Kakeya-Type Sets, Lacunarity, and Directional Maximal Operators in Euclidean Space
Kakeya-type Sets, Lacunarity, and Directional Maximal Operators in Euclidean Space by Edward Kroc A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in The Faculty of Graduate and Postdoctoral Studies (Mathematics) The University of British Columbia (Vancouver) April 2015 ⃝c Edward Kroc, 2015 Abstract Given a Cantor-type subset Ω of a smooth curve in Rd+1, we construct random examples of Euclidean sets that contain unit line segments with directions from Ω and enjoy analytical features similar to those of traditional Kakeya sets of infinitesimal Lebesgue measure. We also develop a notion of finite order lacunarity for direction sets in Rd+1, and use it to extend our construction to direction sets Ω that are sublacunary according to this definition. This generalizes to higher dimensions a pair of planar results due to Bateman and Katz [4], [3]. In particular, the existence of such sets implies that the directional maximal operator associated with the direction set Ω is unbounded on Lp(Rd+1) for all 1 ≤ p < 1. ii Preface Much of the proceeding document is adapted from two research papers authored by myself and Malabika Pramanik, currently unpublished. These materials are used with permission. Chapters 6 through 11 form the main content of [31], Kakeya-type sets over Cantor sets of directions in Rd+1, while Chapters 2, 3.7, and 12 through 19 are adapted from [32], Lacunarity, Kakeya-type sets and directional maximal op- erators. The first of these two manuscripts has recently been conditionally accepted for publication in the Journal of Fourier Analysis and Applications.
[Show full text]