Gentzen-Type Proof Systems for Non-Classical Logics Yehonathan

Total Page:16

File Type:pdf, Size:1020Kb

Gentzen-Type Proof Systems for Non-Classical Logics Yehonathan Tel Aviv University Raymond and Beverly Sackler Faculty of Exact Sciences The Blavatnik School of Computer Science Gentzen-type Proof Systems for Non-classical Logics Thesis submitted for the degree of Doctor of Philosophy by Yehonathan Zohar This work was carried out under the supervision of Prof. Arnon Avron Submitted to the Senate of Tel Aviv University January 2018 i Acknowledgements I consider myself fortunate to have been a student of Prof. Arnon Avron, a truly inspiring logician and mentor. Shortly before starting university, I read his book about G¨odel's theorems, which motivated me to learn much more about logic. At the time, I could only dream that the author of this book would eventually become my advisor. Arnon taught me how to think, investigate, and prove. With his care, dedication and high standards, he inspired me to work harder for better results. Having been his student will always fill me with great pride. This thesis is also the result of joint work with Dr. Ori Lahav, who practically served as a second advisor for me. Ori taught me how to solve problems, and his perspective was always illuminating and fascinating. I thank him for this wonderful and enriching experience. I am thankful to Dr. Anna Zamansky for her academic and spiritual guidance, and for helping me understand what I really want, again and again. I would also like to thank Prof. Nachum Dershowitz and Prof. Alex Rabinovich for their valuable feedback on my work during my years at the logic seminar, and for the interesting and fruitful discussions about what logic is. I thank Prof. Naama Friedmann and Dr. Ilana Arbel for teaching me scientific and critical thinking. Their support along the way was a great compliment, and their belief in me kept me going. I also want to thank Mika Shahar and Anat Amirav for their valuable help. Their kindness and constant willingness to assist is much appreciated. Finally, a big thank you to my wife, Maayan. Your support made this thesis possible. This thesis is dedicated to Meir Shaham (\Dod Meir"). iii Abstract Sequent calculi constitute a prominent proof-theoretic framework, suitable for a vari- ety of logics. These include classical and intuitionistic logic, modal logics, paraconsistent logics, and many-valued logics, including fuzzy logics. The most important property of useful sequent calculi is analyticity, whose most common instance is the subformula prop- erty. When a calculus is analytic, a certain limitation on the search space of derivations is achieved. In the case of propositional sequent calculi, this often leads to a finite bound on the search space, and decidability immediately follows. This limitation may also be useful for proving the consistency of a sequent calculus (the fact that the empty sequent is not derivable). The most standard way to prove analyticity is via cut-admissibility, that is: the redundancy of the cut rule, which is usually the only rule whose premises may include a formula that is unrelated to the conclusion. Indeed, when cuts can be eliminated, and all other rules include in their premises only syntactic material from their conclusions, a simple induction on derivations entails that the end sequent can be derived using only its own syntactic material. Another major motivation for the elimination of the cut rule is the adequacy of cut-free calculi for efficient proof-search procedures. Despite the usefulness of cut-admissibility, relying on it alone for proving analyt- icity leaves out various useful sequent calculi that are analytic, but do not enjoy cut- admissibility. Moreover, even when it is possible to obtain cut-admissibility, it might be easier to prove analyticity directly, rather than to go through complicated and error- prone proofs of cut-admissibility. In addition, a great deal of ingenuity is required for developing efficient proof-search algorithms for cut-free sequent calculi. The main subject of this thesis is the notion of analyticity of sequent calculi discussed above. Our main contribution is a general analysis of it in several wide families of calculi. This analysis includes the following: • We provide several sufficient criteria for analyticity, that are easy to check either \by hand" or in an automated way. These simple criteria can replace complex proofs of analyticity that go through cut-admissibility. In fact, many analyticity results from the literature are obtained as particular instances of this result. The value of these criteria is also demonstrated by several new useful calculi that we introduce in this work. • We study the connection between analyticity and cut-admissibility, and prove that iv in a wide variety of calculi, the two properties are equivalent. Besides theoretical interest, this result can be used to simplify proofs of cut-admissibility, whenever analyticity has already been established. Using this result, we show that some of the sufficient criteria for analyticity that we propose are also sufficient for cut- admissibility. • We utilize analyticity to construct a uniform decision procedure for a wide family of sequent calculi. Our decision procedure relies only on analyticity, regardless of the admissibility of cut. Moreover, it is based on an efficient reduction to SAT, and thus all heuristic considerations are shifted to the mechanisms of off-the-shelf SAT-solvers. An implementation of this decision procedure is also described. • Finally, we study the framework of non-deterministic matrices (Nmatrices) as a tool for constructing analytic sequent calculi for logics that are already given in some other form. A fundamental operation on Nmatrices is introduced, called rexpansion, and is shown to be a crucial (though so far implicit) ingredient in applying Nmatrices for the construction of analytic sequent calculi for non-classical logics. Contents 1 Introduction 1 1.1 Background . .1 1.2 This Thesis . .3 2 Pure Sequent Calculi 11 2.1 Preliminaries . 12 2.2 What Are Pure Calculi? . 12 2.3 Semantics . 16 2.4 Streamlining, Equivalence, and Gentzen's Axioms . 20 2.5 Analyticity . 22 2.5.1 A Generalized Subformula Property . 23 2.5.2 Sufficient Criterion for Analyticity . 27 2.5.3 Constructing Analytic Calculi . 29 2.5.4 Proof of Theorem 2.5.21 . 33 2.6 Cut-admissibility . 36 2.6.1 Semantics in the Absence of Cut . 36 2.6.2 From Analyticity to Cut-admissibility . 39 2.6.3 Some Applications . 40 2.6.4 Strengthening The Result . 41 2.6.5 Proof of Theorem 2.6.20 . 42 2.7 Single-conclusion Pure Calculi . 44 3 SAT-based Decision Procedure 47 3.1 A Polynomial Reduction from Derivability to UNSAT . 48 3.2 Linear Time Decision Procedure . 50 3.3 Implementation of The Decision Procedure . 52 3.3.1 Features and Usage . 52 3.3.2 Implementation Details . 53 3.3.3 Performance . 54 v vi CONTENTS 4 Extending Pure Calculi with Modal Operators 66 4.1 Impure Rules for Modal Operators . 67 4.2 Semantics . 69 4.3 Analyticity . 76 4.3.1 Proof of Lemma 4.3.12 . 79 4.4 Extending The Decision Procedure . 84 4.4.1 Local Formulas . 84 4.4.2 Extending The Reduction . 86 4.4.3 Implementation . 88 4.5 Equivalence and Admissibility of Modal Rules . 89 4.5.1 Functionality vs. Seriality . 89 4.5.2 On the Admissibility of D-rules . 91 5 Intuitionistic Calculi 93 5.1 Intuitionistic Derivations . 94 5.2 Semantics . 97 5.3 Proof of Theorem 5.1.10 . 104 6 Rexpansions of Non-deterministic Matrices 108 6.1 (N)matrices, Expansions, and Refinements . 110 6.1.1 Logical Matrices . 110 6.1.2 Non-deterministic Matrices . 112 6.1.3 Expansions and Refinements . 113 6.2 Refined Expansions . 115 6.2.1 Combining Expansions and Refinements . 115 6.2.2 Consequence Relations . 118 6.3 Some Examples . 121 6.4 Applications to Sequent Calculi . 123 6.4.1 Three-valued Paraconsistent Logics . 123 6.4.2 Logics of Formal (In)consistency . 127 6.4.3 Conservative Extensions of Sequent Calculi . 132 6.5 Negations for G¨odelLogic . 135 t 6.5.1 The Nmatrix G and Its Refinements . 138 : M 1=2 6.5.2 Two Particular Refinements of G ................ 140 M : t 6.5.3 What is the Cardinality of G 0 < t 1 ?.......... 143 `M : j ≤ 6.5.4 On The Construction of Corresponding Proof Systems . 148 7 Summary and Further Work 151 CONTENTS vii Bibliography 153 List of Figures 2.1 Semantic constraints induced by G .................... 20 L 3 3.1 Examples for inputs to Gen2sat . 53 3.2 A partial class diagram of Gen2sat . 54 3.3 Definition of in MetTeL . 56 T 3.4 Definition of in Gen2sat . 57 S 3.5 Definition of in MetTeL . 58 ST 3.6 Running times on random problems . 60 3.7 Running times on classes 1{2 . 61 3.8 Running times on classes 3{4 . 62 3.9 Easy and hard Rothenberg problems . 65 4.1 Application schemes of sequent rules for modal Operators . 68 6.1 Summary of properties for paraconsistent fuzzy logics . 143 6.2 The hypersequent calculus GLC ....................... 149 6.3 Additional rules for in GRM ....................... 150 : ⊃ viii Chapter 1 Introduction 1.1 Background Gentzen's seminal paper from 1934 [54] begins with the introduction of the first two natural deduction calculi: system NK for classical logic and system NJ for intuitionistic logic.1 The calculus NJ admits the subformula property: whenever a hypothesis can be derived from a set of assumptions, there is a derivation of the same hypothesis that contains only subformulas of the hypothesis and the assumptions. However, this property fails for NK. For the purpose of providing a calculus with the subformula property for both intuitionistic and classical logic, Gentzen introduced two alternative systems: LK and LJ.
Recommended publications
  • Hypersequent and Labelled Calculi for Intermediate Logics*
    Hypersequent and Labelled Calculi for Intermediate Logics⋆ Agata Ciabattoni1, Paolo Maffezioli2, and Lara Spendier1 1 Vienna University of Technology 2 University of Groningen Abstract. Hypersequent and labelled calculi are often viewed as an- tagonist formalisms to define cut-free calculi for non-classical logics. We focus on the class of intermediate logics to investigate the methods of turning Hilbert axioms into hypersequent rules and frame conditions into labelled rules. We show that these methods are closely related and we extend them to capture larger classes of intermediate logics. 1 Introduction The lack of cut-free sequent calculi for logics having natural semantic character- izations and/or simple axiomatizations has prompted the search for generaliza- tions of the Gentzen sequent framework. Despite the large variety of formalisms introduced in the literature (see e.g., [17]), there are two main approaches. In the syntactic approach sequents are generalized by allowing extra structural con- nectives in addition to sequents’ comma; in the semantic approach the semantic language is explicit part of the syntax in sequents and rules. Hypersequent calculus [2] is a prominent example of the syntactic approach, while labelled calculi internalizing Kripke semantics [15, 8, 16, 10] are the most developed systems within the semantic approach. Hypersequent and labelled calculus are general-purpose formalisms powerful enough to capture logics of a different nature ranging from modal to substructural logics [8, 16, 10, 3], and are often viewed as antagonist formalisms to define cut-free calculi. In this paper we focus on propositional intermediate logics, i.e. logics between intuitionistic and classical logic, in order to analyze and compare the methods in [7, 5] for defining cut-free hypersequent and labelled calculi.
    [Show full text]
  • Notes on Proof Theory
    Notes on Proof Theory Master 1 “Informatique”, Univ. Paris 13 Master 2 “Logique Mathématique et Fondements de l’Informatique”, Univ. Paris 7 Damiano Mazza November 2016 1Last edit: March 29, 2021 Contents 1 Propositional Classical Logic 5 1.1 Formulas and truth semantics . 5 1.2 Atomic negation . 8 2 Sequent Calculus 10 2.1 Two-sided formulation . 10 2.2 One-sided formulation . 13 3 First-order Quantification 16 3.1 Formulas and truth semantics . 16 3.2 Sequent calculus . 19 3.3 Ultrafilters . 21 4 Completeness 24 4.1 Exhaustive search . 25 4.2 The completeness proof . 30 5 Undecidability and Incompleteness 33 5.1 Informal computability . 33 5.2 Incompleteness: a road map . 35 5.3 Logical theories . 38 5.4 Arithmetical theories . 40 5.5 The incompleteness theorems . 44 6 Cut Elimination 47 7 Intuitionistic Logic 53 7.1 Sequent calculus . 55 7.2 The relationship between intuitionistic and classical logic . 60 7.3 Minimal logic . 65 8 Natural Deduction 67 8.1 Sequent presentation . 68 8.2 Natural deduction and sequent calculus . 70 8.3 Proof tree presentation . 73 8.3.1 Minimal natural deduction . 73 8.3.2 Intuitionistic natural deduction . 75 1 8.3.3 Classical natural deduction . 75 8.4 Normalization (cut-elimination in natural deduction) . 76 9 The Curry-Howard Correspondence 80 9.1 The simply typed l-calculus . 80 9.2 Product and sum types . 81 10 System F 83 10.1 Intuitionistic second-order propositional logic . 83 10.2 Polymorphic types . 84 10.3 Programming in system F ...................... 85 10.3.1 Free structures .
    [Show full text]
  • From Axioms to Rules — a Coalition of Fuzzy, Linear and Substructural Logics
    From Axioms to Rules — A Coalition of Fuzzy, Linear and Substructural Logics Kazushige Terui National Institute of Informatics, Tokyo Laboratoire d’Informatique de Paris Nord (Joint work with Agata Ciabattoni and Nikolaos Galatos) Genova, 21/02/08 – p.1/?? Parties in Nonclassical Logics Modal Logics Default Logic Intermediate Logics (Padova) Basic Logic Paraconsistent Logic Linear Logic Fuzzy Logics Substructural Logics Genova, 21/02/08 – p.2/?? Parties in Nonclassical Logics Modal Logics Default Logic Intermediate Logics (Padova) Basic Logic Paraconsistent Logic Linear Logic Fuzzy Logics Substructural Logics Our aim: Fruitful coalition of the 3 parties Genova, 21/02/08 – p.2/?? Basic Requirements Substractural Logics: Algebraization ´µ Ä Î ´Äµ Genova, 21/02/08 – p.3/?? Basic Requirements Substractural Logics: Algebraization ´µ Ä Î ´Äµ Fuzzy Logics: Standard Completeness ´µ Ä Ã ´Äµ ¼½ Genova, 21/02/08 – p.3/?? Basic Requirements Substractural Logics: Algebraization ´µ Ä Î ´Äµ Fuzzy Logics: Standard Completeness ´µ Ä Ã ´Äµ ¼½ Linear Logic: Cut Elimination Genova, 21/02/08 – p.3/?? Basic Requirements Substractural Logics: Algebraization ´µ Ä Î ´Äµ Fuzzy Logics: Standard Completeness ´µ Ä Ã ´Äµ ¼½ Linear Logic: Cut Elimination A logic without cut elimination is like a car without engine (J.-Y. Girard) Genova, 21/02/08 – p.3/?? Outcome We classify axioms in Substructural and Fuzzy Logics according to the Substructural Hierarchy, which is defined based on Polarity (Linear Logic). Genova, 21/02/08 – p.4/?? Outcome We classify axioms in Substructural and Fuzzy Logics according to the Substructural Hierarchy, which is defined based on Polarity (Linear Logic). Give an automatic procedure to transform axioms up to level ¼ È È ¿ ( , in the absense of Weakening) into Hyperstructural ¿ Rules in Hypersequent Calculus (Fuzzy Logics).
    [Show full text]
  • Bunched Hypersequent Calculi for Distributive Substructural Logics
    EPiC Series in Computing Volume 46, 2017, Pages 417{434 LPAR-21. 21st International Conference on Logic for Programming, Artificial Intelligence and Reasoning Bunched Hypersequent Calculi for Distributive Substructural Logics Agata Ciabattoni and Revantha Ramanayake Technische Universit¨atWien, Austria fagata,[email protected]∗ Abstract We introduce a new proof-theoretic framework which enhances the expressive power of bunched sequents by extending them with a hypersequent structure. A general cut- elimination theorem that applies to bunched hypersequent calculi satisfying general rule conditions is then proved. We adapt the methods of transforming axioms into rules to provide cutfree bunched hypersequent calculi for a large class of logics extending the dis- tributive commutative Full Lambek calculus DFLe and Bunched Implication logic BI. The methodology is then used to formulate new logics equipped with a cutfree calculus in the vicinity of Boolean BI. 1 Introduction The wide applicability of logical methods and their use in new subject areas has resulted in an explosion of new logics. The usefulness of these logics often depends on the availability of an analytic proof calculus (formal proof system), as this provides a natural starting point for investi- gating metalogical properties such as decidability, complexity, interpolation and conservativity, for developing automated deduction procedures, and for establishing semantic properties like standard completeness [26]. A calculus is analytic when every derivation (formal proof) in the calculus has the property that every formula occurring in the derivation is a subformula of the formula that is ultimately proved (i.e. the subformula property). The use of an analytic proof calculus tremendously restricts the set of possible derivations of a given statement to deriva- tions with a discernible structure (in certain cases this set may even be finite).
    [Show full text]
  • Bounded-Analytic Sequent Calculi and Embeddings for Hypersequent Logics?
    Bounded-analytic sequent calculi and embeddings for hypersequent logics? Agata Ciabattoni1, Timo Lang1, and Revantha Ramanayake2;3 1 Institute of Logic and Computation, Technische Universit¨atWien, A-1040 Vienna, Austria. fagata,[email protected] 2 Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen, Netherlands. [email protected] 3 CogniGron (Groningen Cognitive Systems and Materials Center), University of Groningen, Nijenborgh 4, NL-9747 AG Groningen, Netherlands. Abstract. A sequent calculus with the subformula property has long been recognised as a highly favourable starting point for the proof the- oretic investigation of a logic. However, most logics of interest cannot be presented using a sequent calculus with the subformula property. In response, many formalisms more intricate than the sequent calculus have been formulated. In this work we identify an alternative: retain the se- quent calculus but generalise the subformula property to permit specific axiom substitutions and their subformulas. Our investigation leads to a classification of generalised subformula properties and is applied to infinitely many substructural, intermediate and modal logics (specifi- cally: those with a cut-free hypersequent calculus). We also develop a complementary perspective on the generalised subformula properties in terms of logical embeddings. This yields new complexity upper bounds for contractive-mingle substructural logics and situates isolated results on the so-called simple substitution property within a general theory. 1 Introduction What concepts are essential to the proof of a given statement? This is a funda- mental and long-debated question in logic since the time of Leibniz, Kant and Frege, when a broad notion of analytic proof was formulated to mean truth by conceptual containments, or purity of method in mathematical arguments.
    [Show full text]
  • On Analyticity in Deep Inference
    On Analyticity in Deep Inference Paola Bruscoli and Alessio Guglielmi∗ University of Bath Abstract In this note, we discuss the notion of analyticity in deep inference and propose a formal definition for it. The idea is to obtain a notion that would guarantee the same properties that analyticity in Gentzen theory guarantees, in particular, some reasonable starting point for algorithmic proof search. Given that deep inference generalises Gentzen proof theory, the notion of analyticity discussed here could be useful in general, and we offer some reasons why this might be the case. This note is dedicated to Dale Miller on the occasion of his 60th birthday. Dale has been for both of us a friend and one of our main sources of scientific inspiration. Happy birthday Dale! 1 Introduction It seems that the notion of analyticity in proof theory has been defined by Smullyan, firstly for natural-deduction systems in [Smu65], then for tableaux systems in [Smu66]. Afterwards, analyticity appeared as a core concept in his influential textbook [Smu68b]. There is no widely accepted and general definition of analytic proof system; however, the commonest view today is that such a system is a collection of inference rules that all possess some form of the subfor- mula property, as Smullyan argued. Since analyticity in the sequent calculus is conceptually equivalent to analyticity in the other Gentzen formalisms, in this note we focus on the sequent calculus as a representative of all formalisms of traditional proof theory [Gen69]. Normally, the only rule in a sequent system that does not possess the subformula property is the cut rule.
    [Show full text]
  • The Method of Proof Analysis: Background, Developments, New Directions
    The Method of Proof Analysis: Background, Developments, New Directions Sara Negri University of Helsinki JAIST Spring School 2012 Kanazawa, March 5–9, 2012 Motivations and background Overview Hilbert-style systems Gentzen systems Axioms-as-rules Developments Proof-theoretic semantics for non-classical logics Basic modal logic Intuitionistic and intermediate logics Intermediate logics and modal embeddings Gödel-Löb provability logic Displayable logics First-order modal logic Transitive closure Completeness, correspondence, decidability New directions Social and epistemic logics Knowability logic References What is proof theory? “The main concern of proof theory is to study and analyze structures of proofs. A typical question in it is ‘what kind of proofs will a given formula A have, if it is provable?’, or ‘is there any standard proof of A?’. In proof theory, we want to derive some logical properties from the analysis of structures of proofs, by anticipating that these properties must be reflected in the structures of proofs. In most cases, the analysis will be based on combinatorial and constructive arguments. In this way, we can get sometimes much more information on the logical properties than with semantical methods, which will use set-theoretic notions like models,interpretations and validity.” (H. Ono, Proof-theoretic methods in nonclassical logic–an introduction, 1998) Challenges in modal and non-classical logics Difficulties in establishing analyticity and normalization/cut-elimination even for basic modal systems. Extension of proof-theoretic semantics to non-classical logic. Generality of model theory vs. goal directed developments in proof theory for non-classical logics. Proliferation of calculi “beyond Gentzen systems”. Defeatist attitudes: “No proof procedure suffices for every normal modal logic determined by a class of frames.” (M.
    [Show full text]
  • On the Importance of Being Analytic. the Paradigmatic Case of the Logic of Proofs Francesca Poggiolesi
    On the importance of being analytic. The paradigmatic case of the logic of proofs Francesca Poggiolesi To cite this version: Francesca Poggiolesi. On the importance of being analytic. The paradigmatic case of the logic of proofs. Logique et Analyse, Louvain: Centre national belge de recherche de logique. 2012, 55 (219), pp.443-461. halshs-00775807 HAL Id: halshs-00775807 https://halshs.archives-ouvertes.fr/halshs-00775807 Submitted on 19 Apr 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. F. POGGIOLESI On the Importance of Being Analytic The paradigmatic case of the logic of proofs Abstract In the recent literature on proof theory, there seems to be a new raising topic which consists in identifying those properties that characterise a good sequent calculus. The property that has received by far the most attention is the analyticity property. In this paper we propose a new argument in support of the analyticity property. We will do it by means of the example of the logic of proofs, a logic recently introduced by Artemov [1]. Indeed a detailed proof analysis of this logic sheds new light on the logic itself and perfectly exemplify our argument in favour of the analiticity.
    [Show full text]
  • Hypersequents and the Proof Theory of Intuitionistic Fuzzy Logic
    Clote, Peter G., and Helmut Schwichtenberg (eds.), Computer Science Logic. 14th International Workshop, CSL 2000. Fischbachau, Germany, August 21–26, 2000. Proceedings, pp. 187–201. Springer, Berlin, 2000 Hypersequents and the Proof Theory of Intuitionistic Fuzzy Logic⋆ Matthias Baaz1 and Richard Zach2 1 Institut f¨ur Algebra und Computermathematik E118.2, Technische Universit¨at Wien, A–1040 Vienna, Austria, [email protected] 2 Institut f¨ur Computersprachen E185.2, Technische Universit¨at Wien, A–1040 Vienna, Austria, [email protected] Abstract. Takeuti and Titani have introduced and investigated a logic they called intuitionistic fuzzy logic. This logic is characterized as the first-order G¨odel logic based on the truth value set [0, 1]. The logic is known to be axiomatizable, but no deduction system amenable to proof- theoretic, and hence, computational treatment, has been known. Such a system is presented here, based on previous work on hypersequent calculi for propositional G¨odel logics by Avron. It is shown that the system is sound and complete, and allows cut-elimination. A question by Takano regarding the eliminability of the Takeuti-Titani density rule is answered affirmatively. 1 Introduction Intuitionistic fuzzy logic IF was originally defined by Takeuti and Titani to be the logic of the complete Heyting algebra [0, 1]. In standard many-valued termi- nology, IF is [0, 1]-valued first-order G¨odel logic, with truth functions as defined below. The finite-valued propositional versions of this logic were introduced by G¨odel [8], and have spawned a sizeable area of logical research subsumed under the title “intermediate logics” (intermediate between classical and intuitionistic logic).
    [Show full text]
  • From Frame Properties to Hypersequent Rules in Modal Logics
    From Frame Properties to Hypersequent Rules in Modal Logics Ori Lahav School of Computer Science Tel Aviv University Tel Aviv, Israel Email: [email protected] Abstract—We provide a general method for generating cut- well-behaved simple cut-free sequent calculus, is naturally free and/or analytic hypersequent Gentzen-type calculi for a handled using hypersequents [3]. However, the full power of variety of normal modal logics. The method applies to all the hypersequent framework in the context of modal logics modal logics characterized by Kripke frames, transitive Kripke frames, or symmetric Kripke frames satisfying some properties, has not yet been exploited. given by first-order formulas of a certain simple form. This In this paper we show that the hypersequent framework includes the logics KT, KD, S4, S5, K4D, K4.2, K4.3, KBD, can be easily used for many more normal modal logics KBT, and other modal logics, for some of which no Gentzen in addition to S5. Indeed, we identify an (infinite) set of calculi was presented before. Cut-admissibility (or analyticity so-called “simple” frame properties, given by first-order in the case of symmetric Kripke frames) is proved semantically in a uniform way for all constructed calculi. The decidability formulas of a certain general form, and show how to of each modal logic in this class immediately follows. construct a corresponding hypersequent derivation rule for each simple property. The constructed rules are proved to be Keywords-modal logic; frame properties; proof theory; hy- persequent calculi; cut-admissibility; “well-behaved”, in the sense that augmenting the (cut-free) basic hypersequent calculus for the fundamental modal logic K with any (finite) number of these rules do not harm cut- I.
    [Show full text]
  • Proof Analysis Beyond Geometric Theories: from Rule Systems to Systems of Rules
    Proof analysis beyond geometric theories: from rule systems to systems of rules Sara Negri Department of Philosophy PL 24, Unioninkatu 40 A 00014 University of Helsinki Finland sara:negri@helsinki:fi Abstract A class of axiomatic theories with arbitrary quantifier alternations is identified and a conversion to normal form is provided in terms of generalized geometric implications. The class is also characterized in terms of Glivenko classes as those first-order formulas that do not contain implications or universal quantifiers in the negative part. It is shown how the methods of proof analysis can be extended to cover such axioms by means of conversion to systems of rules. The structural properties for the resulting extensions of sequent calculus are established and a generalization of the first-order Barr theorem is shown to follow as an immediate application. The method is also applied to obtain complete labelled proof systems for logics defined through their relational semantics. In particular, the method provides analytic proof systems for all the modal logics in the Sahlqvist fragment. 1 Introduction The central goal of the method of proof analysis is the design of appropriate proof systems that go beyond pure logic. What the adjective `appropriate' exactly denotes can be often identified with the property of being analytic, or, more generally, with the property of preserving the structural features of basic logical calculi and the consequences of analyticity. When the goal is achieved, one can extract crucial information from the analysis of proofs in a formal inference system for a given theory, in the same way as in pure logic.
    [Show full text]
  • CUT-FREE HYPERSEQUENT CALCULUS for S4.3. 1. Introduction
    Bulletin of the Section of Logic Volume 41:1/2 (2012), pp. 89{104 Andrzej Indrzejczak CUT-FREE HYPERSEQUENT CALCULUS FOR S4.3. Abstract Hypersequent calculi (HC) are the generalization of ordinary sequent calculi ob- tained by operating with sets of sequents instead of single sequents. HC, intro- duced independently by Pottinger and Avron, proved to be very useful in the field of nonclassical logics. Nevertheless their application to modal logics was rather limited. We provide a cut-free hypersequent calculus HCS4.3 for modal logic of linear frames based on the idea of hypersequent formalization for G¨odel- Dummett's logic due to Avron. Also a variant of HCS4.3 with analytic cut but with nonbranching logical rules is presented. 1. Introduction G. Pottinger [19], and independently A. Avron [3], introduced a generaliza- tion of Gentzen's sequent calculus called hypersequent calculus where hy- persequents are (multi)sets of ordinary sequents. This simple and straight- forward modification significantly increases the expressive power of or- dinary Gentzen apparatus by allowing additional transfer of information among different sequents. Hypersequents proved to be very useful in build- ing cut-free formalization of many nonclassical logics, including modal, rel- evant, multi-valued and fuzzy logics (e.g. Avron [4, 5], Baaz, Ciabattoni and Ferm¨uller[7] and other papers of these authors). In particular, replac- ing ordinary sequents with hypersequents made possible obtaining different cut-free systems for S5 (Pottinger [19], Avron [4], Poggiolesi [18]) and for one of the most important intermediate (or superintuitionistic) logic G¨odel- Dummett's logic (Avron [4, 6]).
    [Show full text]