Calibrating Generative Models: The Probabilistic Chomsky-Schutzenberger¨ Hierarchy∗ Thomas F. Icard Stanford University
[email protected] December 14, 2019 1 Introduction and Motivation Probabilistic computation enjoys a central place in psychological modeling and theory, ranging in application from perception (Knill and Pouget, 2004; Orban´ et al., 2016), at- tention (Vul et al., 2009), and decision making (Busemeyer and Diederich, 2002; Wilson et al., 2014) to the analysis of memory (Ratcliff, 1978; Abbott et al., 2015), categorization (Nosofsky and Palmeri, 1997; Sanborn et al., 2010), causal inference (Denison et al., 2013), and various aspects of language processing (Chater and Manning, 2006). Indeed, much of cognition and behavior is usefully modeled as stochastic, whether this is ultimately due to indeterminacy at the neural level or at some higher level (see, e.g., Glimcher 2005). Ran- dom behavior may even enhance an agent’s cognitive efficiency (see, e.g., Icard 2019). A probabilistic process can be described in two ways. On one hand we can specify a stochastic procedure, which may only implicitly define a distribution on possible out- puts of the process. Familiar examples include well known classes of generative mod- els such as finite Markov processes and probabilistic automata (Miller, 1952; Paz, 1971), Boltzmann machines (Hinton and Sejnowski, 1983), Bayesian networks (Pearl, 1988), topic models (Griffiths et al., 2007), and probabilistic programming languages (Tenenbaum et al., 2011; Goodman and Tenenbaum, 2016). On the other hand we can specify an analytical ex- pression explicitly describing the distribution over outputs. Both styles of description are commonly employed, and it is natural to ask about the relationship between them.