Live-Migration in Cloud Computing Environment

Total Page:16

File Type:pdf, Size:1020Kb

Live-Migration in Cloud Computing Environment Live-Migration in Cloud Computing Environment MOHAMMAD ALSELEK Outubro de 2016 Live-Migration in Private Cloud Computing Environment Mohammad Ibrahim AlSelek Dissertation for obtaining A Master's Degree in Computer Engineering, Specialization in Computer Systems Supervision by: ISEP: Dr. Jorge Pinto Leite Novabase: Eng. Pedro André & Eng. Jonathan Carvalho Porto, October 2016 i Resumo O tráfego global de IP aumentou cinco vezes nos últimos cinco anos, e prevê-se que crescerá três vezes nos próximos cinco. Já para o período de 2013 a 2018, anteviu-se que o total do tráfego de IP iria aumentar a sua taxa composta de crescimento anual (CAGR) em, aproximadamente, 3.9 vezes. Assim, os Prestadores de Serviços estão a sofrer com este acréscimo exponencial, que é proveniente do número abismal de dispositivos e utilizadores que estão ligados à Internet, bem como das suas exigências por vários recursos e serviços de rede (como por exemplo, distribuição de conteúdo multimédia, segurança, mobilidade, etc.). Mais especificamente, estes estão com dificuldades em: introduzir novos serviços geradores de receitas; e otimizar e adaptar as suas infraestruturas mais caras, centros de processamento de dados, e redes empresariais e de longa distância (COMpuTIN, 2015). Estas redes continuam a ter sérios problemas (no que toca a agilidade, gestão, mobilidade e no tempo despendido para se adaptarem), que não foram corrigidos até ao momento. Portanto, foram propostos novos modelos de Virtualização de Funções da Rede (NFV) e tecnologias de Redes de Software Definidos (SDN) para solucionar gastos operacionais e de capital não otimizado, e limitações das redes (Lopez, 2014, Hakiri and Berthou, 2015). Para se ultrapassar tais adversidades, o Instituto Europeu de Normas de Telecomunicações (ETSI) e outras organizações propuseram novas arquiteturas de rede. De acordo com o ETSI, a NFV é uma técnica emergente e poderosa, com grande aplicabilidade, e com o objetivo de transformar a maneira como os operadores desenham as redes. Isto é alcançado pela evolução da tecnologia padrão de virtualização TI, de forma a consolidar vários tipos de equipamentos de redes como: servidores de grande volume, routers, switches e armazenamento (Xilouris et al., 2014). Nesta dissertação, foram usadas as soluções mais atuais de SDN e NFV, de forma a produzir um caso de uso que possa solucionar o crescimento do tráfego de rede e a excedência da sua capacidade máxima. Para o desenvolvimento e avalização da solução, foi instalada a plataforma de computação na nuvem OpenStack, de modo a implementar, gerir e testar um caso de uso de Live Migration. Palavras-chave: Computação na Nuvem, OpenStack, Open Virtual Switch, Redes de Software definidos, Rota Virtual Distribuída, Virtualização, Virtualização de Funções da Rede ii iii Abstract Global IP traffic has increased fivefold over the past five years, and will continue increasing threefold over the next five years. The overall IP traffic will grow at a compound annual growth rate (CAGR) nearly 3.9-fold from 2013 to 2018. Service Providers are experiencing the exponential growth of IP traffic that comes from the incredible increased number of devices and users who are connected to the internet along with their demands for various resources and network services like multimedia content distribution, security, mobility and else. Therefore, Service Providers are finding difficult to introduce new revenue generating services, optimize and adapt their expensive infrastructures, data centers, wide-area networks and enterprise networks (COMpuTIN, 2015). The networks continue to have serious known problems, such as, agility, manageability, mobility and time-to-application that have not been successfully addressed so far. Thus, novel Network Function Virtualization (NFV) models and Software-defined Networking (SDN) technologies have been proposed to solve the non-optimal capital and operational expenditures and network’s limitations (Lopez, 2014, Hakiri and Berthou, 2015). In order to solve these issues, the European Telecommunications Standards Institute (ETSI) and other standard organizations are proposing new network architecture approaches. According to ETSI, The Network Functions Virtualization is a powerful emerging technique with widespread applicability, aiming to transform the way that network operators design networks by evolving standard IT virtualization technology to consolidate many network equipment types: high volume servers, routers, switches and storage (Xilouris et al., 2014). In this thesis, the current Software-Defined Networking (SDN) and Network Function Virtualization (NFV) solutions were used in order to make a use case that can address the increasing of network traffic and exceeding its maximum capacity. To develop and evaluate the solution, OpenStack cloud computing platform was installed in order to deploy, manage and test a Live-Migration use-case. Keywords: Network Function Virtualization, Software Defined Network, OpenStack, Virtualization, Cloud Computing, Open Virtual Switch, Distributed Virtual Route. iv v INDEX LIST OF FIGURES ................................................................................................................................ VIII LIST OF TABLES ..................................................................................................................................... X 1. INTRODUCTION ............................................................................................................................ 1 1.1 MOTIVATION - PROBLEM DESCRIPTION .............................................................................................. 1 1.2 OBJECTIVES ................................................................................................................................... 2 1.3 VALUE PROPOSITION ....................................................................................................................... 3 1.4 ORGANIZATION .............................................................................................................................. 3 2. STATE OF THE ART ........................................................................................................................ 5 2.1 INTRODUCTION .............................................................................................................................. 5 2.2 CLOUD COMPUTING CONCEPT ........................................................................................................... 5 2.3 CLOUD COMPUTING TECHNOLOGIES .................................................................................................. 7 2.4 CLOUD COMPUTING SERVICE MODELS ................................................................................................ 8 2.4.1 Infrastructure as a Service (IaaS) .......................................................................................... 9 2.4.2 Platform as a Service (PaaS).................................................................................................. 9 2.4.3 Software as a Service (SaaS) ............................................................................................... 10 2.5 CLOUD COMPUTING DEPLOYMENT MODELS ...................................................................................... 10 2.5.1 Private Clouds...................................................................................................................... 10 2.5.2 Community Clouds .............................................................................................................. 12 2.5.3 Public Clouds ....................................................................................................................... 13 2.5.4 Hybrid Clouds ...................................................................................................................... 14 2.6 CLOUD COMPUTING CHALLENGES, CHARACTERISTICS AND BENEFITS ...................................................... 14 2.6.1 Cloud computing Challenges ............................................................................................... 14 2.6.2 Cloud computing Characteristics ......................................................................................... 17 2.6.3 Cloud computing Benefits ................................................................................................... 18 2.7 CLOUD COMPUTING BUSINESS PERSPECTIVE ...................................................................................... 19 2.7.1 Stakeholders ........................................................................................................................ 19 2.7.2 Service Life-Cycle ................................................................................................................. 20 2.7.3 Service Level Agreements .................................................................................................... 21 2.8 MOVING TOWARDS SOFTWARE-DEFINING SOLUTIONS......................................................................... 23 2.8.1 Virtualization ....................................................................................................................... 23 2.8.1.1 The Architecture ....................................................................................................................... 24 2.8.1.2 Advantages/Disadvantages ....................................................................................................... 26 2.8.1.3 Hypervisor technology .............................................................................................................
Recommended publications
  • A Performance Study of VM Live Migration Over the WAN
    Master Thesis Electrical Engineering April 2015 A Performance Study of VM Live Migration over the WAN TAHA MOHAMMAD CHANDRA SEKHAR EATI Department of Communication Systems Blekinge Institute of Technology SE-371 79 Karlskrona Sweden This thesis is submitted to the School of Computing at Blekinge Institute of Technology in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering on Telecommunication Systems. The thesis is equivalent to 40 weeks of full time studies. Contact Information: Author(s): Taha Mohammad, Chandra Sekhar Eati. E-mail: [email protected], [email protected]. University advisor(s): Dr. Dragos Ilie, Department of Communication Systems. University Examiner(s): Prof. Kurt Tutschku, Department of Communication Systems. School of Computing Blekinge Institute of Technology Internet : www.bth.se SE-371 79 Karlskrona Phone : +46 455 38 50 00 Sweden Fax : +46 455 38 50 57 Abstract Virtualization is the key technology that has provided the Cloud computing platforms a new way for small and large enterprises to host their applications by renting the available resources. Live VM migration allows a Virtual Machine to be transferred form one host to another while the Virtual Machine is active and running. The main challenge in Live migration over WAN is maintaining the network connectivity during and after the migration. We have carried out live VM migration over the WAN migrating different sizes of VM memory states and presented our solutions based on Open vSwitch/VXLAN and Cisco GRE approaches. VXLAN provides the mobility support needed to maintain the network connectivity between the client and the Virtual machine.
    [Show full text]
  • Ovirt Architecture
    oVirt Architecture Itamar Heim Director, RHEV-M Engineering, Red Hat oVirt Engine Architecture 1 oVirt Engine Large scale, centralized management for server and desktop virtualization Based on leading performance, scalability and security infrastructure technologies oVirt Engine Architecture 2 Kenrel-based Virtual Machine (KVM) ● Included in Linux kernel since 2006 ● Runs Linux, Windows and other operating system guests ● Advanced features ● Live migration ● Memory page sharing ● Thin provisioning ● PCI Pass-through ● KVM architecture provides high “feature-velocity” – leverages the power of Linux oVirt Engine Architecture 3 Linux as a Hypervisor? ● What makes up a hypervisor ? ● Hardware management ● Device drivers ● I/O Stack ● Resource Management ● Scheduling ● Access Control ● Power Management ● Memory Manager ● Device Model (emulation) ● Virtual Machine Monitor oVirt Engine Architecture 4 Linux as a Hypervisor? ● What makes up a hypervisor ? ● Hardware management ● Device drivers ● I/O Stack ● Resource Management Operating System Kernel ● Scheduling ● Access Control ● Power Management ● } Memory Manager ● Device Model (emulation) ● Virtual Machine Monitor oVirt Engine Architecture 5 Linux as a Hypervisor? How well does Linux perform as a hypervisor? Isn't Linux a general purpose operating system? Linux is architected to scale from the smallest embedded systems through to the largest multi-socket servers ● From cell phones through to mainframes KVM benefits from mature, time tested infrastructure ● Powerful, scalable memory manager
    [Show full text]
  • Network Issues in Virtual Machine Migration
    Network Issues in Virtual Machine Migration Hatem Ibn-Khedher∗, Emad Abd-Elrahman∗, Hossam Afifi∗ and Jacky Forestiery ∗Institut Mines-Telecom (IMT), Telecom SudParis, Saclay, France. Email: fhatem.ibn khedher, emad.abd elrahman, hossam.afifi[email protected] yOrange Labs, Issy Les Moulineaux, France. Email: [email protected] Abstract—Software Defined Networking (SDN) is based ba- A. Network Functions Virtualization sically on three features: centralization of the control plane, programmability of network functions and traffic engineering. Network Functions Virtualization (NFV) [1] virtualizes the The network function migration poses interesting problems that network equipment (Router, DPI, Firewall...). We will not we try to expose and solve in this paper. Content Distribution discuss about hardware. We will rather consider software based Network virtualization is presented as use case. NFV architecture. It is a concept that decouples network Index Terms—Virtualization, SDN, NFV, QoS, Mobility functions from its underlying hardware. Then, it enables the software to run on virtualized generic environment. Therefore, I. INTRODUCTION several virtual appliances can share the single hardware re- The virtualization of resources has addressed the network sources. architecture as a potential target. The basic tasks required in NFV brings several benefits [2] such as reducing CAPEX the virtualization substrate are instantiation of new network and OPEX, promoting flexibility and innovation of the virtual functions, migration and switching. These basic tasks are network functions already implemented. Moreover, it has been strongly dependent on the underlying network configuration introduced as a new networking facility that poised to amend and topology in a way that makes them tributary of the network the core structure of telecommunication infrastructure to be conditions.
    [Show full text]
  • Oracle Linux Virtualization Manager
    Oracle Linux Virtualization Manager Oracle Linux Virtualization Manager is a server virtualization management platform that can be easily deployed to configure, monitor, and manage an Oracle Linux Kernel-based Virtual Machine (KVM) environment. Oracle Linux Key Features KVM and Oracle Linux Virtualization Manager provide a modern, open source, Leading high performance alternative to proprietary server virtualization solutions price/performance with zero licensing costs. using a modern, low overhead An Oracle Linux Premier Support subscription provides customers access to architecture based award-winning Oracle support resources for Oracle Linux Virtualization on the KVM hypervisor Manager, KVM, Oracle Linux, zero-downtime patching with Ksplice, cloud Self-Hosted native tools such as Kubernetes and Kata Containers, clustering tools, Oracle Engine offers a Linux Manager, and Oracle Enterprise Manager. All this and lifetime software hyper-converged management support is included in a single cost-effective support offering. For customers solution with high with an Oracle Cloud Infrastructure subscription, Oracle Linux Premier availability for the support is included at no additional cost. Unlike many other commercial Linux Manager distributions, Oracle Linux is easy to download and completely free to use, Full REST API allows greater distribute, and update. automation and interoperability Oracle Linux KVM Support for secure live migration and Starting with Oracle Linux Release 7 with the Unbreakable Enterprise Kernel (UEK) Release storage live 5, Oracle Linux KVM has been enhanced to deliver leading performance and security for migration hybrid and multi-cloud deployments. Users can take a previously deployed Oracle Linux VM high system and turn the operating environment into a KVM host, or a KVM configuration can availability be set up from a base Oracle Linux installation.
    [Show full text]
  • Proxmox Virtual Environment
    DATASHEET Proxmox Virtual Environment OVERVIEW AT A GLANCE Proxmox VE is a complete virtualization management solution for Complete virtualization solution servers. You can virtualize even the most demanding application for production environments workloads running on Linux and Windows Servers. It combines the leading Kernel-based Virtual Machine (KVM) hypervisor and container- KVM hypervisor based virtualization on one management platform. Lightweight Linux Containers Thanks to the unique multi-master design there is no need for an (LXC) additional management server. This saves ressources and also allows Web-based Management high availabilty without single point of failures (no SPOF). Interface With the included web-based management you can easily control all Comprehensive management functionality. Full access to all logs from all nodes in a cluster is included, feature set including task logs like running backup/restore processes, live-migration Multi-node High Availability or high availability (HA) triggered activities. Clusters VM Templates and Clones ENTERPRISE-READY Multiple storage types supported Proxmox VE includes all the functionality you need to deploy an like Ceph, NFS, ZFS, Gluster, enterprise-class virtualization environment in your company‘s iSCSI,... datacenter. Multiple authentication sources combined with role based Open source license GNU AGPL, user- and permission management enable full control of your HA v3 virtualization cluster. The RESTful web API enables easy integration for third party management tools like custom hosting environments. With the future-proof open source development model, your full access to the source code as well as maximum flexibility and security are guaranteed. ABOUT PROXMOX Proxmox Server Solutions GmbH is a privately held corporation based in Vienna, Austria.
    [Show full text]
  • Performance Comparison of Linux Containers (LXC) and Openvz During Live Migration
    Thesis no: MSCS-2016-14 Performance comparison of Linux containers (LXC) and OpenVZ during live migration An experiment Pavan Sutha Varma Indukuri Faculty of Computing Blekinge Institute of Technology SE-371 79 Karlskrona Sweden This thesis is submitted to the Faculty of Computing at Blekinge Institute of Technology in partial fulfilment of the requirements for the degree of Master of Science in Computer Science. The thesis is equivalent to 20 weeks of full-time studies. Contact Information: Author(s): Pavan Sutha Varma Indukuri E-mail: [email protected] University advisor: Sogand Shirinbab Department of Computer Science and Engineering E-mail: [email protected] Faculty of Computing Internet : www.bth.se Blekinge Institute of Technology Phone : +46 455 38 50 00 SE-371 79 Karlskrona, Sweden Fax : +46 455 38 50 57 i i ABSTRACT Context. Cloud computing is one of the most widely used technologies all over the world that provides numerous products and IT services. Virtualization is one of the innovative technologies in cloud computing which has advantages of improved resource utilization and management. Live migration is an innovative feature of virtualization that allows a virtual machine or container to be transferred from one physical server to another. Live migration is a complex process which can have a significant impact on cloud computing when used by the cloud-based software. Objectives. In this study, live migration of LXC and OpenVZ containers has been performed. Later the performance of LXC and OpenVZ has been conducted in terms of total migration time and downtime. Further CPU utilization, disk utilization and an average load of the servers is also evaluated during the process of live migration.
    [Show full text]
  • Proxmox Virtual Environment
    DATASHEET Proxmox Virtual Environment AT A GLANCE OVERVIEW ñ Complete enterprise Proxmox VE is a complete virtualization management solution for servers. You can virtualization solution virtualize even the most demanding application workloads running on Linux and Windows Servers. It combines the leading Kernel-based Virtual Machine (KVM) ñ HA without SPOF hypervisor and container-based virtualization with OpenVZ on one management platform. ñ VM Templates and Clones The unique multi-master design eliminates the need of an additional management ñ KVM hypervisor with an server like seen on other solutions. This saves ressources and also allows high enterprise class management availabilty without single point of failures (no SPOF). system The included web-based management empowers the user (and admin) to control ñ OpenVZ—Container-based all functionalities easily. This includes full access to all logs from all nodes in a virtualization cluster, including task logs like running backup/restore processes, live-migration or ñ Comprehensive management High Availability (HA) triggered activities. feature set ENTERPRISE-READY ñ Open source solution Proxmox VE includes all the functionalities you need to deploy an enterprise-class virtualization environment in your company. Multiple authentication sources combined with role based user- and permission management enables full control of your virtualization cluster. The RESTful web API enables easy integration for third party management tools like custom hosting environments. The future-proof open source
    [Show full text]
  • Types of Virtualization
    Types of Virtualization • Emulation – VM emulates/simulates complete hardware – Unmodified guest OS for a different PC can be run • Bochs, VirtualPC for Mac, QEMU • Full/native Virtualization – VM simulates “enough” hardware to allow an unmodified guest OS to be run in isolation • Same hardware CPU – IBM VM family, VMWare Workstation, Parallels,… Computer Science CS677: Distributed OS Lecture 5, page 1 Types of virtualization • Para-virtualization – VM does not simulate hardware – Use special API that a modified guest OS must use – Hypercalls trapped by the Hypervisor and serviced – Xen, VMWare ESX Server • OS-level virtualization – OS allows multiple secure virtual servers to be run – Guest OS is the same as the host OS, but appears isolated • apps see an isolated OS – Solaris Containers, BSD Jails, Linux Vserver • Application level virtualization – Application is gives its own copy of components that are not shared • (E.g., own registry files, global objects) - VE prevents conflicts – JVM Computer Science CS677: Distributed OS Lecture 5, page 2 1 Type 1 hypervisor • Unmodified OS is running in user mode (or ring 1) – But it thinks it is running in kernel mode (virtual kernel mode) – privileged instructions trap; sensitive inst-> use VT to trap – Hypervisor is the “real kernel” • Upon trap, executes privileged operations • Or emulates what the hardware would do Computer Science CS677: Distributed OS Lecture 5, page 3 Type 2 Hypervisor • VMWare example – Upon loading program: scans code for basic blocks – If sensitive instructions, replace by Vmware procedure • Binary translation – Cache modified basic block in VMWare cache • Execute; load next basic block etc. • Type 2 hypervisors work without VT support – Sensitive instructions replaced by procedures that emulate them.
    [Show full text]
  • Ovirt Intro & Architecture
    oVirt Intro & Architecture Barak Azulay Manager @ RHEV Engineering Red Hat June 2012 1 Virtualization Management the oVirt way What is oVirt? Large scale, centralized management for server and desktop virtualization Based on leading performance, scalability and security infrastructure technologies Provide an open source alternative to vCenter/vSphere Focus on KVM for best integration/performance Focus on ease of use/deployment 2 Virtualization Management the oVirt way How Does It Look? 3 Virtualization Management the oVirt way Competitive Landscape ● InfoWorld “shootout” 2011 – Independent analysis of leading virtualization platforms – 2nd place in management functionality http://bit.ly/virtshootout 4 Virtualization Management the oVirt way Goals of the oVirt project ● Build a community around all levels of the virtualization stack – hypervisor, manager, GUI, API, etc. ● To deliver both a cohesive complete stack and discretely reusable components for open virtualization management ● Provide a release of the project on a well defined schedule ● Focus on management of the KVM hypervisor, with exceptional guest support beyond Linux ● Provide a venue for user and developer communication and coordination 5 Virtualization Management the oVirt way Governance ● Merit based, open governance model ● Built using the best concepts taken from Apache and Eclipse Foundations ● Governance split between board and projects ● oVirt Board ● Multiple projects under the oVirt brand 6 Virtualization Management the oVirt way Governance (oVirt Board) ● Initial
    [Show full text]
  • Proxmox VE Administration Guide Ii
    PROXMOX VE ADMINISTRATION GUIDE RELEASE 7.0 July 6, 2021 Proxmox Server Solutions Gmbh www.proxmox.com Proxmox VE Administration Guide ii Copyright © 2021 Proxmox Server Solutions Gmbh Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". Proxmox VE Administration Guide iii Contents 1 Introduction 1 1.1 Central Management....................................... 2 1.2 Flexible Storage......................................... 3 1.3 Integrated Backup and Restore................................. 3 1.4 High Availability Cluster..................................... 3 1.5 Flexible Networking........................................ 4 1.6 Integrated Firewall........................................ 4 1.7 Hyper-converged Infrastructure................................. 4 1.7.1 Benefits of a Hyper-Converged Infrastructure (HCI) with Proxmox VE.......... 4 1.7.2 Hyper-Converged Infrastructure: Storage........................ 5 1.8 Why Open Source........................................ 5 1.9 Your benefits with Proxmox VE.................................. 5 1.10 Getting Help........................................... 6 1.10.1 Proxmox VE Wiki..................................... 6 1.10.2 Community Support Forum................................ 6 1.10.3
    [Show full text]
  • Comparing Live Migration Between Linux Containers and Kernel Virtual Machine
    Master of Science in Computer Science February 2017 Comparing Live Migration between Linux Containers and Kernel Virtual Machine Investigation study in terms of parameters Kotikalapudi Sai Venkat Naresh Faculty of Computing Blekinge Institute of Technology SE-371 79 Karlskrona Sweden This thesis is submitted to the Faculty of Computing at Blekinge Institute of Technology in partial fulfillment of the requirements for the degree of Master of Science in Computer Science. The thesis is equivalent to 20 weeks of full time studies. Contact Information: Author(s): Sai Venkat Naresh Kotikalapudi E-mail: [email protected] University advisor: Sogand Shirinbab Department of Computer Science Faculty of Computing Internet : www.bth.se Blekinge Institute of Technology Phone : +46 455 38 50 00 SE-371 79 Karlskrona, Sweden Fax : +46 455 38 50 57 i i ABSTRACT Context. Virtualization technologies have been extensively used in various cloud platforms. Hardware replacements and maintenance are occasionally required, which leads to business downtime. Live migration is performed to ensure high availability of services, as it is a major aspect. The performance of live migration in virtualization technologies directly impacts the performance of cloud platforms. Hence comparison is performed in two mainstream virtualization technologies, container and hypervisor based virtualization. Objectives. In the present study, the objective is to perform live migration of hypervisor and container based virtualization technologies, Kernel Virtual Machine (KVM) and Linux Containers (LXC) respectively. Measure and compare the downtime, total migration time, CPU utilization and disk utilization of KVM and LXC during live migration. Methods. An initial literature is conducted to get in-depth knowledge about live migration in virtualization technologies.
    [Show full text]
  • Survey on Mechanisms for Live Virtual Machine Migration and Its Improvements
    Information and Media Technologies 11: 101-115 (2016) reprinted from: Computer Software 33(2): 101-115 (2016) © Japan Society for Software Science and Technology 特集●サーベイ論文 解 説 Survey on Mechanisms for Live Virtual Machine Migration and its Improvements Hiroshi Yamada Live virtual machine (VM) migration (simply live migration) is a powerful tool for managing data center resources. Live migration moves a running VM between different physical machines without losing any states such as network conditions and CPU status. Live migration has attracted the attention of academic and industrial researchers since replacing running VMs inside data centers by live migration makes it easier to manage data center resources. This paper summarizes live migration basics and techniques for improving them. Specifically, this survey focuses on software mechanisms for realizing basic live migration, improving its performance, and expanding its applicability. Also, this paper shows research opportunities that the state-of-the-art live migration techniques have not covered yet. tualization software such as Xen [5],KVM[31],Vir- 1 Introduction tualBox [46], VMware ESXi [55], and Hyper-V [41] One of the innovative technologies in our com- is widely available. puter systems for the last decade is system virtual- Live VM migration (simply live migration) is a ization, which allows us to run multiple operating powerful tool for managing data center resources. systems (OSes) on a physical machine. In system Live migration moves a running VM between dif- virtualization, the virtual machine monitor (VMM) ferent physical machines without losing any states is a primary software layer that directly manages such as network connections and CPU status.
    [Show full text]