrenoceptor agonists (LABA) indacaterol, anti-inflammatory, antibacterial, and/or antiviral activity. Numer- salmeterol, formoterol, and picumeterol were full agonists on ous indacaterol-regulated genes were also induced or repressed BEAS-2B cells transfected with a cAMP-response element in BEAS-2B cells and human primary bronchial epithelial cells by reporter but differed in efficacy (indacaterol $ formoterol .
    [Show full text]
  • SUPPLEMENTARY APPENDIX Inflammation Regulates Long Non-Coding RNA-PTTG1-1:1 in Myeloid Leukemia
    SUPPLEMENTARY APPENDIX Inflammation regulates long non-coding RNA-PTTG1-1:1 in myeloid leukemia Sébastien Chateauvieux, 1,2 Anthoula Gaigneaux, 1° Déborah Gérard, 1 Marion Orsini, 1 Franck Morceau, 1 Barbora Orlikova-Boyer, 1,2 Thomas Farge, 3,4 Christian Récher, 3,4,5 Jean-Emmanuel Sarry, 3,4 Mario Dicato 1 and Marc Diederich 2 °Current address: University of Luxembourg, Faculty of Science, Technology and Communication, Life Science Research Unit, Belvaux, Luxemburg. 1Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg; 2College of Pharmacy, Seoul National University, Gwanak-gu, Seoul, Korea; 3Cancer Research Center of Toulouse, UMR 1037 INSERM/ Université Toulouse III-Paul Sabatier, Toulouse, France; 4Université Toulouse III Paul Sabatier, Toulouse, France and 5Service d’Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopôle, Toulouse, France Correspondence: MARC DIEDERICH - [email protected] doi:10.3324/haematol.2019.217281 Supplementary data Inflammation regulates long non-coding RNA-PTTG1-1:1 in myeloid leukemia Sébastien Chateauvieux1,2, Anthoula Gaigneaux1*, Déborah Gérard1, Marion Orsini1, Franck Morceau1, Barbora Orlikova-Boyer1,2, Thomas Farge3,4, Christian Récher3,4,5, Jean-Emmanuel Sarry3,4, Mario Dicato1 and Marc Diederich2 1 Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, 2540 Luxembourg, Luxemburg; 2 College of Pharmacy, Seoul National University, 1 Gwanak-ro,
    [Show full text]
  • Promiscuous MYC Locus Rearrangements Hijack Enhancers but Mostly Super-Enhancers to Dysregulate MYC Expression in Multiple Myeloma
    Leukemia (2014) 28, 1725–1735 & 2014 Macmillan Publishers Limited All rights reserved 0887-6924/14 www.nature.com/leu ORIGINAL ARTICLE Promiscuous MYC locus rearrangements hijack enhancers but mostly super-enhancers to dysregulate MYC expression in multiple myeloma M Affer1, M Chesi1, WD Chen2, JJ Keats3, YN Demchenko2, K Tamizhmani1,2, VM Garbitt1, DL Riggs1, LA Brents2, AV Roschke2, S Van Wier1, R Fonseca1, PL Bergsagel1,4 and WM Kuehl2,4 MYC locus rearrangements—often complex combinations of translocations, insertions, deletions and inversions—in multiple myeloma (MM) were thought to be a late progression event, which often did not involve immunoglobulin genes. Yet, germinal center activation of MYC expression has been reported to cause progression to MM in an MGUS (monoclonal gammopathy of undetermined significance)-prone mouse strain. Although previously detected in 16% of MM, we find MYC rearrangements in nearly 50% of MM, including smoldering MM, and they are heterogeneous in some cases. Rearrangements reposition MYC near a limited number of genes associated with conventional enhancers, but mostly with super-enhancers (e.g., IGH, IGL, IGK, NSMCE2, TXNDC5, FAM46C, FOXO3, IGJ, PRDM1). MYC rearrangements are associated with a significant increase of MYC expression that is monoallelic, but MM tumors lacking a rearrangement have biallelic MYC expression at significantly higher levels than in MGUS. We also have shown that germinal center activation of MYC does not cause MM in a mouse strain that rarely develops spontaneous MGUS. It appears that increased MYC expression at the MGUS/MM transition usually is biallelic, but sometimes can be monoallelic if there is an MYC rearrangement.
    [Show full text]
  • Supplementary Table 1
    Supplementary Table 1. 492 genes are unique to 0 h post-heat timepoint. The name, p-value, fold change, location and family of each gene are indicated. Genes were filtered for an absolute value log2 ration 1.5 and a significance value of p ≤ 0.05. Symbol p-value Log Gene Name Location Family Ratio ABCA13 1.87E-02 3.292 ATP-binding cassette, sub-family unknown transporter A (ABC1), member 13 ABCB1 1.93E-02 −1.819 ATP-binding cassette, sub-family Plasma transporter B (MDR/TAP), member 1 Membrane ABCC3 2.83E-02 2.016 ATP-binding cassette, sub-family Plasma transporter C (CFTR/MRP), member 3 Membrane ABHD6 7.79E-03 −2.717 abhydrolase domain containing 6 Cytoplasm enzyme ACAT1 4.10E-02 3.009 acetyl-CoA acetyltransferase 1 Cytoplasm enzyme ACBD4 2.66E-03 1.722 acyl-CoA binding domain unknown other containing 4 ACSL5 1.86E-02 −2.876 acyl-CoA synthetase long-chain Cytoplasm enzyme family member 5 ADAM23 3.33E-02 −3.008 ADAM metallopeptidase domain Plasma peptidase 23 Membrane ADAM29 5.58E-03 3.463 ADAM metallopeptidase domain Plasma peptidase 29 Membrane ADAMTS17 2.67E-04 3.051 ADAM metallopeptidase with Extracellular other thrombospondin type 1 motif, 17 Space ADCYAP1R1 1.20E-02 1.848 adenylate cyclase activating Plasma G-protein polypeptide 1 (pituitary) receptor Membrane coupled type I receptor ADH6 (includes 4.02E-02 −1.845 alcohol dehydrogenase 6 (class Cytoplasm enzyme EG:130) V) AHSA2 1.54E-04 −1.6 AHA1, activator of heat shock unknown other 90kDa protein ATPase homolog 2 (yeast) AK5 3.32E-02 1.658 adenylate kinase 5 Cytoplasm kinase AK7
    [Show full text]
  • Association of Variable Number of Tandem Repeats in the Coding
    Association of Variable Number of Tandem Repeats in the Coding Region of the FAM46A Gene, FAM46A rs11040 SNP and BAG6 rs3117582 SNP with Susceptibility to Tuberculosis Godfrey Essien Etokebe1*, Ljiljana Bulat-Kardum2, Ludvig Andre Munthe3, Sanja Balen4, Zlatko Dembic1 1 Molecular Genetics Laboratory Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway, 2 Section of Pulmology, Department of Internal Medicine, Clinical Hospital Center, University of Rijeka, Rijeka, Croatia, 3 Dept of Immunology, OUS-Rikshospitalet, Oslo, Norway, 4 Clinical Institute for Transfusion Medicine, Universal Hospital Center Rijeka, School of Medicine, University of Rijeka, Rijeka, Croatia Abstract We analyzed for association between the Family with sequence similarity 46, member A (FAM46A) gene (located on chromosome 6q14.1), BCL2-Associated Athanogene 6 (BAG6) gene (located on chromosome 6p21.3) and tuberculosis in Croatian Caucasian. We genotyped the FAM46A rs11040 SNP, FAM46A VNTR and BAG6 rs3117582 polymorphisms in a case- control study with 257 tuberculosis patients and 493 healthy individuals in a Croatian Caucasian population. We found that genotype FAM46A 3/3 (three VNTR repeats homozygote) was associated with susceptibility to tuberculosis (p,0.0015, Pcorr.,0.029, Odds ratio = 2.42, 95% Confidence Interval = 1.34–4.3). This association suggests that the protein domain encoded by the VNTR might be important for the function of the FAM46A protein, which, in turn, could be relevant in developing tuberculosis. In addition, we found that FAM46A rs11040 SNP:FAM46A VNTR:BAG6 haplotype 132 (G-3-C) is associated with susceptibility to tuberculosis (p,0.012, pcorr.,0.024, Odds ratio 3.45, 95% Confidence Interval = 1.26–9.74).
    [Show full text]
  • Translation Factors and Ribosomal Proteins Control Tumor Onset and Progression: How?
    Oncogene (2014) 33, 2145–2156 & 2014 Macmillan Publishers Limited All rights reserved 0950-9232/14 www.nature.com/onc REVIEW Translation factors and ribosomal proteins control tumor onset and progression: how? F Loreni1, M Mancino2,3 and S Biffo2,3 Gene expression is shaped by translational control. The modalities and the extent by which translation factors modify gene expression have revealed therapeutic scenarios. For instance, eukaryotic initiation factor (eIF)4E activity is controlled by the signaling cascade of growth factors, and drives tumorigenesis by favoring the translation of specific mRNAs. Highly specific drugs target the activity of eIF4E. Indeed, the antitumor action of mTOR complex 1 (mTORc1) blockers like rapamycin relies on their capability to inhibit eIF4E assembly into functional eIF4F complexes. eIF4E biology, from its inception to recent pharmacological targeting, is proof-of-principle that translational control is druggable. The case for eIF4E is not isolated. The translational machinery is involved in the biology of cancer through many other mechanisms. First, untranslated sequences on mRNAs as well as noncoding RNAs regulate the translational efficiency of mRNAs that are central for tumor progression. Second, other initiation factors like eIF6 show a tumorigenic potential by acting downstream of oncogenic pathways. Third, genetic alterations in components of the translational apparatus underlie an entire class of inherited syndromes known as ‘ribosomopathies’ that are associated with increased cancer risk. Taken together, data suggest that in spite of their evolutionary conservation and ubiquitous nature, variations in the activity and levels of ribosomal proteins and translation factors generate highly specific effects. Beside, as the structures and biochemical activities of several noncoding RNAs and initiation factors are known, these factors may be amenable to rational pharmacological targeting.
    [Show full text]
  • A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family
    Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2018 A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family Linda Molla Follow this and additional works at: https://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy by Linda Molla June 2018 © Copyright by Linda Molla 2018 A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY Linda Molla, Ph.D. The Rockefeller University 2018 APOBEC2 is a member of the AID/APOBEC cytidine deaminase family of proteins. Unlike most of AID/APOBEC, however, APOBEC2’s function remains elusive. Previous research has implicated APOBEC2 in diverse organisms and cellular processes such as muscle biology (in Mus musculus), regeneration (in Danio rerio), and development (in Xenopus laevis). APOBEC2 has also been implicated in cancer. However the enzymatic activity, substrate or physiological target(s) of APOBEC2 are unknown. For this thesis, I have combined Next Generation Sequencing (NGS) techniques with state-of-the-art molecular biology to determine the physiological targets of APOBEC2. Using a cell culture muscle differentiation system, and RNA sequencing (RNA-Seq) by polyA capture, I demonstrated that unlike the AID/APOBEC family member APOBEC1, APOBEC2 is not an RNA editor. Using the same system combined with enhanced Reduced Representation Bisulfite Sequencing (eRRBS) analyses I showed that, unlike the AID/APOBEC family member AID, APOBEC2 does not act as a 5-methyl-C deaminase.
    [Show full text]