The Fields Medals, the Nevanlinna Prize, and This Year the New Abel Prize
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tarjan Transcript Final with Timestamps
A.M. Turing Award Oral History Interview with Robert (Bob) Endre Tarjan by Roy Levin San Mateo, California July 12, 2017 Levin: My name is Roy Levin. Today is July 12th, 2017, and I’m in San Mateo, California at the home of Robert Tarjan, where I’ll be interviewing him for the ACM Turing Award Winners project. Good afternoon, Bob, and thanks for spending the time to talk to me today. Tarjan: You’re welcome. Levin: I’d like to start by talking about your early technical interests and where they came from. When do you first recall being interested in what we might call technical things? Tarjan: Well, the first thing I would say in that direction is my mom took me to the public library in Pomona, where I grew up, which opened up a huge world to me. I started reading science fiction books and stories. Originally, I wanted to be the first person on Mars, that was what I was thinking, and I got interested in astronomy, started reading a lot of science stuff. I got to junior high school and I had an amazing math teacher. His name was Mr. Wall. I had him two years, in the eighth and ninth grade. He was teaching the New Math to us before there was such a thing as “New Math.” He taught us Peano’s axioms and things like that. It was a wonderful thing for a kid like me who was really excited about science and mathematics and so on. The other thing that happened was I discovered Scientific American in the public library and started reading Martin Gardner’s columns on mathematical games and was completely fascinated. -
A MATHEMATICIAN's SURVIVAL GUIDE 1. an Algebra Teacher I
A MATHEMATICIAN’S SURVIVAL GUIDE PETER G. CASAZZA 1. An Algebra Teacher I could Understand Emmy award-winning journalist and bestselling author Cokie Roberts once said: As long as algebra is taught in school, there will be prayer in school. 1.1. An Object of Pride. Mathematician’s relationship with the general public most closely resembles “bipolar” disorder - at the same time they admire us and hate us. Almost everyone has had at least one bad experience with mathematics during some part of their education. Get into any taxi and tell the driver you are a mathematician and the response is predictable. First, there is silence while the driver relives his greatest nightmare - taking algebra. Next, you will hear the immortal words: “I was never any good at mathematics.” My response is: “I was never any good at being a taxi driver so I went into mathematics.” You can learn a lot from taxi drivers if you just don’t tell them you are a mathematician. Why get started on the wrong foot? The mathematician David Mumford put it: “I am accustomed, as a professional mathematician, to living in a sort of vacuum, surrounded by people who declare with an odd sort of pride that they are mathematically illiterate.” 1.2. A Balancing Act. The other most common response we get from the public is: “I can’t even balance my checkbook.” This reflects the fact that the public thinks that mathematics is basically just adding numbers. They have no idea what we really do. Because of the textbooks they studied, they think that all needed mathematics has already been discovered. -
MY UNFORGETTABLE EARLY YEARS at the INSTITUTE Enstitüde Unutulmaz Erken Yıllarım
MY UNFORGETTABLE EARLY YEARS AT THE INSTITUTE Enstitüde Unutulmaz Erken Yıllarım Dinakar Ramakrishnan `And what was it like,’ I asked him, `meeting Eliot?’ `When he looked at you,’ he said, `it was like standing on a quay, watching the prow of the Queen Mary come towards you, very slowly.’ – from `Stern’ by Seamus Heaney in memory of Ted Hughes, about the time he met T.S.Eliot It was a fortunate stroke of serendipity for me to have been at the Institute for Advanced Study in Princeton, twice during the nineteen eighties, first as a Post-doctoral member in 1982-83, and later as a Sloan Fellow in the Fall of 1986. I had the privilege of getting to know Robert Langlands at that time, and, needless to say, he has had a larger than life influence on me. It wasn’t like two ships passing in the night, but more like a rowboat feeling the waves of an oncoming ship. Langlands and I did not have many conversations, but each time we did, he would make a Zen like remark which took me a long time, at times months (or even years), to comprehend. Once or twice it even looked like he was commenting not on the question I posed, but on a tangential one; however, after much reflection, it became apparent that what he had said had an interesting bearing on what I had been wondering about, and it always provided a new take, at least to me, on the matter. Most importantly, to a beginner in the field like I was then, he was generous to a fault, always willing, whenever asked, to explain the subtle aspects of his own work. -
Sir Andrew J. Wiles
ISSN 0002-9920 (print) ISSN 1088-9477 (online) of the American Mathematical Society March 2017 Volume 64, Number 3 Women's History Month Ad Honorem Sir Andrew J. Wiles page 197 2018 Leroy P. Steele Prize: Call for Nominations page 195 Interview with New AMS President Kenneth A. Ribet page 229 New York Meeting page 291 Sir Andrew J. Wiles, 2016 Abel Laureate. “The definition of a good mathematical problem is the mathematics it generates rather Notices than the problem itself.” of the American Mathematical Society March 2017 FEATURES 197 239229 26239 Ad Honorem Sir Andrew J. Interview with New The Graduate Student Wiles AMS President Kenneth Section Interview with Abel Laureate Sir A. Ribet Interview with Ryan Haskett Andrew J. Wiles by Martin Raussen and by Alexander Diaz-Lopez Allyn Jackson Christian Skau WHAT IS...an Elliptic Curve? Andrew Wiles's Marvelous Proof by by Harris B. Daniels and Álvaro Henri Darmon Lozano-Robledo The Mathematical Works of Andrew Wiles by Christopher Skinner In this issue we honor Sir Andrew J. Wiles, prover of Fermat's Last Theorem, recipient of the 2016 Abel Prize, and star of the NOVA video The Proof. We've got the official interview, reprinted from the newsletter of our friends in the European Mathematical Society; "Andrew Wiles's Marvelous Proof" by Henri Darmon; and a collection of articles on "The Mathematical Works of Andrew Wiles" assembled by guest editor Christopher Skinner. We welcome the new AMS president, Ken Ribet (another star of The Proof). Marcelo Viana, Director of IMPA in Rio, describes "Math in Brazil" on the eve of the upcoming IMO and ICM. -
Information and Announcements Mathematics Prizes Awarded At
Information and Announcements Mathematics Prizes Awarded at ICM 2014 The International Congress of Mathematicians (ICM) is held once in four years under the auspices of the International Mathematical Union (IMU). The ICM is the largest, and the most prestigious, meeting of the mathematics community. During the ICM, the Fields Medal, the Nevanlinna Prize, the Gauss Prize, the Chern Medal and the Leelavati Prize are awarded. The Fields Medals are awarded to mathematicians under the age of 40 to recognize existing outstanding mathematical work and for the promise of future achievement. A maximum of four Fields Medals are awarded during an ICM. The Nevanlinna Prize is awarded for outstanding contributions to mathematical aspects of information sciences; this awardee is also under the age of 40. The Gauss Prize is given for mathematical research which has made a big impact outside mathematics – in industry or technology, etc. The Chern Medal is awarded to a person whose mathematical accomplishments deserve the highest level of recognition from the mathematical community. The Leelavati Prize is sponsored by Infosys and is a recognition of an individual’s extraordinary achievements in popularizing among the public at large, mathematics, as an intellectual pursuit which plays a crucial role in everyday life. The 27th ICM was held in Seoul, South Korea during August 13–21, 2014. Fields Medals The following four mathematicians were awarded the Fields Medal in 2014. 1. Artur Avila, “for his profound contributions to dynamical systems theory, which have changed the face of the field, using the powerful idea of renormalization as a unifying principle”. Work of Artur Avila (born 29th June 1979): Artur Avila’s outstanding work on dynamical systems, and analysis has made him a leader in the field. -
Robert P. Langlands Receives the Abel Prize
Robert P. Langlands receives the Abel Prize The Norwegian Academy of Science and Letters has decided to award the Abel Prize for 2018 to Robert P. Langlands of the Institute for Advanced Study, Princeton, USA “for his visionary program connecting representation theory to number theory.” Robert P. Langlands has been awarded the Abel Prize project in modern mathematics has as wide a scope, has for his work dating back to January 1967. He was then produced so many deep results, and has so many people a 30-year-old associate professor at Princeton, working working on it. Its depth and breadth have grown and during the Christmas break. He wrote a 17-page letter the Langlands program is now frequently described as a to the great French mathematician André Weil, aged 60, grand unified theory of mathematics. outlining some of his new mathematical insights. The President of the Norwegian Academy of Science and “If you are willing to read it as pure speculation I would Letters, Ole M. Sejersted, announced the winner of the appreciate that,” he wrote. “If not – I am sure you have a 2018 Abel Prize at the Academy in Oslo today, 20 March. waste basket handy.” Biography Fortunately, the letter did not end up in a waste basket. His letter introduced a theory that created a completely Robert P. Langlands was born in New Westminster, new way of thinking about mathematics: it suggested British Columbia, in 1936. He graduated from the deep links between two areas, number theory and University of British Columbia with an undergraduate harmonic analysis, which had previously been considered degree in 1957 and an MSc in 1958, and from Yale as unrelated. -
“To Be a Good Mathematician, You Need Inner Voice” ”Огонёкъ” Met with Yakov Sinai, One of the World’S Most Renowned Mathematicians
“To be a good mathematician, you need inner voice” ”ОгонёкЪ” met with Yakov Sinai, one of the world’s most renowned mathematicians. As the new year begins, Russia intensifies the preparations for the International Congress of Mathematicians (ICM 2022), the main mathematical event of the near future. 1966 was the last time we welcomed the crème de la crème of mathematics in Moscow. “Огонёк” met with Yakov Sinai, one of the world’s top mathematicians who spoke at ICM more than once, and found out what he thinks about order and chaos in the modern world.1 Committed to science. Yakov Sinai's close-up. One of the most eminent mathematicians of our time, Yakov Sinai has spent most of his life studying order and chaos, a research endeavor at the junction of probability theory, dynamical systems theory, and mathematical physics. Born into a family of Moscow scientists on September 21, 1935, Yakov Sinai graduated from the department of Mechanics and Mathematics (‘Mekhmat’) of Moscow State University in 1957. Andrey Kolmogorov’s most famous student, Sinai contributed to a wealth of mathematical discoveries that bear his and his teacher’s names, such as Kolmogorov-Sinai entropy, Sinai’s billiards, Sinai’s random walk, and more. From 1998 to 2002, he chaired the Fields Committee which awards one of the world’s most prestigious medals every four years. Yakov Sinai is a winner of nearly all coveted mathematical distinctions: the Abel Prize (an equivalent of the Nobel Prize for mathematicians), the Kolmogorov Medal, the Moscow Mathematical Society Award, the Boltzmann Medal, the Dirac Medal, the Dannie Heineman Prize, the Wolf Prize, the Jürgen Moser Prize, the Henri Poincaré Prize, and more. -
Commodity and Energy Markets Conference at Oxford University
Commodity and Energy Markets Conference Annual Meeting 2017 th th 14 - 15 June Page | 1 Commodity and Energy Markets Conference Contents Welcome 3 Essential Information 4 Bird’s-eye view of programme 6 Detailed programme 8 Venue maps 26 Mezzanine level of Andrew Wiles Building 27 Local Information 28 List of Participants 29 Keynote Speakers 33 Academic journals: special issues 34 Sponsors 35 Page | 2 Welcome On behalf of the Mathematical Institute, it is our great pleasure to welcome you to the University of Oxford for the Commodity and Energy Markets annual conference (2017). The Commodity and Energy Markets annual conference 2017 is the latest in a long standing series of meetings. Our first workshop was held in London in 2004, and after that we expanded the scope and held yearly conferences in different locations across Europe. Nowadays, the Commodity and Energy Markets conference is the benchmark meeting for academics who work in this area. This year’s event covers a wide range of topics in commodities and energy. We highlight three keynote talks. Prof Hendrik Bessembinder (Arizona State University) will talk on “Measuring returns to those who invest in energy through futures”, and Prof Sebastian Jaimungal (University of Toronto) will talk about “Stochastic Control in Commodity & Energy Markets: Model Uncertainty, Algorithmic Trading, and Future Directions”. Moreover, Tony Cocker, E.ON’s Chief Executive Officer, will share his views and insights into the role of mathematical modelling in the energy industry. In addition to the over 100 talks, a panel of academics and professional experts will discuss “The future of energy trading in the UK and Europe: a single energy market?” The roundtable is sponsored by the Italian Association of Energy Suppliers and Traders (AIGET) and European Energy Retailers (EER). -
Math Spans All Dimensions
March 2000 THE NEWSLETTER OF THE MATHEMATICAL ASSOCIATION OF AMERICA Math Spans All Dimensions April 2000 is Math Awareness Month Interactive version of the complete poster is available at: http://mam2000.mathforum.com/ FOCUS March 2000 FOCUS is published by the Mathematical Association of America in January. February. March. April. May/June. August/September. FOCUS October. November. and December. a Editor: Fernando Gouvea. Colby College; March 2000 [email protected] Managing Editor: Carol Baxter. MAA Volume 20. Number 3 [email protected] Senior Writer: Harry Waldman. MAA In This Issue [email protected] Please address advertising inquiries to: 3 "Math Spans All Dimensions" During April Math Awareness Carol Baxter. MAA; [email protected] Month President: Thomas Banchoff. Brown University 3 Felix Browder Named Recipient of National Medal of Science First Vice-President: Barbara Osofsky. By Don Albers Second Vice-President: Frank Morgan. Secretary: Martha Siegel. Treasurer: Gerald 4 Updating the NCTM Standards J. Porter By Kenneth A. Ross Executive Director: Tina Straley 5 A Different Pencil Associate Executive Director and Direc Moving Our Focus from Teachers to Students tor of Publications and Electronic Services: Donald J. Albers By Ed Dubinsky FOCUS Editorial Board: Gerald 6 Mathematics Across the Curriculum at Dartmouth Alexanderson; Donna Beers; J. Kevin By Dorothy I. Wallace Colligan; Ed Dubinsky; Bill Hawkins; Dan Kalman; Maeve McCarthy; Peter Renz; Annie 7 ARUME is the First SIGMAA Selden; Jon Scott; Ravi Vakil. Letters to the editor should be addressed to 8 Read This! Fernando Gouvea. Colby College. Dept. of Mathematics. Waterville. ME 04901. 8 Raoul Bott and Jean-Pierre Serre Share the Wolf Prize Subscription and membership questions 10 Call For Papers should be directed to the MAA Customer Thirteenth Annual MAA Undergraduate Student Paper Sessions Service Center. -
Andrew Wiles and Fermat's Last Theorem
Andrew Wiles and Fermat's Last Theorem Ton Yeh A great figure in modern mathematics Sir Andrew Wiles is renowned throughout the world for having cracked the problem first posed by Fermat in 1637: the non-existence of positive integer solutions to an + bn = cn for n ≥ 3. Wiles' famous journey towards his proof { the surprising connection with elliptic curves, the apparent success, the discovery of an error, the despondency, and then the flash of inspiration which saved the day { is known to layman and professional mathematician alike. Therefore, the fact that Sir Andrew spent his undergraduate years at Merton College is a great honour for us. In this article we discuss simple number-theoretic ideas relating to Fermat's Last Theorem, which may be of interest to current or prospective students, or indeed to members of the public. Easier aspects of Fermat's Last Theorem It goes without saying that the non-expert will have a tough time getting to grips with Andrew Wiles' proof. What follows, therefore, is a sketch of much simpler and indeed more classical ideas related to Fermat's Last Theorem. As a regrettable consequence, things like algebraic topology, elliptic curves, modular functions and so on have to be omitted. As compensation, the student or keen amateur will gain accessible insight from this section; he will also appreciate the shortcomings of these classical approaches and be motivated to prepare himself for more advanced perspectives. Our aim is to determine what can be said about the solutions to an + bn = cn for positive integers a; b; c. -
Love and Math: the Heart of Hidden Reality
Book Review Love and Math: The Heart of Hidden Reality Reviewed by Anthony W. Knapp My dream is that all of us will be able to Love and Math: The Heart of Hidden Reality see, appreciate, and marvel at the magic Edward Frenkel beauty and exquisite harmony of these Basic Books, 2013 ideas, formulas, and equations, for this will 292 pages, US$27.99 give so much more meaning to our love for ISBN-13: 978-0-465-05074-1 this world and for each other. Edward Frenkel is professor of mathematics at Frenkel’s Personal Story Berkeley, the 2012 AMS Colloquium Lecturer, and Frenkel is a skilled storyteller, and his account a 1989 émigré from the former Soviet Union. of his own experience in the Soviet Union, where He is also the protagonist Edik in the splendid he was labeled as of “Jewish nationality” and November 1999 Notices article by Mark Saul entitled consequently made to suffer, is gripping. It keeps “Kerosinka: An Episode in the History of Soviet one’s attention and it keeps one wanting to read Mathematics.” Frenkel’s book intends to teach more. After his failed experience trying to be appreciation of portions of mathematics to a admitted to Moscow State University, he went to general audience, and the unifying theme of his Kerosinka. There he read extensively, learned from topics is his own mathematical education. first-rate teachers, did mathematics research at a Except for the last of the 18 chapters, a more high level, and managed to get some of his work accurate title for the book would be “Love of Math.” smuggled outside the Soviet Union. -
Public Recognition and Media Coverage of Mathematical Achievements
Journal of Humanistic Mathematics Volume 9 | Issue 2 July 2019 Public Recognition and Media Coverage of Mathematical Achievements Juan Matías Sepulcre University of Alicante Follow this and additional works at: https://scholarship.claremont.edu/jhm Part of the Arts and Humanities Commons, and the Mathematics Commons Recommended Citation Sepulcre, J. "Public Recognition and Media Coverage of Mathematical Achievements," Journal of Humanistic Mathematics, Volume 9 Issue 2 (July 2019), pages 93-129. DOI: 10.5642/ jhummath.201902.08 . Available at: https://scholarship.claremont.edu/jhm/vol9/iss2/8 ©2019 by the authors. This work is licensed under a Creative Commons License. JHM is an open access bi-annual journal sponsored by the Claremont Center for the Mathematical Sciences and published by the Claremont Colleges Library | ISSN 2159-8118 | http://scholarship.claremont.edu/jhm/ The editorial staff of JHM works hard to make sure the scholarship disseminated in JHM is accurate and upholds professional ethical guidelines. However the views and opinions expressed in each published manuscript belong exclusively to the individual contributor(s). The publisher and the editors do not endorse or accept responsibility for them. See https://scholarship.claremont.edu/jhm/policies.html for more information. Public Recognition and Media Coverage of Mathematical Achievements Juan Matías Sepulcre Department of Mathematics, University of Alicante, Alicante, SPAIN [email protected] Synopsis This report aims to convince readers that there are clear indications that society is increasingly taking a greater interest in science and particularly in mathemat- ics, and thus society in general has come to recognise, through different awards, privileges, and distinctions, the work of many mathematicians.