Report and Opinion 2015;7(12) 69

Total Page:16

File Type:pdf, Size:1020Kb

Report and Opinion 2015;7(12) 69 Report and Opinion 2015;7(12) http://www.sciencepub.net/report Gene Knockout Research Literatures Ma Hongbao 1, Margaret Young 2, Yang Yan 1 1 Brookdale Hospital, Brooklyn, New York 11212, USA; 2 Cambridge, MA 02138, USA [email protected] Abstract: A gene knockout is a genetic technique in which one of an organism's genes is made inoperative. Also known as knockout organisms or simply knockouts, they are used in learning about a gene that has been sequenced, but which has an unknown or incompletely known function. Researchers draw inferences from the difference between the knockout organism and normal individuals. The term also refers to the process of creating such an organism, as in "knocking out" a gene. The technique is essentially the opposite of a gene knockin. Knocking out two genes simultaneously in an organism is known as a double knockout. Similarly the terms triple knockout and quadruple knockouts are used to describe three or four knocked out genes, respectively. This article introduces recent research reports as references in the related studies. [Ma H, Young M, Yang Y. Gene Knockout Research Literatures. Rep Opinion 2015;7(12):69-92]. (ISSN: 1553- 9873). http://www.sciencepub.net/report. 7. doi:10.7537/marsroj071215.07. Keywords: gene; knockout; cell; life; research; literature Introduction with a mean dominance coefficient ~0.2. Alleles with A gene knockout is a genetic technique in large homozygous effects are more likely to be more which one of an organism's genes is made inoperative. recessive than are alleles of weaker effect. Our Also known as knockout organisms or simply approach allows us to quantify, for the first time, the knockouts, they are used in learning about a gene that substantial variance and skew in the distribution of has been sequenced, but which has an unknown or dominance coefficients. This heterogeneity is so great incompletely known function. Researchers draw that many population genetic processes analyses based inferences from the difference between the knockout on the mean dominance coefficient alone will be in organism and normal individuals. The term also refers substantial error. These results are applied to the to the process of creating such an organism, as in debate about various mechanisms for the evolution of "knocking out" a gene. The technique is essentially the dominance, and we conclude that they are most opposite of a gene knockin. Knocking out two genes consistent with models that depend on indirect simultaneously in an organism is known as a double selection on homeostatic gene expression or on the knockout. Similarly the terms triple knockout and ability to perform well under periods of high demand quadruple knockouts are used to describe three or four for a protein. knocked out genes, respectively. The gene approach to the pathogenesis of male infertility may bring about Aragona, M. and M. T. Valente "Genetic some strategies for the diagnosis and manage of the transformation of the tomato pathogen Pyrenochaeta condition. Gene knockout technology is the lycopersici allowed gene knockout using a split- mainstream method currently used in the study of marker approach." Curr Genet. 2015 May;61(2):211- gene function. NANOG expression in prostate cancer 20. doi: 10.1007/s00294-014-0461-y. Epub 2014 Nov is highly correlated with cancer stem cell 21. characteristics and resistance to androgen deprivation. Pyrenochaeta lycopersici, as other soil- The following introduces recent reports as transmitted fungal pathogens, generally received little references in the related studies. attention compared to the pathogens affecting the aerial parts of the plants, although causing stunt and Agrawal, A. F. and M. C. Whitlock "Inferences about important fruit yield reduction of agronomic relevant the distribution of dominance drawn from yeast gene crops. The scope of this study was to develop a system knockout data." Genetics. 2011 Feb;187(2):553-66. allowing to investigate the functional role of P. doi: 10.1534/genetics.110.124560. Epub 2010 Nov 23. lycopersici genes putatively involved in the corky root Data from several thousand knockout rot of tomato. A genetic transformation system based mutations in yeast (Saccharomyces cerevisiae) were on a split-marker approach was developed and tested used to estimate the distribution of dominance to knock out a P. lycopersici gene encoding for a lytic coefficients. We propose a new unbiased likelihood polysaccharide monooxygenase (Plegl1) induced approach to measuring dominance coefficients. On during the disease development. The regions flanking average, deleterious mutations are partially recessive, Plegl1 gene were fused with the overlapping parts of 69 Report and Opinion 2015;7(12) http://www.sciencepub.net/report hygromycin marker gene, to favour homologous Cbs(+/-/)Asm(+/-) and Cbs(+/-/)Asm(-/-) as well as recombination. We were able to obtain four mutants their Cbs wild type littermates were used to study the not expressing the Plegl1 gene though, when tested on role of Asm(-/-) under a background of Cbs(+/-) with a susceptible tomato cultivar, Plegl1 mutants showed hHcys. HPLC analysis revealed that plasma Hcys unaltered virulence, compared with the wild-type level was significantly elevated in Cbs heterozygous strain. The strategy illustrated in the present work (Cbs(+/-)) mice with different copies of Asm gene demonstrated for the first time that homologous compared to Cbs(+/+) mice with different Asm gene recombination occurs in P. lycopersici. Moreover, a copies. Cbs(+/-/)Asm(+/+) mice had significantly transformation system mediated by Agrobacterium increased renal Asm activity, ceramide production and tumefaciens was established and stable genetic O(2.)(-) level compared to Cbs(+/+)/Asm(+/+), while transformants have been obtained. The transformation Cbs(+/-/)Asm(-/-) mice showed significantly reduced systems developed represent important tools for renal Asm activity, ceramide production and O(2.)(-) investigating both the role of genes putatively level due to increased plasma Hcys levels. Confocal involved in P. lycopersici interaction with host plant microscopy demonstrated that colocalization of and the function of other physiological traits which podocin with ceramide was much lower in Cbs(+/- emerged to be genetically expanded from the recent /)Asm(-/-) mice compared to Cbs(+/-/)Asm(+/+) mice, genome sequencing of this fungus. which was accompanied by a reduced glomerular damage index, albuminuria and proteinuria in Cbs(+/- Banerjee, T., D. K. Jaijyan, et al. "Apicoplast triose /)Asm(-/-) mice. Immunofluorescent analyses of the phosphate transporter (TPT) gene knockout is lethal podocin, nephrin and desmin expression also for Plasmodium." Mol Biochem Parasitol. 2012 illustrated less podocyte damages in the glomeruli Nov;186(1):44-50. doi: from Cbs(+/-/)Asm(-/-) mice compared to Cbs(+/- 10.1016/j.molbiopara.2012.09.008. Epub 2012 Oct 3. /)Asm(+/+) mice. In in vitro studies of podocytes, The C3, C5, C6 type sugar phosphate hHcys-enhanced O(2.)(-) production, desmin transporters bring sugars inside apicoplast, thus expression, and ceramide production as well as providing energy, reducing power and elements like decreases in VEGF level and podocin expression in carbon to apicoplast. Plasmodium berghei has two C3 podocytes were substantially attenuated by prior type sugar phosphate transporters in the membrane of treatment with amitriptyline, an Asm inhibitor. In apicoplast: triose phosphate transporter (TPT) and conclusion, Asm gene knockout or corresponding phosphoenolpyruvate transporter (PPT). Here we enzyme inhibition protects the podocytes and report that P. berghei TPT knockout parasites failed to glomeruli from hHcys-induced oxidative stress and survive. However, PPT knockout parasite behaved injury. similar to the wild type in the blood stages. The absence of PPT in other life stages, leads to defects in Boshra, H., J. Cao, et al. "Generation of Recombinant the development of parasite and was required at both Capripoxvirus Vectors for Vaccines and Gene mosquito as well as liver stages. This study also Knockout Function Studies." Methods Mol Biol. underlines the essentiality of triose transporters for 2016;1349:151-61. doi: 10.1007/978-1-4939-3008- apicoplast and its downstream pathways. 1_10. The ability to manipulate capripoxvirus Boini, K. M., M. Xia, et al. "Acid sphingomyelinase through gene knockouts and gene insertions has gene knockout ameliorates hyperhomocysteinemic become an increasingly valuable research tool in glomerular injury in mice lacking cystathionine-beta- elucidating the function of individual genes of synthase." PLoS One. 2012;7(9):e45020. Epub 2012 capripoxvirus, as well as in the development of Sep 14. capripoxvirus-based recombinant vaccines. The Acid sphingomyelinase (ASM) has been homologous recombination technique is used to implicated in the development of generate capripoxvirus knockout viruses (KO), and is hyperhomocysteinemia (hHcys)-induced glomerular based on the targeting a particular viral gene of oxidative stress and injury. However, it remains interest. This technique can also be used to insert a unknown whether genetically engineering of ASM gene of interest. A protocol for the generation of a gene produces beneficial or detrimental action on viral gene knockout is described. This technique hHcys-induced glomerular injury. The present study involves the use of a plasmid which encodes the generated and characterized the mice lacking flanking sequences of the regions where the cystathionine
Recommended publications
  • What Are Knockout Mice?
    Lecture 37 Knockout mice Lecture 29 Cloning and Expression vectors Lecture 30 Eukaryotic Protein Expression Systems –I Lecture 31 Eukaryotic Protein Expression Systems –II Lecture 32 Eukaryotic Protein Expression Systems –III Lecture 33 Human Gene Therapy Lecture 34 DNA Vaccines Lecture 35 Transgenic Animals Lecture 36 Transgenic Plants Lecture 37 Knockout Mice What are knockout mice? A knockout mouse is a mouse in which a specific gene has been inactivated or “knocked out” by replacing it or disrupting it with an artificial piece of DNA. The loss of gene activity often causes changes in a mouse's phenotype and thus provides valuable information on the function of the gene. Researchers who developed the technology for the creation of knockout mice won Nobel Prize in the year 2007 The Nobel Prize in Physiology or Medicine 2007 was awarded jointly to Mario R. Capecchi, Sir Martin J. Evans and Oliver Smithies "for their discoveries of principles for introducing specific gene modifications in mice by the use of embryonic stem cells". Mario R. Capecchi Sir Martin J. Evans Oliver Smithies The ability to delete or mutate any gene of interest in mice has transformed the landscape of mammalian biology research. Cultivation of embryonic stem (ES) cells – Martin Evans • Gene targeting – Oliver Smithies • Gene knockout – Mario Capecchi Gene correction by Oliver Smithies Targeted correction of a mutant HPRT gene in mouse ES cells. Nature 330:576-8, 1987 This modification of a chosen gene in pluripotent ES cells demonstrates the feasibility of this route to manipulating mammalian genomes in predetermined ways. -------------------------------------------------------------------------------------- Nature. 1985 Sep 19-25;317(6034):230-4.
    [Show full text]
  • The Human Genome Project Focus of the Human Genome Project
    TOOLS OF GENETIC RESEARCH THE HUMAN GENOME PROJECT FOCUS OF THE HUMAN GENOME PROJECT The primary work of the Human Genome Project has been to Francis S. Collins, M.D., Ph.D.; produce three main research tools that will allow investigators to and Leslie Fink identify genes involved in normal biology as well as in both rare and common diseases. These tools are known as positional cloning The Human Genome Project is an ambitious research effort aimed at deciphering the chemical makeup of the entire human (Collins 1992). These advanced techniques enable researchers to ge ne tic cod e (i.e. , the g enome). The primary wor k of the search for disease­linked genes directly in the genome without first having to identify the gene’s protein product or function. (See p ro j e c t i s t o d ev e lop t h r e e r e s e a r c h tool s t h a t w i ll a ll o w the article by Goate, pp. 217–220.) Since 1986, when researchers scientists to identify genes involved in both rare and common 2 diseases. Another project priority is to examine the ethical, first found the gene for chronic granulomatous disease through legal, and social implications of new genetic technologies and positional cloning, this technique has led to the isolation of consid­ to educate the public about these issues. Although it has been erably more than 40 disease­linked genes and will allow the identi­ in existence for less than 6 years, the Human Genome Project fication of many more genes in the future (table 1).
    [Show full text]
  • Generation of Mouse Conditional Knockout Alleles in One Step Using the I-GONAD Method
    Downloaded from genome.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Method Generation of mouse conditional knockout alleles in one step using the i-GONAD method Renjie Shang,1,2 Haifeng Zhang,1 and Pengpeng Bi1,2 1Center for Molecular Medicine, University of Georgia, Athens, Georgia 30602, USA; 2Department of Genetics, University of Georgia, Athens, Georgia 30602, USA The Cre/loxP system is a powerful tool for gene function study in vivo. Regulated expression of Cre recombinase mediates precise deletion of genetic elements in a spatially– and temporally–controlled manner. Despite the robustness of this system, it requires a great amount of effort to create a conditional knockout model for each individual gene of interest where two loxP sites must be simultaneously inserted in cis. The current undertaking involves labor-intensive embryonic stem (ES) cell– based gene targeting and tedious micromanipulations of mouse embryos. The complexity of this workflow poses formida- ble technical challenges, thus limiting wider applications of conditional genetics. Here, we report an alternative approach to generate mouse loxP alleles by integrating a unique design of CRISPR donor with the new oviduct electroporation technique i-GONAD. Showing the potential and simplicity of this method, we created floxed alleles for five genes in one attempt with relatively low costs and a minimal equipment setup. In addition to the conditional alleles, constitutive knockout alleles were also obtained as byproducts of these experiments. Therefore, the wider applications of i-GONAD may promote gene func- tion studies using novel murine models. [Supplemental material is available for this article.] Our understanding of the genetic mechanisms of human diseases strains are readily available, generation of the loxP-flanked (floxed) has been largely expanded by loss-of-function studies using engi- alleles is challenging and labor-intensive due to the lack of an effi- neered mouse models.
    [Show full text]
  • Generation of Knockout Mouse Models of Cyclin-Dependent Kinase Inhibitors by Engineered Nuclease-Mediated Genome Editing
    ISSN 1738-6055 (Print) ISSN 2233-7660 (Online) Lab Anim Res 2018: 34(4), 264-269 https://doi.org/10.5625/lar.2018.34.4.264 Generation of knockout mouse models of cyclin-dependent kinase inhibitors by engineered nuclease-mediated genome editing Bo Min Park, Jae-il Roh*, Jaehoon Lee*, Han-Woong Lee* Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Korea Cell cycle dysfunction can cause severe diseases, including neurodegenerative disease and cancer. Mutations in cyclin-dependent kinase inhibitors controlling the G1 phase of the cell cycle are prevalent in various cancers. Mice lacking the tumor suppressors p16Ink4a (Cdkn2a, cyclin-dependent kinase inhibitor 2a), p19Arf (an alternative reading frame product of Cdkn2a,), and p27Kip1 (Cdkn1b, cyclin-dependent kinase inhibitor 1b) result in malignant progression of epithelial cancers, sarcomas, and melanomas, respectively. Here, we generated knockout mouse models for each of these three cyclin-dependent kinase inhibitors using engineered nucleases. The p16Ink4a and p19Arf knockout mice were generated via transcription activator-like effector nucleases (TALENs), and p27Kip1 knockout mice via clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9 (CRISPR/Cas9). These gene editing technologies were targeted to the first exon of each gene, to induce frameshifts producing premature termination codons. Unlike preexisting embryonic stem cell-based knockout mice, our mouse models are free from selectable markers or other external gene insertions, permitting more precise study of cell cycle-related diseases without confounding influences of foreign DNA. Keywords: TALEN, CRISPR/Cas9, cyclin-dependent kinase inhibitor Received 20 October 2018; Revised version received 7 December 2018; Accepted 8 December 2018 The cell cycle constitutes a series of events required proteins can cause severe disease [16,25,33].
    [Show full text]
  • Knockout Rat Models Mimicking Human Atherosclerosis Created By
    www.nature.com/scientificreports OPEN Knockout rat models mimicking human atherosclerosis created by Cpf1-mediated gene targeting Received: 23 September 2018 Jong Geol Lee1,2,3, Chang Hoon Ha2,4, Bohyun Yoon2, Seung-A. Cheong1, Globinna Kim1,2,4, Accepted: 8 January 2019 Doo Jae Lee2, Dong-Cheol Woo1,2,4, Young-Hak Kim5, Sang-Yoon Nam3, Sang-wook Lee1,6, Published: xx xx xxxx Young Hoon Sung1,2,4 & In-Jeoung Baek1,2,4 The rat is a time-honored traditional experimental model animal, but its use is limited due to the difculty of genetic modifcation. Although engineered endonucleases enable us to manipulate the rat genome, it is not known whether the newly identifed endonuclease Cpf1 system is applicable to rats. Here we report the frst application of CRISPR-Cpf1 in rats and investigate whether Apoe knockout rat can be used as an atherosclerosis model. We generated Apoe- and/or Ldlr-defcient rats via CRISPR-Cpf1 system, characterized by high efciency, successful germline transmission, multiple gene targeting capacity, and minimal of-target efect. The resulting Apoe knockout rats displayed hyperlipidemia and aortic lesions. In partially ligated carotid arteries of rats and mice fed with high-fat diet, in contrast to Apoe knockout mice showing atherosclerotic lesions, Apoe knockout rats showed only adventitial immune infltrates comprising T lymphocytes and mainly macrophages with no plaque. In addition, adventitial macrophage progenitor cells (AMPCs) were more abundant in Apoe knockout rats than in mice. Our data suggest that the Cpf1 system can target single or multiple genes efciently and specifcally in rats with genetic heritability and that Apoe knockout rats may help understand initial- stage atherosclerosis.
    [Show full text]
  • Generating Mouse Models for Biomedical Research: Technological Advances Channabasavaiah B
    © 2019. Published by The Company of Biologists Ltd | Disease Models & Mechanisms (2019) 12, dmm029462. doi:10.1242/dmm.029462 AT A GLANCE Generating mouse models for biomedical research: technological advances Channabasavaiah B. Gurumurthy1,2 and Kevin C. Kent Lloyd3,4,* ABSTRACT recombination in embryonic stem cells has given way to more refined Over the past decade, new methods and procedures have been methods that enable allele-specific manipulation in zygotes. We also developed to generate geneticallyengineered mouse models of human highlight advances in the use of programmable endonucleases that disease. This At a Glance article highlights several recent technical have greatly increased the feasibility and ease of editing the mouse advances in mouse genome manipulation that have transformed genome. Together, these and other technologies provide researchers our ability to manipulate and study gene expression in the mouse. with the molecular tools to functionally annotate the mouse genome We discuss how conventional gene targeting by homologous with greater fidelity and specificity, as well as to generate new mouse models using faster, simpler and less costly techniques. 1Developmental Neuroscience, Munroe Meyer Institute for Genetics and KEY WORDS: CRISPR, Genome editing, Mouse, Mutagenesis Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68106-5915, USA. 2Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, University of Nebraska Medical Center, Omaha, NE 68106-5915, USA. Introduction 3Department
    [Show full text]
  • UW-Madison Undergraduate Symposium || Abstracts 2014
    ABSTRACTS 2014 Undergraduate Symposium Celebrating research, creative endeavor and service-learning We would like to thank our major sponsors and partners: Brittingham Trust General Library System Institute for Biology Education McNair Scholars Program Morgridge Center for Public Service Office of the Provost Undergraduate Academic Awards Office Undergraduate Research Scholars Program University Marketing Wisconsin Union The Writing Center 2014 Undergraduate Symposium Organizing Committee: Jane Harris Cramer, Maya Holtzman, Svetlana Karpe, Kelli Hughes, Linda Kietzer, Laurie Mayberry, Aaron Miller, Christopher Olsen, Janice Rice, Amy Sloane, Julie Stubbs, Malika Taalbi, Beth Tryon, and Berit Ness (coordinator). A special thanks is also extended to Stephanie Diaz de Leon of The Wisconsin Union; Rosemary Bodolay, Patricia Iaccarino, Carrie (Carolyn) Kruse, and Pamela O’Donnell at College Library; and Jeff Crucius of the Division of Information Technology. Cover photos courtesy Office of University Communications and the Undergraduate Symposium Committee ii Abstracts and Art Statements University of Wisconsin–Madison April 10, 2014 • Union South THE SHORT AND DIFFICULT LIFE OF WALES’ DEVOLVED GOVERNMENT: WAS IT ALWAYS A LEGITIMATE INSTITUTION? Lucille Abrams, Yoshiko Herrera (Mentor), Political Science The construction of the regional, or devolved, government of Wales, as well as its corresponding governing body, the National Assembly for Wales, was a protracted process. Through library research, I sought to find the reasons for this dif- ficulty and ask if Welsh citizens believed the Assembly to be a valid, or legitimate, political institution. The political history of the United Kingdom, Wales’ individual history, and analysis of voter turnout at the first Assembly election, contribute to answering this question. The Assembly did not suffer from a lack of legitimacy but from an apathetic and alienated constitu- ency.
    [Show full text]
  • Introducing Gene Deletions by Mouse Zygote Electroporation of Cas12a/Cpf1
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2019 Introducing gene deletions by mouse zygote electroporation of Cas12a/Cpf1 Dumeau, Charles-Etienne ; Monfort, Asun ; Kissling, Lucas ; Swarts, Daan C ; Jinek, Martin ; Wutz, Anton Abstract: CRISPR-associated (Cas) nucleases are established tools for engineering of animal genomes. These programmable RNA-guided nucleases have been introduced into zygotes using expression vectors, mRNA, or directly as ribonucleoprotein (RNP) complexes by different delivery methods. Whereas mi- croinjection techniques are well established, more recently developed electroporation methods simplify RNP delivery but can provide less consistent efficiency. Previously, we have designed Cas12a-crRNA pairs to introduce large genomic deletions in the Ubn1, Ubn2, and Rbm12 genes in mouse embryonic stem cells (ESC). Here, we have optimized the conditions for electroporation of the same Cas12a RNP pairs into mouse zygotes. Using our protocol, large genomic deletions can be generated efficiently by electroporation of zygotes with or without an intact zona pellucida. Electroporation of as few as ten zygotes is sufficient to obtain a gene deletion in mice suggesting potential applicability of thismethod for species with limited availability of zygotes. DOI: https://doi.org/10.1007/s11248-019-00168-9 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-181145 Journal Article Published Version The following work is licensed under a Creative Commons: Attribution 4.0 International (CC BY 4.0) License. Originally published at: Dumeau, Charles-Etienne; Monfort, Asun; Kissling, Lucas; Swarts, Daan C; Jinek, Martin; Wutz, Anton (2019).
    [Show full text]
  • Athe Characteristics of Glucose Metabolism in the Sulfonylurea
    Zhou et al. Molecular Medicine (2019) 25:2 Molecular Medicine https://doi.org/10.1186/s10020-018-0067-9 RESEARCHARTICLE Open Access aThe characteristics of glucose metabolism in the sulfonylurea receptor 1 knockout rat model Xiaojun Zhou1†, Chunmei Xu1†, Zhiwei Zou2, Xue Shen3, Tianyue Xie3, Rui Zhang1, Lin Liao1* and Jianjun Dong2* Abstract Background: Sulfonylurea receptor 1 (SUR1) is primarily responsible for glucose regulation in normal conditions. Here, we sought to investigate the glucose metabolism characteristics of SUR1−/− rats. Methods: The TALEN technique was used to construct a SUR1 gene deficiency rat model. Rats were grouped by SUR1 gene knockout or not and sex difference. Body weight; glucose metabolism indicators, including IPGTT, IPITT, glycogen contents and so on; and other molecule changes were examined. Results: Insulin secretion was significantly inhibited by knocking out the SUR1 gene. SUR1−/− rats showed lower body weights compared to wild-type rats, and even SUR1−/− males weighed less than wild-type females. Upon SUR1 gene knockout, the rats showed a peculiar plasma glucose profile. During IPGTT, plasma glucose levels were significantly elevated in SUR1−/− rats at 15 min, which could be explained by SUR1 mainly working in the first phase of insulin secretion. Moreover, SUR1−/− male rats showed obviously impaired glucose tolerance than before and a better insulin sensitivity in the 12th week compared with females, which might be related with excess androgen secretion in adulthood. Increased glycogen content and GLUT4 expression and the inactivation of GSK3 were also observed in SUR1−/− rats, which suggested an enhancement of insulin sensitivity. Conclusions: These results reconfirm the role of SUR1 in systemic glucose metabolism.
    [Show full text]
  • Double-Strand Break Repair Pathways in Dna Structure-Induced Genetic Instability
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 8-2010 DOUBLE-STRAND BREAK REPAIR PATHWAYS IN DNA STRUCTURE-INDUCED GENETIC INSTABILITY Diem T. Kha Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Laboratory and Basic Science Research Commons Recommended Citation Kha, Diem T., "DOUBLE-STRAND BREAK REPAIR PATHWAYS IN DNA STRUCTURE-INDUCED GENETIC INSTABILITY" (2010). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 76. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/76 This Thesis (MS) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. DOUBLE-STRAND BREAK REPAIR PATHWAYS IN DNA STRUCTURE-INDUCED GENETIC INSTABILITY BY Diem Thi Kha, Bachelor of Science APPROVED: ______________________________ Karen M. Vasquez, Ph.D., Supervisory ______________________________
    [Show full text]
  • Manipulating the Mouse Genome Using Recombineering
    e in G net ts ic n E e n Biswas and Sharan, Adv Genet Eng 2013, 2:2 g m i e n c e e n DOI: 10.4172/2169-0111.1000108 r a i v n d g A Advancements in Genetic Engineering ISSN: 2169-0111 Review Article Open Access Manipulating the Mouse Genome Using Recombineering Kajal Biswas and Shyam K Sharan* Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, USA Abstract Genetically engineered mouse models are indispensable for understanding the biological function of genes, understanding the genetic basis of human diseases, and for preclinical testing of novel therapies. Generation of such mouse models has been possible because of our ability to manipulate the mouse genome. Recombineering is a highly efficient, recombination-based method of genetic engineering that has revolutionized our ability to generate mouse models. Since recombineering technology is not dependent on the availability of restriction enzyme recognition sites, it allows us to modify the genome with great precision. It requires homology arms as short as 40 bases for recombination, which makes it relatively easy to generate targeting constructs to insert, change, or delete either a single nucleotide or a DNA fragment several kb in size; insert selectable markers or reporter genes; or add epitope tags to any gene of interest. In this review, we focus on the development of recombineering technology and its application to the generation of genetically engineered mouse models. High-throughput generation of gene targeting vectors, used to construct knockout alleles in mouse embryonic stem cells, is now feasible because of this technology.
    [Show full text]
  • Embryo-Based Large Fragment Knock-In in Mammals: Why, How and What’S Next
    G C A T T A C G G C A T genes Review Embryo-Based Large Fragment Knock-in in Mammals: Why, How and What’s Next Steven Erwood 1,2 and Bin Gu 3,* 1 Program in in Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; [email protected] 2 Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada 3 Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada * Correspondence: [email protected]; Tel.: +647-702-9608; Fax: 416-813-6382 Received: 31 December 2019; Accepted: 26 January 2020; Published: 29 January 2020 Abstract: Endonuclease-mediated genome editing technologies, most notably CRISPR/Cas9, have revolutionized animal genetics by allowing for precise genome editing directly through embryo manipulations. As endonuclease-mediated model generation became commonplace, large fragment knock-in remained one of the most challenging types of genetic modification. Due to their unique value in biological and biomedical research, however, a diverse range of technological innovations have been developed to achieve efficient large fragment knock-in in mammalian animal model generation, with a particular focus on mice. Here, we first discuss some examples that illustrate the importance of large fragment knock-in animal models and then detail a subset of the recent technological advancements that have allowed for efficient large fragment knock-in. Finally, we envision the future development of even larger fragment knock-ins performed in even larger animal models, the next step in expanding the potential of large fragment knock-in in animal models.
    [Show full text]