CHAPTER 2 Basic Principles of Linear Modulation Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Most Common Digital Modulation Techniques Are: Phase-Shift Keying
Common Digital Modulation Techniques and Pulse Modulation Methods The most common digital modulation techniques are: Phase-shift keying (PSK): o Binary PSK (BPSK), using M=2 symbols o Quadrature PSK (QPSK), using M=4 symbols o 8PSK, using M=8 symbols o 16PSK, using M=16 symbols o Differential PSK (DPSK) o Differential QPSK (DQPSK) o Offset QPSK (OQPSK) o π/4–QPSK Frequency-shift keying (FSK): o Audio frequency-shift keying (AFSK) o Multi-frequency shift keying (M-ary FSK or MFSK) o Dual-tone multi-frequency (DTMF) o Continuous-phase frequency-shift keying (CPFSK) Amplitude-shift keying (ASK) On-off keying (OOK), the most common ASK form o M-ary vestigial sideband modulation, for example 8VSB Quadrature amplitude modulation (QAM) - a combination of PSK and ASK: o Polar modulation like QAM a combination of PSK and ASK.[citation needed] Continuous phase modulation (CPM) methods: o Minimum-shift keying (MSK) o Gaussian minimum-shift keying (GMSK) Orthogonal frequency-division multiplexing (OFDM) modulation: o discrete multitone (DMT) - including adaptive modulation and bit-loading. Wavelet modulation Trellis coded modulation (TCM), also known as trellis modulation Spread-spectrum techniques: o Direct-sequence spread spectrum (DSSS) o Chirp spread spectrum (CSS) according to IEEE 802.15.4a CSS uses pseudo-stochastic coding o Frequency-hopping spread spectrum (FHSS) applies a special scheme for channel release MSK and GMSK are particular cases of continuous phase modulation. Indeed, MSK is a particular case of the sub-family of CPM known as continuous-phase frequency-shift keying (CPFSK) which is defined by a rectangular frequency pulse (i.e. -
Turbo Decoding As Iterative Constrained Maximum Likelihood Sequence Detection John Maclaren Walsh, Member, IEEE, Phillip A
1 Turbo Decoding as Iterative Constrained Maximum Likelihood Sequence Detection John MacLaren Walsh, Member, IEEE, Phillip A. Regalia, Fellow, IEEE, and C. Richard Johnson, Jr., Fellow, IEEE Abstract— The turbo decoder was not originally introduced codes have good distance properties, which would be relevant as a solution to an optimization problem, which has impeded for maximum likelihood decoding, researchers have not yet attempts to explain its excellent performance. Here it is shown, succeeded in developing a proper connection between the sub- nonetheless, that the turbo decoder is an iterative method seeking a solution to an intuitively pleasing constrained optimization optimal turbo decoder and maximum likelihood decoding. This problem. In particular, the turbo decoder seeks the maximum is exacerbated by the fact that the turbo decoder, unlike most of likelihood sequence under the false assumption that the input the designs in modern communications systems engineering, to the encoders are chosen independently of each other in the was not originally introduced as a solution to an optimization parallel case, or that the output of the outer encoder is chosen problem. This has made explaining just why the turbo decoder independently of the input to the inner encoder in the serial case. To control the error introduced by the false assumption, the opti- performs as well as it does very difficult. Together with the mizations are performed subject to a constraint on the probability lack of formulation as a solution to an optimization problem, that the independent messages happen to coincide. When the the turbo decoder is an iterative algorithm, which makes the constraining probability equals one, the global maximum of determining its convergence and stability behavior important. -
A Comparative Study of Time Delay Estimation Techniques for Road Vehicle Tracking Patrick Marmaroli, Xavier Falourd, Hervé Lissek
A comparative study of time delay estimation techniques for road vehicle tracking Patrick Marmaroli, Xavier Falourd, Hervé Lissek To cite this version: Patrick Marmaroli, Xavier Falourd, Hervé Lissek. A comparative study of time delay estimation techniques for road vehicle tracking. Acoustics 2012, Apr 2012, Nantes, France. hal-00810981 HAL Id: hal-00810981 https://hal.archives-ouvertes.fr/hal-00810981 Submitted on 23 Apr 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Proceedings of the Acoustics 2012 Nantes Conference 23-27 April 2012, Nantes, France A comparative study of time delay estimation techniques for road vehicle tracking P. Marmaroli, X. Falourd and H. Lissek Ecole Polytechnique F´ed´erale de Lausanne, EPFL STI IEL LEMA, 1015 Lausanne, Switzerland patrick.marmaroli@epfl.ch 4135 23-27 April 2012, Nantes, France Proceedings of the Acoustics 2012 Nantes Conference This paper addresses road traffic monitoring using passive acoustic sensors. Recently, the feasibility of the joint speed and wheelbase length estimation of a road vehicle using particle filtering has been demonstrated. In essence, the direction of arrival of propagated tyre/road noises are estimated using a time delay estimation (TDE) technique between pairs of microphones placed near the road. -
Software Defined Acoustic Underwater Modem
Software Defined Acoustic Underwater Modem Jakob Lindgren April 13, 2011 Abstract Today many types of communication are employed on seagoing vessels, such as radio, satellite and Wi-Fi but only one type of communication is practical for submerged vessels, the acoustic underwater modem. The ”off-the-shelf” modems are sometimes difficult to update and replace, especially on a large submarine. But by separating the hardware from the signal processing and making the software modular more versatility can be achieved. The questions that this thesis are asking are: is it possible to implement the signal processing in software? How small or large should the modules be? What kind of architecture should be used? This thesis shows that it is indeed possible to implement simple algorithms that can isolate a signal and read its content regardless of the hardware configuration. Calculations show that up to 13 kbps can be reached at a range of one kilometer. It is most practical to make the entire physical layer into one module and the size of the system could drastically change the type of architecture used. 1 Preface This Master's thesis from Jakob Lindgren is the final project for receiving the Master's degree in Robotics at M¨alardalenUniversity in V¨aster˚as,Sweden. It covers the basics of digital communication in the underwater channel as well as some simple algorithms for software defined communication. The purpose of this master thesis is to investigate how a software defined acoustic underwater communication can be implemented. This work was done at Saab Underwater Systems in Motala, Sweden, during the autumn term of 2010. -
Etsi En 302 878-2 V1.1.1 (2011-11)
ETSI EN 302 878-2 V1.1.1 (2011-11) European Standard Access, Terminals, Transmission and Multiplexing (ATTM); Third Generation Transmission Systems for Interactive Cable Television Services - IP Cable Modems; Part 2: Physical Layer; DOCSIS 3.0 2 ETSI EN 302 878-2 V1.1.1 (2011-11) Reference DEN/ATTM-003006-2 Keywords access, broadband, cable, data, IP, IPCable, modem ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification No part may be reproduced except as authorized by written permission. -
Optimization Basic Results
Optimization Basic Results Michel De Lara Cermics, Ecole´ des Ponts ParisTech France Ecole´ des Ponts ParisTech November 22, 2020 Outline of the presentation Magic formulas Convex functions, coercivity Existence and uniqueness of a minimum First-order optimality conditions (the case of equality constraints) Duality gap and saddle-points Elements of Lagrangian duality and Uzawa algorithm More on convexity and duality Outline of the presentation Magic formulas Convex functions, coercivity Existence and uniqueness of a minimum First-order optimality conditions (the case of equality constraints) Duality gap and saddle-points Elements of Lagrangian duality and Uzawa algorithm More on convexity and duality inf h(a; b) = inf inf h(a; b) a2A;b2B a2A b2B inf λf (a) = λ inf f (a) ; 8λ ≥ 0 a2A a2A inf f (a) + g(b) = inf f (a) + inf g(b) a2A;b2B a2A b2B Tower formula For any function h : A × B ! [−∞; +1] we have inf h(a; b) = inf inf h(a; b) a2A;b2B a2A b2B and if B(a) ⊂ B, 8a 2 A, we have inf h(a; b) = inf inf h(a; b) a2A;b2B(a) a2A b2B(a) Independence For any functions f : A !] − 1; +1] ; g : B !] − 1; +1] we have inf f (a) + g(b) = inf f (a) + inf g(b) a2A;b2B a2A b2B and for any finite set S, any functions fs : As !] − 1; +1] and any nonnegative scalars πs ≥ 0, for s 2 S, we have X X inf π f (a )= π inf f (a ) Q s s s s s s fas gs2 2 s2 As as 2As S S s2S s2S Outline of the presentation Magic formulas Convex functions, coercivity Existence and uniqueness of a minimum First-order optimality conditions (the case of equality constraints) Duality gap and saddle-points Elements of Lagrangian duality and Uzawa algorithm More on convexity and duality Convex sets Let N 2 N∗. -
Comparison of Risk Measures
Geometry Of The Expected Value Set And The Set-Valued Sample Mean Process Alois Pichler∗ May 13, 2018 Abstract The law of large numbers extends to random sets by employing Minkowski addition. Above that, a central limit theorem is available for set-valued random variables. The existing results use abstract isometries to describe convergence of the sample mean process towards the limit, the expected value set. These statements do not reveal the local geometry and the relations of the sample mean and the expected value set, so these descriptions are not entirely satisfactory in understanding the limiting behavior of the sample mean process. This paper addresses and describes the fluctuations of the sample average mean on the boundary of the expectation set. Keywords: Random sets, set-valued integration, stochastic optimization, set-valued risk measures Classification: 90C15, 26E25, 49J53, 28B20 1 Introduction Artstein and Vitale [4] obtain an initial law of large numbers for random sets. Given this result and the similarities of Minkowski addition of sets with addition and multiplication for scalars it is natural to ask for a central limit theorem for random sets. After some pioneering work by Cressie [11], Weil [28] succeeds in establishing a reasonable result describing the distribution of the Pompeiu–Hausdorff distance between the sample average and the expected value set. The result is based on an isometry between compact sets and their support functions, which are continuous on some appropriate and adapted sphere (cf. also Norkin and Wets [20] and Li et al. [17]; cf. Kuelbs [16] for general difficulties). However, arXiv:1708.05735v1 [math.PR] 18 Aug 2017 the Pompeiu–Hausdorff distance of random sets is just an R-valued random variable and its d distribution is on the real line. -
Direct Optimization Through $\Arg \Max$ for Discrete Variational Auto
Direct Optimization through arg max for Discrete Variational Auto-Encoder Guy Lorberbom Andreea Gane Tommi Jaakkola Tamir Hazan Technion MIT MIT Technion Abstract Reparameterization of variational auto-encoders with continuous random variables is an effective method for reducing the variance of their gradient estimates. In the discrete case, one can perform reparametrization using the Gumbel-Max trick, but the resulting objective relies on an arg max operation and is non-differentiable. In contrast to previous works which resort to softmax-based relaxations, we propose to optimize it directly by applying the direct loss minimization approach. Our proposal extends naturally to structured discrete latent variable models when evaluating the arg max operation is tractable. We demonstrate empirically the effectiveness of the direct loss minimization technique in variational autoencoders with both unstructured and structured discrete latent variables. 1 Introduction Models with discrete latent variables drive extensive research in machine learning applications, including language classification and generation [42, 11, 34], molecular synthesis [19], or game solving [25]. Compared to their continuous counterparts, discrete latent variable models can decrease the computational complexity of inference calculations, for instance, by discarding alternatives in hard attention models [21], they can improve interpretability by illustrating which terms contributed to the solution [27, 42], and they can facilitate the encoding of inductive biases in the learning process, such as images consisting of a small number of objects [8] or tasks requiring intermediate alignments [25]. Finally, in some cases, discrete latent variables are natural choices, for instance when modeling datasets with discrete classes [32, 12, 23]. Performing maximum likelihood estimation of latent variable models is challenging due to the requirement to marginalize over the latent variables. -
Extreme-Value Theorems for Optimal Multidimensional Pricing
Extreme-Value Theorems for Optimal Multidimensional Pricing Yang Cai∗ Constantinos Daskalakisy Computer Science, McGill University EECS, MIT [email protected] [email protected] October 28, 2014 Abstract We provide a near-optimal, computationally efficient algorithm for the unit-demand pricing problem, where a seller wants to price n items to optimize revenue against a unit-demand buyer whose values for the items are independently drawn from known distributions. For any chosen accuracy > 0 and item values bounded in [0; 1], our algorithm achieves revenue that is optimal up to an additive error of at most , in polynomial time. For values sampled from Monotone Hazard Rate (MHR) distributions, we achieve a (1 − )-fraction of the optimal revenue in poly- nomial time, while for values sampled from regular distributions the same revenue guarantees are achieved in quasi-polynomial time. Our algorithm for bounded distributions applies probabilistic techniques to understand the statistical properties of revenue distributions, obtaining a reduction in the search space of the algorithm through dynamic programming. Adapting this approach to MHR and regular distri- butions requires the proof of novel extreme value theorems for such distributions. As a byproduct, our techniques establish structural properties of approximately-optimal and near-optimal solutions. We show that, when the buyer's values are independently distributed according to MHR distributions, pricing all items at the same price achieves a constant fraction of the optimal revenue. Moreover, for all > 0, at most g(1/) distinct prices suffice to obtain a (1 − )-fraction of the optimal revenue, where g(1/) is a quadratic function of 1/ that does not depend on the number of items. -
Download Article
IJIRST –International Journal for Innovative Research in Science & Technology| Volume 1 | Issue 8 | January 2015 ISSN (online): 2349-6010 High Speed Low Power Veterbi Decoder For TCM Decoders Using Xilinx T.Mahesh Kumar P.Vijai Bhaskar M.Tech (VLSI) Head of the Department Department of Electronics & Communication Engineering, Department of Electronics & Communication Engineering, JNTUH JNTUH AVN Institute of Engineering & Technology Telangana, India AVN Institute of Engineering & Technology Telangana, India Abstract It is well known that the Viterbi decoder (VD) is the dominant module determining the overall power consumption of TCM decoders. High-speed, low-power design of Viterbi decoders for trellis coded modulation (TCM) systems is presented in this paper. We propose a pre-computation architecture incorporated with -algorithm for VD, which can effectively reduce the power consumption without degrading the decoding speed much. A general solution to derive the optimal pre-computation steps is also given in the paper. Implementation result of a VD for a rate-3/4 convolutional code used in a TCM system shows that compared with the full trellis VD, the precomputation architecture reduces the power consumption by as much as 70% without performance loss, while the degradation in clock speed is negligible. Keywords: Viterbi Decoder, VLSI, Trellis Coded Modulation (TCM). _______________________________________________________________________________________________________ I. INTRODUCTION In telecommunication, trellis modulation (also known as trellis coded modulation, or simply TCM) is a modulation scheme which allows highly efficient transmission of information over band-limited channels such as telephone lines. Trellis modulation was invented by Gottfried Ungerboeck working for IBM in the 1970s, and first described in a conference paper in 1976; but it went largely unnoticed until he published a new detailed exposition in 1982 which achieved sudden widespread recognition. -
Cesifo Working Paper No. 5428 Category 12: Empirical and Theoretical Methods June 2015
A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Aquaro, Michele; Bailey, Natalia; Pesaran, M. Hashem Working Paper Quasi Maximum Likelihood Estimation of Spatial Models with Heterogeneous Coefficients CESifo Working Paper, No. 5428 Provided in Cooperation with: Ifo Institute – Leibniz Institute for Economic Research at the University of Munich Suggested Citation: Aquaro, Michele; Bailey, Natalia; Pesaran, M. Hashem (2015) : Quasi Maximum Likelihood Estimation of Spatial Models with Heterogeneous Coefficients, CESifo Working Paper, No. 5428, Center for Economic Studies and ifo Institute (CESifo), Munich This Version is available at: http://hdl.handle.net/10419/113752 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu Quasi Maximum Likelihood Estimation of Spatial Models with Heterogeneous Coefficients Michele Aquaro Natalia Bailey M. -
DOCSIS 3.0 Physical Layer Specification
Data-Over-Cable Service Interface Specifications DOCSIS® 3.0 Physical Layer Specification CM-SP-PHYv3.0-C01-171207 CLOSED Notice This DOCSIS specification is the result of a cooperative effort undertaken at the direction of Cable Television Laboratories, Inc. for the benefit of the cable industry and its customers. You may download, copy, distribute, and reference the documents herein only for the purpose of developing products or services in accordance with such documents, and educational use. Except as granted by CableLabs® in a separate written license agreement, no license is granted to modify the documents herein (except via the Engineering Change process), or to use, copy, modify or distribute the documents for any other purpose. This document may contain references to other documents not owned or controlled by CableLabs. Use and understanding of this document may require access to such other documents. Designing, manufacturing, distributing, using, selling, or servicing products, or providing services, based on this document may require intellectual property licenses from third parties for technology referenced in this document. To the extent this document contains or refers to documents of third parties, you agree to abide by the terms of any licenses associated with such third-party documents, including open source licenses, if any. © Cable Television Laboratories, Inc., 2006 - 2017 CM-SP-PHYv3.0-C01-171207 Data-Over-Cable Service Interface Specifications DISCLAIMER This document is furnished on an "AS IS" basis and neither CableLabs nor its members provides any representation or warranty, express or implied, regarding the accuracy, completeness, noninfringement, or fitness for a particular purpose of this document, or any document referenced herein.