Digital Security in Context
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mesačný Prehľad Kritických Zraniteľností Máj 2018
Mesačný prehľad kritických zraniteľností Mesačný prehľad kritických zraniteľností Máj 2018 1. Operačné systémy Microsoft Windows V máji spoločnosť Microsoft opravila 4 kritické zraniteľnosti operačného systému Microsoft Windows. Zraniteľnosti CVE-2018-0959 a CVE-2018-0961 môžu spôsobiť vykonanie škodlivého kódu na diaľku. Prvá z nich je spôsobená nesprávnym overovaním vstupu Windows Hyper-V na serveri od autentifikovaného používateľa na hostiteľskom operačnom systéme. Druhá sa týka overovania paketových dát v SMB protokole systému Windows Hyper-V. Na zneužitie týchto zraniteľností musí útočník spustiť špeciálne vytvorenú aplikáciu, ktorá umožní zneužitie týchto zraniteľností. Úspešný útočník následne môže vykonať ľubovoľný kód pomocou Windows Hyper-V. Našli sa aj zraniteľnosti CVE-2018-8120 a CVE-2018-8174 taktiež umožňujúce vzdialené vykonávanie kódu či zvýšenie privilégií, ktoré sú bližšie popísané aj v našom varovaní. Zraniteľné systémy: Windows 10 for 32-bit Systems Windows 10 for x64-based Systems Windows 10 Version 1511 for 32-bit Systems Windows 10 Version 1511 for x64-based Systems Windows 10 Version 1607 for 32-bit Systems Windows 10 Version 1607 for x64-based Systems. Windows 10 Version 1703 for 32-bit Systems Windows 10 Version 1703 for x64-based Systems Windows 10 Version 1709 for 32-bit Systems Windows 10 Version 1709 for x64-based Systems Windows 10 Version 1803 for 32-bit Systems Windows 10 Version 1803 for x64-based Systems Windows 7 for 32-bit Systems Service Pack 1 Windows 7 for x64-based Systems Service Pack 1 Windows -
Crypto Projects That Might Not Suck
Crypto Projects that Might not Suck Steve Weis PrivateCore ! http://bit.ly/CryptoMightNotSuck #CryptoMightNotSuck Today’s Talk ! • Goal was to learn about new projects and who is working on them. ! • Projects marked with ☢ are experimental or are relatively new. ! • Tried to cite project owners or main contributors; sorry for omissions. ! Methodology • Unscientific survey of projects from Twitter and mailing lists ! • Excluded closed source projects & crypto currencies ! • Stats: • 1300 pageviews on submission form • 110 total nominations • 89 unique nominations • 32 mentioned today The People’s Choice • Open Whisper Systems: https://whispersystems.org/ • Moxie Marlinspike (@moxie) & open source community • Acquired by Twitter 2011 ! • TextSecure: Encrypt your texts and chat messages for Android • OTP-like forward security & Axolotl key racheting by @trevp__ • https://github.com/whispersystems/textsecure/ • RedPhone: Secure calling app for Android • ZRTP for key agreement, SRTP for call encryption • https://github.com/whispersystems/redphone/ Honorable Mention • ☢ Networking and Crypto Library (NaCl): http://nacl.cr.yp.to/ • Easy to use, high speed XSalsa20, Poly1305, Curve25519, etc • No dynamic memory allocation or data-dependent branches • DJ Bernstein (@hashbreaker), Tanja Lange (@hyperelliptic), Peter Schwabe (@cryptojedi) ! • ☢ libsodium: https://github.com/jedisct1/libsodium • Portable, cross-compatible NaCL • OpenDNS & Frank Denis (@jedisct1) The Old Standbys • Gnu Privacy Guard (GPG): https://www.gnupg.org/ • OpenSSH: http://www.openssh.com/ -
Encryption and Anonymity Follow-Up Report
PALAIS DES NATIONS • 1211 GENEVA 10, SWITZERLAND www.ohchr.org • TEL: +41 22 917 9000 • FAX: +41 22 917 9008 • E-MAIL: [email protected] Mandate of the Special Rapporteur on the promotion and protection of the right to freedom of opinion and expression Research Paper 1/2018 June 2018 Encryption and Anonymity follow-up report Contents I. INTRODUCTION ............................................................................................................................... 2 II. TRENDS IN STATE RESTRICTIONS ON ENCRYPTION AND ANONYMITY .............................. 3 A. An Overview of State Obligations ........................................................................................................... 3 B. State practice: examples and concerns ..................................................................................................... 4 (i) Bans on Use and Dissemination of Encryption Tools ......................................................................... 5 (ii) Licensing and Registration Requirements .......................................................................................... 5 (iii) Intentional Weakening of Encryption ................................................................................................ 5 (iv) Government Hacking ......................................................................................................................... 7 (v) Mandatory Data Localization and Key Escrows ................................................................................. 8 (vi) -
Security Analysis of the Signal Protocol Student: Bc
ASSIGNMENT OF MASTER’S THESIS Title: Security Analysis of the Signal Protocol Student: Bc. Jan Rubín Supervisor: Ing. Josef Kokeš Study Programme: Informatics Study Branch: Computer Security Department: Department of Computer Systems Validity: Until the end of summer semester 2018/19 Instructions 1) Research the current instant messaging protocols, describe their properties, with a particular focus on security. 2) Describe the Signal protocol in detail, its usage, structure, and functionality. 3) Select parts of the protocol with a potential for security vulnerabilities. 4) Analyze these parts, particularly the adherence of their code to their documentation. 5) Discuss your findings. Formulate recommendations for the users. References Will be provided by the supervisor. prof. Ing. Róbert Lórencz, CSc. doc. RNDr. Ing. Marcel Jiřina, Ph.D. Head of Department Dean Prague January 27, 2018 Czech Technical University in Prague Faculty of Information Technology Department of Computer Systems Master’s thesis Security Analysis of the Signal Protocol Bc. Jan Rub´ın Supervisor: Ing. Josef Kokeˇs 1st May 2018 Acknowledgements First and foremost, I would like to express my sincere gratitude to my thesis supervisor, Ing. Josef Kokeˇs,for his guidance, engagement, extensive know- ledge, and willingness to meet at our countless consultations. I would also like to thank my brother, Tom´aˇsRub´ın,for proofreading my thesis. I cannot express enough gratitude towards my parents, Lenka and Jaroslav Rub´ınovi, who supported me both morally and financially through my whole studies. Last but not least, this thesis would not be possible without Anna who re- lentlessly supported me when I needed it most. Declaration I hereby declare that the presented thesis is my own work and that I have cited all sources of information in accordance with the Guideline for adhering to ethical principles when elaborating an academic final thesis. -
Is Bob Sending Mixed Signals?
Is Bob Sending Mixed Signals? Michael Schliep Ian Kariniemi Nicholas Hopper University of Minnesota University of Minnesota University of Minnesota [email protected] [email protected] [email protected] ABSTRACT Demand for end-to-end secure messaging has been growing rapidly and companies have responded by releasing applications that imple- ment end-to-end secure messaging protocols. Signal and protocols based on Signal dominate the secure messaging applications. In this work we analyze conversational security properties provided by the Signal Android application against a variety of real world ad- versaries. We identify vulnerabilities that allow the Signal server to learn the contents of attachments, undetectably re-order and drop messages, and add and drop participants from group conversations. We then perform proof-of-concept attacks against the application to demonstrate the practicality of these vulnerabilities, and suggest mitigations that can detect our attacks. The main conclusion of our work is that we need to consider more than confidentiality and integrity of messages when designing future protocols. We also stress that protocols must protect against compromised servers and at a minimum implement a trust but verify model. 1 INTRODUCTION (a) Alice’s view of the conversa-(b) Bob’s view of the conversa- Recently many software developers and companies have been inte- tion. tion. grating end-to-end encrypted messaging protocols into their chat applications. Some applications implement a proprietary protocol, Figure 1: Speaker inconsistency in a conversation. such as Apple iMessage [1]; others, such as Cryptocat [7], imple- ment XMPP OMEMO [17]; but most implement the Signal protocol or a protocol based on Signal, including Open Whisper Systems’ caching. -
PGP) and GNU Privacy Guard (GPG): Just Enough Training to Make You Dangerous
Pre$y Good Privacy (PGP) And GNU Privacy Guard (GPG): Just Enough Training to Make You Dangerous Joe St Sauver, Ph.D. M3AAWG Senior Technical Advisor Scien<st Farsight Security, Inc. M3AAWG 36, San Francisco, California Monday, Feb 15th, 2016, 12:30-14:30 hLps://www.stsauver.com/joe/pgp-tutorial-sfo/ 0. IntroducDon Obligatory Screen: Eligibility For Strong EncrypDon • This is not legal advice (for that, please contact your aorney), however please note that some people are NOT ALLOWED to use strong encryp<on under prevailing laws. • By connuing with this training, you cerDfy that you are NOT: -- a ci<zen, naonal, or resident of a country barred from access to strong encryp<on by the U.S. or other countries, including but not limited to persons from the Crimea region of the Ukraine, Cuba, Iran, North Korea, Sudan, or Syria; -- nor are you a "Specially Designated Naonal" (see hp://www.treasury.gov/resource-center/sanc<ons/SDN-List/ Pages/default.aspx ), nor a person (or representave of a company) that is subject to any other US or other sanc<ons program or restric<on. • If you are subject to any such prohibi<on or restric<on, you must NOT par<cipate in today's encryp<on training. 3 Disclaimer • While all due care was used in preparing the content of this training, we cannot ensure that you will not inadvertently make a mistake, or encounter a vulnerability while using PGP/GPG. • Given that you cannot "unring the bell once it has been rung," and given that some poten<al "losses of confiden<ality" may have grave or even catastrophic consequences, please remember that: -- you should not use PGP/GPG for "life/safety-cri<cal" purposes -- today's training is provided on a "best efforts," as-is, where-is basis, with all evident and/or latent faults/flaws -- should you decide to use and rely on PGP/GPG, the decision to do so is your own and at your own risk; we disclaim all responsibility for any impacts associated with the use, misuse, or abuse of PGP/GPG by anyone here today or using this talk. -
Message-Layer Encryption in Ricochet
Message-Layer Encryption in Ricochet by Liam Kirsh Computer Science Department College of Engineering California Polytechnic State University 2017 Date submitted: 06/07/17 Advisor: Dr. Bruce DeBruhl Table of Contents Background.........................................................................................3 Project Goals.......................................................................................6 Stronger cryptography................................................................................................6 Support for relay nodes..............................................................................................6 Implementation...................................................................................7 Choice of cryptographic protocol...............................................................................7 GPGME cryptographic library...................................................................................8 Modifications to the Ricochet client........................................................................10 Future Improvements........................................................................10 Use of the Signal Protocol in Ricochet....................................................................10 Use of Off-the-Record Messaging in Ricochet........................................................11 Ephemerality in D-H................................................................................................11 Ricochet Relays........................................................................................................11 -
Efail: Breaking S/MIME and Openpgp Email Encryption Using Exfiltration Channels
Efail: Breaking S/MIME and OpenPGP Email Encryption using Exfiltration Channels Damian Poddebniak and Christian Dresen, Münster University of Applied Sciences; Jens Müller, Ruhr University Bochum; Fabian Ising and Sebastian Schinzel, Münster University of Applied Sciences; Simon Friedberger, NXP Semiconductors, Belgium; Juraj Somorovsky and Jörg Schwenk, Ruhr University Bochum https://www.usenix.org/conference/usenixsecurity18/presentation/poddebniak This paper is included in the Proceedings of the 27th USENIX Security Symposium. August 15–17, 2018 • Baltimore, MD, USA ISBN 978-1-931971-46-1 Open access to the Proceedings of the 27th USENIX Security Symposium is sponsored by USENIX. Efail: Breaking S/MIME and OpenPGP Email Encryption using Exfiltration Channels Damian Poddebniak1, Christian Dresen1, Jens Muller¨ 2, Fabian Ising1, Sebastian Schinzel1, Simon Friedberger3, Juraj Somorovsky2, and Jorg¨ Schwenk2 1Munster¨ University of Applied Sciences 2Ruhr University Bochum 3NXP Semiconductors, Belgium Abstract is designed to protect user data in such scenarios. With end-to-end encryption, the email infrastructure becomes OpenPGP and S/MIME are the two prime standards merely a transportation service for opaque email data and for providing end-to-end security for emails. We de- no compromise – aside from the endpoints of sender or scribe novel attacks built upon a technique we call mal- receiver – should affect the security of an end-to-end en- leability gadgets to reveal the plaintext of encrypted crypted email. emails. We use CBC/CFB gadgets to inject malicious plaintext snippets into encrypted emails. These snippets S/MIME and OpenPGP. The two most prominent stan- abuse existing and standard conforming backchannels to dards offering end-to-end encryption for email, S/MIME exfiltrate the full plaintext after decryption. -
Obstacles to the Adoption of Secure Communication Tools
Obstacles to the Adoption of Secure Communication Tools Ruba Abu-Salma M. Angela Sasse Joseph Bonneau University College London, UK University College London, UK Stanford University & EFF, USA Anastasia Danilova Alena Naiakshina Matthew Smith University of Bonn, Germany University of Bonn, Germany University of Bonn, Germany Abstract—The computer security community has advocated Recent mobile phone-based secure communication tools widespread adoption of secure communication tools to counter have often been designed to hide security from the user com- mass surveillance. Several popular personal communication tools pletely (albeit at some security cost [1]). WhatsApp famously (e.g., WhatsApp, iMessage) have adopted end-to-end encryption, and many new tools (e.g., Signal, Telegram) have been launched deployed E2E encryption to approximately a billion users with security as a key selling point. However it remains unclear through a code update to its application for messages, voice if users understand what protection these tools offer, and if they calls and video communications [18], with only negligible value that protection. In this study, we interviewed 60 partici- changes to the user experience. Some other communication pants about their experience with different communication tools tools (e.g., Signal, Threema) have launched with security and their perceptions of the tools’ security properties. We found that the adoption of secure communication tools is hindered by as an explicit selling point, but they also hide nearly all fragmented user bases and incompatible tools. Furthermore, the cryptographic details. vast majority of participants did not understand the essential There are key differences in the security model of dif- concept of end-to-end encryption, limiting their motivation to ferent E2E-encrypted tools, in addition to a large gap in adopt secure tools. -
Untraceable Links: Technology Tricks Used by Crooks to Cover Their Tracks
UNTRACEABLE LINKS: TECHNOLOGY TRICKS USED BY CROOKS TO COVER THEIR TRACKS New mobile apps, underground networks, and crypto-phones are appearing daily. More sophisticated technologies such as mesh networks allow mobile devices to use public Wi-Fi to communicate from one device to another without ever using the cellular network or the Internet. Anonymous and encrypted email services are under development to evade government surveillance. Learn how these new technology capabilities are making anonymous communication easier for fraudsters and helping them cover their tracks. You will learn how to: Define mesh networks. Explain the way underground networks can provide untraceable email. Identify encrypted email services and how they work. WALT MANNING, CFE President Investigations MD Green Cove Springs, FL Walt Manning is the president of Investigations MD, a consulting firm that conducts research related to future crimes while also helping investigators market and develop their businesses. He has 35 years of experience in the fields of criminal justice, investigations, digital forensics, and e-discovery. He retired with the rank of lieutenant after a 20-year career with the Dallas Police Department. Manning is a contributing author to the Fraud Examiners Manual, which is the official training manual of the ACFE, and has articles published in Fraud Magazine, Police Computer Review, The Police Chief, and Information Systems Security, which is a prestigious journal in the computer security field. “Association of Certified Fraud Examiners,” “Certified Fraud Examiner,” “CFE,” “ACFE,” and the ACFE Logo are trademarks owned by the Association of Certified Fraud Examiners, Inc. The contents of this paper may not be transmitted, re-published, modified, reproduced, distributed, copied, or sold without the prior consent of the author. -
Efail: Breaking S/MIME and Openpgp Email Encryption Using Exfiltration Channels
Efail: Breaking S/MIME and OpenPGP Email Encryption using Exfiltration Channels Damian Poddebniak and Christian Dresen, Münster University of Applied Sciences; Jens Müller, Ruhr University Bochum; Fabian Ising and Sebastian Schinzel, Münster University of Applied Sciences; Simon Friedberger, NXP Semiconductors, Belgium; Juraj Somorovsky and Jörg Schwenk, Ruhr University Bochum https://www.usenix.org/conference/usenixsecurity18/presentation/poddebniak This paper is included in the Proceedings of the 27th USENIX Security Symposium. August 15–17, 2018 • Baltimore, MD, USA ISBN 978-1-939133-04-5 Open access to the Proceedings of the 27th USENIX Security Symposium is sponsored by USENIX. Efail: Breaking S/MIME and OpenPGP Email Encryption using Exfiltration Channels Damian Poddebniak1, Christian Dresen1, Jens Muller¨ 2, Fabian Ising1, Sebastian Schinzel1, Simon Friedberger3, Juraj Somorovsky2, and Jorg¨ Schwenk2 1Munster¨ University of Applied Sciences 2Ruhr University Bochum 3NXP Semiconductors, Belgium Abstract is designed to protect user data in such scenarios. With end-to-end encryption, the email infrastructure becomes OpenPGP and S/MIME are the two prime standards merely a transportation service for opaque email data and for providing end-to-end security for emails. We de- no compromise – aside from the endpoints of sender or scribe novel attacks built upon a technique we call mal- receiver – should affect the security of an end-to-end en- leability gadgets to reveal the plaintext of encrypted crypted email. emails. We use CBC/CFB gadgets to inject malicious plaintext snippets into encrypted emails. These snippets S/MIME and OpenPGP. The two most prominent stan- abuse existing and standard conforming backchannels to dards offering end-to-end encryption for email, S/MIME exfiltrate the full plaintext after decryption. -
Best Php Webmail Software
Best php webmail software Get the answer to "What are the best self-hosted webmail clients? in your config/ file) if you need messages to appear instantly. Free and open source webmail software for the masses, written in PHP. Install it on your web servers for personal or commercial use, redistribute, integrate with other software, or alter the source code (provided that. These clients can work under many types of platforms such as PHP, ASP Here, we have compiled a collection of seven webmail. SquirrelMail is one of the best webmail clients written purely in PHP. It supports basic email protocols such as SMTP, IMAP, and others. Webmail's software's are scripts which run on your servers and give you browser based mail client interface like Gmail, Yahoo etc. There are. For this roundup we have compiled a list of Best Webmail Clients for both T-dah is a free PHP webmail application which is built from the. Hastymail2 is a full featured IMAP/SMTP client written in PHP. Our goal is to create a fast, secure, compliant web mail client that has great usability. Hastymail2 is much more lightweight than most popular web based mail applications but still. RainLoop Webmail - Simple, modern & fast web-based email client. Also known as “Horde IMP”, Horde Mail is a free and open source web-mail client written in PHP. Its development started in , so it's a. Check out these 10 amazing webmail clients worth considering and see how In today's article, we're going to highlight some of the best webmail clients It's free to use and can be installed on any server that supports PHP.