Spinal Cord Compression and Myelopathies 1 3

Total Page:16

File Type:pdf, Size:1020Kb

Spinal Cord Compression and Myelopathies 1 3 Spinal Cord Compression and Myelopathies 1 3 William F. Schmalstieg and Brian G. Weinshenker Abstract Patients with signs and symptoms of acute myelopathy require urgent neurologic evaluation focused upon the identifi cation and management of treatable disorders. MRI of the spine is the imaging modality of choice to evaluate for a compressive lesion. When cord compression is present, sur- gical treatment is usually indicated. When compression is not detected, an analysis of precise lesion localization, nonneurological clinical features, MRI fi ndings, and serologic studies narrow the differential diagnosis. The key diagnostic considerations include demyelinating, vascular, infl amma- tory, infectious, and paraneoplastic disorders. Empiric high-dose corticos- teroid treatment is often indicated in noncompressive myelopathy; additional investigations are important to identify patients with relapsing or progressive disorders who may benefi t from preventive therapies. Patients whose symptoms continue to progress after initial immunosup- pressive treatment may benefi t from plasmapheresis and occasionally from biopsy for defi nitive diagnosis. Keywords CNS • Demyelinating autoimmune disease • Magnetic resonance imaging • Myelitis • Spinal cord compression • Spinal cord diseases • Transverse Acute myelopathies are potentially devastating etiologies of acute myelopathy are treatable, conditions that may result in irreversible loss of and rapid diagnosis and institution of appropri- mobility and control of bodily functions. Many ate treatment can prevent or reduce the extent of permanent damage to the spinal cord. Delays in the diagnosis and treatment of acute cord syn- W. F. Schmalstieg , MD (*) dromes are frequent and may contribute to loss Neurology , Mayo Clinic , of neurologic function [ 1 ] . Furthermore, some Rochester , MN , USA e-mail: [email protected] infl ammatory conditions that cause myelopathy may stabilize or remit but later relapse; patients B. G. Weinshenker , MD, FRCP(C) Neurology , Mayo Clinic , Rochester , MN , USA with such conditions may benefi t from mainte- e-mail: [email protected] nance prophylactic therapies, and therefore, K.L. Roos (ed.), Emergency Neurology, DOI 10.1007/978-0-387-88585-8_13, 235 © Springer Science+Business Media, LLC 2012 236 W.F. Schmalstieg and B.G. Weinshenker Fig. 13.1 Approach to diagnosis and management of acute and subacute myelopathies ( NMO neuromyelitis optica; LETM longitudinally extensive transverse myelitis; MS multiple sclerosis) consideration of the risk of relapse is important subacute spinal cord disorders and includes a even when spontaneous or treatment-induced diagnostic algorithm to distinguish compressive remission occurs. and noncompressive myelopathies and also to This chapter considers the clinical presenta- distinguish among the various noncompressive tion, evaluation, and management of acute and etiologies (Fig. 13.1 ). The key elements are high 13 Spinal Cord Compression and Myelopathies 237 index of suspicion and confi rmation, primarily infl ammation then leads to localized demyelina- with neuroimaging, but occasionally supported tion and frank ischemia of the cord [ 2 ] . by other laboratory studies. This chapter con- Vascular occlusions or other vascular anoma- cludes with treatment recommendations. lies can cause acute cord injury. The portion of the cord supplied by the anterior spinal artery is particularly vulnerable. Restricted fl ow of the Pathophysiology feeding vessels to this artery may produce water- shed ischemia, particularly at the terminal regions A review of spinal anatomy informs a discussion supplied by the dominant radicular artery of of the pathophysiology and clinical presentation Adamkiewicz as may occur during surgical cross- of acute disorders of the cord. The spinal cord clamping of the aorta. Other potential causes of extends between the medulla and the conus med- anterior spinal artery obstruction include aortic ullaris, the terminus of which ends opposite the dissection, atherosclerosis, cardiac embolism, L1 vertebral body. Much of the substance of the hypercoagulable states, and fi brocartilaginous cord is composed of large myelinated tracts, the embolism from intervertebral disk fragments. most clinically relevant of which include: Another uncommon but important vascular 1. Lateral corticospinal tracts carrying ipsilateral anomaly associated with myelopathy is the dural motor fi bers arteriovenous fi stula. In this condition, an abnor- 2. Spinothalamic tracts carrying contralateral mal connection of a dural artery to a vein results pain and temperature sensation in venous hypertension, resulting in damage to 3. Dorsal columns carrying ipsilateral joint posi- the cord and leading to the telltale distension of tion and vibratory sensation the epidural venous plexus that is an important The arterial vascular supply of the spinal cord radiologic sign of this entity. includes a single anterior spinal artery and two As elaborated in the section on differential posterior spinal arteries, which originate from the diagnosis, a wide variety of demyelinating, vertebral arteries. The anterior spinal artery is infl ammatory, and infectious conditions can pro- also supplied by multiple segmental arteries aris- duce intrinsic damage to the substance of the spi- ing from the thoracic and abdominal aorta. The nal cord. A detailed description of the underlying anterior spinal artery supplies the lateral corti- pathophysiology of each of these conditions is cospinal and spinothalamic tracts, whereas the beyond the scope of this text, and in many of dorsal columns are supplied by the posterior spi- these conditions the pathogenesis is poorly nal arteries. The venous drainage of the cord is understood. through the epidural venous plexus. One recent noteworthy discovery is that the The cord is surrounded by the meninges (pia, NMO-IgG antibody, a clinically validated bio- arachnoid, and dura mater), which are in turn marker of neuromyelitis optica (NMO), may be encircled by the vertebrae. The vertebral bodies responsible for an important portion of what had are anterior to the cord, the pedicles lateral, and been previously regarded as “idiopathic trans- the laminae and spinous processes posterior. verse myelitis.” NMO is an infl ammatory demy- In compressive lesions, such as epidural elinating disease characterized by recurrent, abscess or metastatic disease, obstruction of the severe attacks of optic neuritis and longitudinally epidural venous plexus initiates spinal cord extensive transverse myelitis [3 ] . The target of the injury. Impairment of venous drainage causes NMO-IgG antibody is the aquaporin-4 (AQP4) vasogenic edema, which is in turn followed by an water channel, which is highly expressed at the infl ammatory cascade mediated, in part, by pros- astrocytic end feet of the blood–brain barrier. taglandins and other infl ammatory cytokines. Current evidence suggests that this antibody is Simultaneously, the combination of external pathogenic and not merely a marker of autoim- mechanical compression and internal swelling of munity or disease severity. Brain MRI lesions in the cord disrupts axonal conduction. Subsequent patients with NMO occur in regions known to 238 W.F. Schmalstieg and B.G. Weinshenker express high levels of AQP4 [ 4 ] . Additionally, Table 13.1 (continued) transfer of pooled IgG antibodies from NMO-IgG Infectious-bacterial positive patients to rats reproduces lesions similar – Mycoplasma to those seen in human NMO [5, 6 ] . Antibody- – Chlamydia – Syphilis and complement-mediated cytotoxicity to astro- – Tuberculosis cytes occurs in vitro in the presence of AQP4 – Lyme disease (rare) autoantibodies and active complement and may Infectious-parasitic account for the tissue damage seen in pathologic – Schistosomiasis samples from patients with NMO [ 7 ] . Additional – Strongylosis mechanisms that may contribute to injury caused Infl ammatory – Sjögren syndrome by AQP4 specifi c autoantibodies include disrup- – Systemic lupus erythematosus tion of potassium and glutamate homeostasis due – Wegener granulomatosis to the physical association of AQP4 with an – Behçet disease inward rectifying potassium channel and the Sarcoidosis excitatory amino acid transporter EAAT2. Toxic/metabolic – Nitrous oxide toxicity – Copper defi ciency – Vitamin B12 defi ciency (rare) Differential Diagnosis Iatrogenic – Radiation myelitis The differential diagnosis of acute myelopathy is – Postvaccination myelitis – Intrathecal chemotherapy extensive, including structural, vascular, demy- Neoplasia elinating, infectious, infl ammatory, neoplastic, – Intradural, extramedullary tumors (meningioma, and paraneoplastic conditions (Table 13.1 ). neurofi broma) – Intramedullary tumors (astrocytoma, ependymoma) Table 13.1 Etiologies of acute and subacute myelopathies – Lymphomatoid granulomatosis – Intravascular lymphoma External compression Paraneoplastic myelitis – Metastatic spinal cord compression – Epidural abscess – Spinal stenosis – Disk herniation – Spinal fracture Structural – Extramedullary hematopoiesis – Epidural lipomatosis External compression of the spinal cord is an – Atlantoaxial instability important and treatable cause of acute myelopa- Syrinx Vascular thy. Recognition of these conditions with MR – Spinal cord infarct imaging is usually considered straightforward. A – Intraspinal hematoma typical example of cord compression in the set- – Dural arteriovenous fi stula ting of vertebral metastasis from a primary lung Demyelinating carcinoma is displayed
Recommended publications
  • Rehabilitation Outcomes Following Infections Causing Spinal Cord Myelopathy
    Spinal Cord (2014) 52, 444–448 & 2014 International Spinal Cord Society All rights reserved 1362-4393/14 www.nature.com/sc ORIGINAL ARTICLE Rehabilitation outcomes following infections causing spinal cord myelopathy PW New1,2 and I Astrakhantseva1 Study design: Retrospective, open-cohort, consecutive case series. Objective: To describe the demographic characteristics, clinical features and outcomes in patients undergoing initial in-patient rehabilitation after an infectious cause of spinal cord myelopathy. Setting: Spinal Rehabilitation Unit, Melbourne, Victoria, Australia. Admissions between 1 January 1995 and 31 December 2010. Methods: The following data were recorded: aetiology of spinal cord infection, risk factors, rehabilitation length of stay (LOS), level of injury (paraplegia vs tetraplegia), complications related to spinal cord damage and discharge destination. The American Spinal Injury Association (ASIA) Impairment Scale (AIS) and functional independence measure (FIM) were assessed at admission and at discharge. Results: Fifty-one patients were admitted (men ¼ 32, 62.7%) with a median age of 65 years (interquartile range (IQR) 52–72, range 22–89). On admission, 37 (73%) had paraplegic level of injury and most patients (n ¼ 46, 90%) had an incomplete grade of spinal damage. Infections were most commonly bacterial (n ¼ 47, 92%); the other causes were viral (n ¼ 3, 6%) and tuberculosis (n ¼ 1, 2%). The median LOS was 106 days (IQR 65–135). The most common complications were pain (n ¼ 47, 92%), urinary tract infection (n ¼ 27, 53%), spasticity (n ¼ 25, 49%) and pressure ulcer during acute hospital admission (n ¼ 19, 37%). By the time of discharge from rehabilitation, patients typically showed a significant change in their AIS grade of spinal damage (Po0.001).
    [Show full text]
  • Brain Death and the Cervical Spinal Cord: a Confounding Factor for the Clinical Examination
    Spinal Cord (2010) 48, 2–9 & 2010 International Spinal Cord Society All rights reserved 1362-4393/10 $32.00 www.nature.com/sc REVIEW Brain death and the cervical spinal cord: a confounding factor for the clinical examination AR Joffe, N Anton and J Blackwood Department of Pediatrics, Stollery Children’s Hospital, University of Alberta, Edmonton, Alberta, Canada Study design: This study is a systematic review. Objectives: Brain death (BD) is a clinical diagnosis, made by documenting absent brainstem functions, including unresponsive coma and apnea. Cervical spinal cord dysfunction would confound clinical diagnosis of BD. Our objective was to determine whether cervical spinal cord dysfunction is common in BD. Methods: A case of BD showing cervical cord compression on magnetic resonance imaging prompted a literature review from 1965 to 2008 for any reports of cervical spinal cord injury associated with brain herniation or BD. Results: A total of 12 cases of brain herniation in meningitis occurred shortly after a lumbar puncture with acute respiratory arrest and quadriplegia. In total, nine cases of acute brain herniation from various non-meningitis causes resulted in acute quadriplegia. The cases suggest that direct compression of the cervical spinal cord, or the anterior spinal arteries during cerebellar tonsillar herniation cause ischemic injury to the cord. No case series of brain herniation specifically mentioned spinal cord injury, but many survivors had severe disability including spastic limbs. Only two pathological series of BD examined the spinal cord; 56–100% of cases had upper cervical spinal cord damage, suggesting infarction from direct compression of the cord or its arterial blood supply.
    [Show full text]
  • Retroperitoneal Approach for the Treatment of Diaphragmatic Crus Syndrome: Technical Note
    TECHNICAL NOTE J Neurosurg Spine 33:114–119, 2020 Retroperitoneal approach for the treatment of diaphragmatic crus syndrome: technical note Zach Pennington, BS,1 Bowen Jiang, MD,1 Erick M. Westbroek, MD,1 Ethan Cottrill, MS,1 Benjamin Greenberg, MD,2 Philippe Gailloud, MD,3 Jean-Paul Wolinsky, MD,4 Ying Wei Lum, MD,5 and Nicholas Theodore, MD1 1Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; 2Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas; 3Division of Interventional Neuroradiology, Johns Hopkins School of Medicine, Baltimore, Maryland; 4Department of Neurosurgery, Northwestern University, Chicago, Illinois; and 5Department of Vascular Surgery and Endovascular Therapy, Johns Hopkins School of Medicine, Baltimore, Maryland OBJECTIVE Myelopathy selectively involving the lower extremities can occur secondary to spondylotic changes, tumor, vascular malformations, or thoracolumbar cord ischemia. Vascular causes of myelopathy are rarely described. An un- common etiology within this category is diaphragmatic crus syndrome, in which compression of an intersegmental artery supplying the cord leads to myelopathy. The authors present the operative technique for treating this syndrome, describ- ing their experience with 3 patients treated for acute-onset lower-extremity myelopathy secondary to hypoperfusion of the anterior spinal artery. METHODS All patients had compression of a lumbar intersegmental artery supplying the cord; the compression was caused by the diaphragmatic crus. Compression of the intersegmental artery was probably producing the patients’ symp- toms by decreasing blood flow through the artery of Adamkiewicz, causing lumbosacral ischemia. RESULTS All patients underwent surgery to transect the offending diaphragmatic crus. Each patient experienced sub- stantial symptom improvement, and 2 patients made a full neurological recovery before discharge.
    [Show full text]
  • Brucellar Spondylodiscitis with Rapidly Progressive Spinal Epidural Abscess Showing Cauda Equina Syndrome
    Citation: Spinal Cord Series and Cases (2016) 2, 15030; doi:10.1038/scsandc.2015.30 © 2016 International Spinal Cord Society All rights reserved 2058-6124/16 www.nature.com/scsandc CASE REPORT Brucellar spondylodiscitis with rapidly progressive spinal epidural abscess showing cauda equina syndrome Tan Hu1,2,JiWu1,2, Chao Zheng1 and Di Wu1 Early diagnosis of Brucellosis is often difficult in the patient with only single non-specific symptom because of its rarity. We report a patient with Brucellar spondylodiscitis, in which the low back pain was the only symptom and the magnetic resonance imaging (MRI) showed not radiographic features about infection at initial stage. He was misdiagnosed as a lumbar disc herniation for inappropriate treatment in a long time. The delay in diagnosis and correct treatment led to rapid progression of the disease and severe complications. The patient was treated successfully with triple-antibiotic and surgical intervention in the end. Brucellar spondylodiscitis should always be suspended in the differential diagnosis specially when the patient comes from an endemic area or has consumed dairy products from animals in such an area and comprehensive examination should be done for the patent to rule out some important diseases like Brucellosis with sufficient reasons. Spinal Cord Series and Cases (2016) 2, 15030; doi:10.1038/scsandc.2015.30; published online 7 January 2016 Brucellosis is caused by small, non-motile, Gram-negative, aerobic post meridiem and intermittent left lower limb numbness for the and facultative intracellular coccobacilli of the genus Brucella recent weeks. One week before admission, the patient returned transmitted from infected animals to humans either by to the local clinic because his symptoms worsen.
    [Show full text]
  • Central Pain in the Face and Head
    P1: KWW/KKL P2: KWW/HCN QC: KWW/FLX T1: KWW GRBT050-128 Olesen- 2057G GRBT050-Olesen-v6.cls August 17, 2005 2:10 ••Chapter 128 ◗ Central Pain in the Face and Head J¨orgen Boivie and Kenneth L. Casey CENTRAL PAIN IN THE FACE AND HEAD Anesthesia dolorosa denotes pain in a region with de- creased sensibility after lesions in the CNS or peripheral International Headache Society (IHS) code and diag- nervous system (PNS). The term deafferentation pain is nosis: used for similar conditions, but it is more commonly used in patients with lesions of spinal nerves. 13.18.1 Central causes of facial pain 13.18.1 Anesthesia dolorosa (+ code to specify cause) 13.18.2 Central poststroke pain EPIDEMIOLOGY 13.18.3 Facial pain attributed to multiple sclerosis 13.18.4 Persistent idiopathic facial pain The prevalence of central pain varies depending on the un- 13.18.5 Burning mouth syndrome derlying disorder (Tables 128-1 and 128-2) (7,29). In the ab- 13.19 Other centrally mediated facial pain (+ code to sence of large scale epidemiologic studies, only estimates specify etiology) of central pain prevalence can be quoted. In the only prospective epidemiologic study of central Note that diagnosis with IHS codes 13.18.1, 13.18.4, and pain, 191 patients with central poststroke pain (CPSP) 13.18.5 may have peripheral causes. were followed for 12 months after stroke onset (1). Sixteen World Health Organization (WHO) code and diagnosis: (8.4%) developed central pain, an unexpectedly high inci- G 44.810 or G44.847.
    [Show full text]
  • Cervical Myelopathy • Pragmatic Review
    DIAGNOSIS AND INDICATIONS FOR SURGERY Cervical Spondylitic Myelopathy Timothy A. Garvey, MD Twin Cities Spine Center Minneapolis, MN Cervical Myelopathy • Pragmatic review • Differential diagnosis • History and physical exam • Reality check – clinical cases last few months • Every-day clinical decisions Cervical Myelopathy • Degenerative • Cervical spondylosis, stenosis, OPLL • Trauma • SCI, fracture • Tumor • Neoplasms • Autoimmune • MS, ALS, SLE, etc. • Congenital • Syrinx, Chiari, Down’s Cervical Myelopathy • Infection • Viral: HIV, polio, herpes • Bacterial: Syphilis, epidural abscess • Arthritis • RA, SLE. Sjogren • Vascular • Trauma, AVM, Anklosing spondylitis • Metabolic • Vitamin, liver, gastric bypass, Hepatitis C • Toxins • Methalene blue, anesthetics • Misc. • Radiation, baro trauma, electrical injury Myelopathy • Generic spinal cord dysfunction • Classification systems • Nurick, Ranawat, JOA • Nice review • CSRS 2005, Chapter 15 – Lapsiwala & Trost Cervical Myelopathy • Symptoms • Gait disturbance Ataxia • Weakness, hand function • Sensory – numbness and tingling • Bladder - urgency Cervical Myelopathy • Signs • Reflexes – hyper-reflexia, clonus • Pathologic – Hoffman’s, Babinski • Motor – weakness • Sensory – variable • Ataxia – unsteady gait • Provocative – Lhrmitte’s Pathophysiology/CSM • Cord compression with distortion • Ischemia – anterior spinal flow • Axoplasmic flow diminution • Demyelinization of the white matter in both ascending and descending traits L.F. • 48 year-old female w/work injury • “cc” – left leg dysfunction – Mild urinary frequency – More weakness than pain • PE – Mild weakness, multiple groups – No UMN L.F. 08/06 L4-5 L2-3 L.F. 09/07 L.F. 1/07 L.F. 7/07 Asymptomatic MRI • 100 patients • Disc Protrusion – 20% of 45 – 54 year olds – 57% of > 64 year olds • Cord Impingement – 16% < 64 – 26% > 64 • Cord Compression – 7 of 100 Asymptomatic Degenerative Disk Disease and Spondylosis of the Cervical Spine: MR Imaging.
    [Show full text]
  • Spinal Injury
    SPINAL INJURY Presented by:- Bhagawati Ray DEFINITION Spinal cord injury (SCI) is damage to the spinal cord that results in a loss of function such as mobility or feeling. TYPES OF SPINAL CORD INJURY Complete Spinal Cord Injuries Complete paraplegia is described as permanent loss of motor and nerve function at T1 level or below, resulting in loss of sensation and movement in the legs, bowel, bladder, and sexual region. Arms and hands retain normal function. INCOMPLETE SPINAL CORD INJURIES Anterior cord syndrome Anterior cord syndrome, due to damage to the front portion of the spinal cord or reduction in the blood supply from the anterior spinal artery, can be caused by fractures or dislocations of vertebrae or herniated disks. CENTRAL CORD SYNDROME Central cord syndrome, almost always resulting from damage to the cervical spinal cord, is characterized by weakness in the arms with relative sparing of the legs, and spared sensation in regions served by the sacral segments. POSTERIOR CORD SYNDROME Posterior cord syndrome, in which just the dorsal columns of the spinal cord are affected, is usually seen in cases of chronic myelopathy but can also occur with infarction of the posterior spinal artery. BROWN-SEQUARD SYNDROME Brown-Sequard syndrome occurs when the spinal cord is injured on one side much more than the other. It is rare for the spinal cord to be truly hemisected (severed on one side), but partial lesions due to penetrating wounds (such as gunshot or knife wounds) or fractured vertebrae or tumors are common. CAUDA EQUINASYNDROME Cauda equina syndrome (CES) is a condition that occurs when the bundle of nerves below the end of the spinal cord known as the cauda equina is damaged.
    [Show full text]
  • Caspr2 Antibodies in Patients with Thymomas
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector MALIGNANCIES OF THE THYMUS Caspr2 Antibodies in Patients with Thymomas Angela Vincent, FRCPath,* and Sarosh R. Irani, MA* neuromuscular junction. Neuromyotonia (NMT) is due to Abstract: Myasthenia gravis is the best known autoimmune disease motor nerve hyperexcitability that leads to muscle fascicula- associated with thymomas, but other conditions can be found in tions and cramps. A proportion of patients have antibodies patients with thymic tumors, including some that affect the central that appear to be directed against brain tissue-derived volt- nervous system (CNS). We have become particularly interested in age-gated potassium channels (VGKCs) that control the ax- patients who have acquired neuromyotonia, the rare Morvan disease, onal membrane potential.4,5 VGKC antibody titers are rela- or limbic encephalitis. Neuromyotonia mainly involves the periph- tively low in NMT. eral nerves, Morvan disease affects both the peripheral nervous Morvan disease is a rare condition first described in system and CNS, and limbic encephalitis is specific to the CNS. 1876 but until recently hardly mentioned outside the French Many of these patients have voltage-gated potassium channel auto- literature.6 The patients exhibit NMT plus autonomic distur- antibodies. All three conditions can be associated with thymomas bance (such as excessive sweating, constipation, and cardiac and may respond to surgical removal of the underlying tumor
    [Show full text]
  • Syringomyelia in Cervical Spondylosis: a Rare Sequel H
    THIEME Editorial 1 Editorial Syringomyelia in Cervical Spondylosis: A Rare Sequel H. S. Bhatoe1 1 Department of Neurosciences, Max Super Specialty Hospital, Patparganj, New Delhi, India Indian J Neurosurg 2016;5:1–2. Neurological involvement in cervical spondylosis usually the buckled hypertrophic ligament flavum compresses the implies radiculopathy or myelopathy. Cervical spondylotic cord. Ischemia due to compromise of microcirculation and myelopathy is the commonest cause of myelopathy in the venous congestion, leading to focal demyelination.3 geriatric age group,1 and often an accompaniment in adult Syringomyelia is an extremely rare sequel of chronic cervical patients manifesting central cord syndrome and spinal cord cord compression due to spondylotic process, and manifests as injury without radiographic abnormality. Myelopathy is the accelerated myelopathy (►Fig. 1). Pathogenesis of result of three factors that often overlap: mechanical factors, syringomyelia is uncertain. Al-Mefty et al4 postulated dynamic-repeated microtrauma, and ischemia of spinal cord occurrence of myelomalacia due to chronic compression of microcirculation.2 Age-related mechanical changes include the cord, followed by phagocytosis, leading to a formation of hypertrophy of the ligamentum flavum, formation of the cavity that extends further. However, Kimura et al5 osteophytic bars, degenerative disc prolapse, all of them disagreed with this hypothesis, and postulated that following contributing to a narrowing of the spinal canal. Degenerative compression of the cord, there is slosh effect cranially and kyphosis and subluxation often aggravates the existing caudally, leading to an extension of the syrinx. It is thus likely compressiononthespinalcord.Flexion–extension that focal cord cavitation due to compression and ischemia movements of the spinal cord places additional, dynamic occurs due to periventricular fluid egress into the cord, the stretch on the cord that is compressed.
    [Show full text]
  • Neurosyphilis Presenting with Myelitis-Case Series and Literature Review
    Neurosyphilis presenting with myelitis-Case series and literature review Yali Wu Capital Medical University Aliated Beijing Ditan Hospital https://orcid.org/0000-0002-9737-6439 Wenqing Wu ( [email protected] ) https://orcid.org/0000-0001-7428-5529 Case report Keywords: Syphilis, Neurosyphilis, Spinal cord, Magnetic resonance imaging Posted Date: April 5th, 2019 DOI: https://doi.org/10.21203/rs.2.1849/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Journal of Infection and Chemotherapy on February 1st, 2020. See the published version at https://doi.org/10.1016/j.jiac.2019.09.007. Page 1/9 Abstract Background Neurosyphilis is a great imitator because of its various clinical symptoms. Syphilitic myelitis is extremely rare manifestation of neurosyphilis and often misdiagnosed. However, a small amount of literature in the past described its clinical manifestations and imaging features, and there was no relevant data on the prognosis, especially the long-term prognosis. In this paper, 4 syphilis myelitis patients admitted to our hospital between July 2012 and July 2017 were retrospectively reviewed. In the 4 patients, 2 were females, and 2 were males. We present our experiences with syphilitic myelitis, discuss the characteristics, treatment and prognosis. Case presentation The diagnosis criteria were applied: (1) diagnosis of myelitis established by two experienced neurologist based on symptoms and longitudinally extensive transverse myelitis (LETM) at the cervical and thoracic levels mimicked neuromyelitis optic (NMO) on magnetic resonance imaging (MRI) ; (2) Neurosyphilis (NS) was diagnosed by positive treponema pallidum particle assay (TPPA) and toluidine red untreated serum test (TRUST) in the serum and CSF; (3) negative human immunodeciency virus (HIV).
    [Show full text]
  • Degenerative Cervical Myelopathy: Clinical Presentation, Assessment, and Natural History
    Journal of Clinical Medicine Review Degenerative Cervical Myelopathy: Clinical Presentation, Assessment, and Natural History Melissa Lannon and Edward Kachur * Division of Neurosurgery, McMaster University, Hamilton, ON L8S 4L8, Canada; [email protected] * Correspondence: [email protected] Abstract: Degenerative cervical myelopathy (DCM) is a leading cause of spinal cord injury and a major contributor to morbidity resulting from narrowing of the spinal canal due to osteoarthritic changes. This narrowing produces chronic spinal cord compression and neurologic disability with a variety of symptoms ranging from mild numbness in the upper extremities to quadriparesis and incontinence. Clinicians from all specialties should be familiar with the early signs and symptoms of this prevalent condition to prevent gradual neurologic compromise through surgical consultation, where appropriate. The purpose of this review is to familiarize medical practitioners with the pathophysiology, common presentations, diagnosis, and management (conservative and surgical) for DCM to develop informed discussions with patients and recognize those in need of early surgical referral to prevent severe neurologic deterioration. Keywords: degenerative cervical myelopathy; cervical spondylotic myelopathy; cervical decompres- sion Citation: Lannon, M.; Kachur, E. Degenerative Cervical Myelopathy: Clinical Presentation, Assessment, 1. Introduction and Natural History. J. Clin. Med. Degenerative cervical myelopathy (DCM) is now the leading cause of spinal cord in- 2021, 10, 3626. https://doi.org/ jury [1,2], resulting in major disability and reduced quality of life. While precise prevalence 10.3390/jcm10163626 is not well described, a 2017 Canadian study estimated a prevalence of 1120 per million [3]. DCM results from narrowing of the spinal canal due to osteoarthritic changes. This Academic Editors: Allan R.
    [Show full text]
  • Paraplegia Caused by Infectious Agents; Etiology, Diagnosis and Management
    Chapter 1 Paraplegia Caused by Infectious Agents; Etiology, Diagnosis and Management Farhad Abbasi and Soolmaz Korooni Fardkhani Additional information is available at the end of the chapter http://dx.doi.org/10.5772/56989 1. Introduction Paraplegia or paralysis of lower extremities is caused mainly by disorders of the spinal cord and the cauda equina. They are classified as traumatic and non traumatic. Traumatic paraple‐ gia occurs mostly as a result of traffic accidents and falls caused by lateral bending, dislocation, rotation, axial loading, and hyperflexion or hyperextension of the cord. Non-traumatic paraplegia has multiple causes such as cancer, infection, intervertebral disc disease, vertebral injury and spinal cord vascular disease [1, 2]. Although the incidence of spinal cord injury is low, the consequences of this disabling condition are extremely significant for the individual, family and community [3]. A spinal cord injury not only causes paralysis, but also has long- term impact on physical, psychosocial, sexual and mental health. The consequences of spinal cord injury require that health care professionals begin thinking about primary prevention. Efforts are often focused on care and cure, but evidence-based prevention should have a greater role. Primary prevention efforts can offer significant cost benefits, and efforts to change behavior and improve safety can and should be emphasized. Primary prevention can be applied to various etiologies of injury, including motor vehicle crashes, sports injuries, and prevention of sequelae of infectious diseases and prompt and correct diagnosis and treatment of infections involving spinal cord and vertebrae [4]. Infections are important causes of paraplegia. Several infections with different mechanisms can lead to paraplegia.
    [Show full text]