FAIR Linked Data

Total Page:16

File Type:pdf, Size:1020Kb

FAIR Linked Data FAIR Linked Data - Towards a Linked Data backbone for users and machines Johannes Frey Sebastian Hellmann [email protected] Knowledge Integration and Linked Data Technologies (KILT/AKSW) & DBpedia Association InfAI, Leipzig University Leipzig, Germany ABSTRACT scientific and open data. While the principles became widely ac- Although many FAIR principles could be fulfilled by 5-star Linked cepted and popular, they lack technical details and clear, measurable Open Data, the successful realization of FAIR poses a multitude criteria. of challenges. FAIR publishing and retrieval of Linked Data is still Three years ago a dedicated European Commission Expert Group rather a FAIRytale than reality, for users and machines. In this released an action plan for "turning FAIR into reality" [1] empha- paper, we give an overview on four major approaches that tackle sizing the need for defining "FAIR for implementation". individual challenges of FAIR data and present our vision of a FAIR In this paper, we argue that Linked Data as a technology in Linked Data backbone. We propose 1) DBpedia Databus - a flex- combination with the Linked Open Data movement and ontologies ible, heavily automatizable dataset management and publishing can be seen as one of the most promising approaches for managing platform based on DataID metadata; that is extended by 2) the scholarly metadata as well as representing and connecting research novel Databus Mods architecture which allows for flexible, uni- results (RDF knowledge graphs) across the web. Although many fied, community-specific metadata extensions and (search) overlay FAIR principles could be fulfilled by 5-star Linked Open Data [5], systems; 3) DBpedia Archivo an archiving solution for unified han- the successful realization of FAIR principles for the Web of Data in dling and improvement of FAIRness for ontologies on publisher and its current state is a FAIRytale. consumer side; as well as 4) the DBpedia Global ID management We give an overview on the implementation of four major ap- and lookup services to cluster and discover equivalent entities and proaches that tackle individual challenges of FAIR data and present properties. our technical vision how they can be extended and interact together to get one step closer towards a backbone for FAIR Linked Data. CCS CONCEPTS 2 VISION • Information systems ! Web searching and information discovery; Service buses; Semantic web description languages; Our vision in a nutshell is direct and non-compromising: we en- • Applied computing ! Annotation. vision an information space of metadata that is openly licensed (CC-0), openly accessible in its full extent, fully automated in terms KEYWORDS of access and licenses, machine-readable, globally interoperable, FAIR, Linked Data, Dataset discovery, Data management, Data but decentral in nature, coping well with changes on the web and assessment, Ontologies last-but-not-least has automatically verifiable integrity checks to guarantee all of the aforementioned criteria. Our vision is crucial, ACM Reference Format: because it aims vagueness and "grey area" and also defends against Johannes Frey and Sebastian Hellmann. 2021. FAIR Linked Data - Towards "white lies" and "label fraud", i.e. systems claiming to be "open" a Linked Data backbone for users and machines. In Sci-K 2021: International Workshop on Scientific Knowledge: Representation, Discovery, and Assess- and "FAIR", but have serious limitations hidden in the fine print ment. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/nnnnnnn. or the technical implementation. We particular see the danger in nnnnnnn these systems as they exploit the good intentions of FAIR without delivering and without any checks or repercussions. 1 INTRODUCTION The FAIR guiding principles [9] were published in 2016 to ideologi- 3 FAIR LINKED DATA CHALLENGES cally drive the adoption of several guiding principles for publishing The FAIR guideline [9] lists 15 principles along the dimensions F (findability), A (accessibility), I (interoperability) and R (re-usability). Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed As a first high-level point of criticism, the guideline leaves many for profit or commercial advantage and that copies bear this notice and the full citation open questions w.r.t. the realization – Challenge C1 and is barely on the first page. Copyrights for components of this work owned by others than ACM actionable for data publishers. Secondly, the principles are not au- must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a tomatically verifiable – Challenge, C2 the overall compliance fee. Request permissions from [email protected]. is not measurable and is therefore hardly awardable and claimable Sci-K 2021, April 19–23, 2018, Ljubljana, Slovenia without the ability to check for proof or fulfillment. During our © 2021 Association for Computing Machinery. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00 endeavor to renovate and advance the creation and release of DB- https://doi.org/10.1145/nnnnnnn.nnnnnnn pedia knowledge graphs in the last 3 years [3, 4, 6, 7], we identified Sci-K 2021, April 19–23, 2018, Ljubljana, Slovenia Frey, et al. several challenges of publishing Linked Data in a FAIR way. We I3 M/D include qualified references to other M/D . denote the challenges in relation to the respective FAIR principle, I3C Biunique, persistent entity/concept identifiers are needed followed by the letter 퐶 for quick reference in the remainder of the to connect and relate knowledge in an efficient and reliable way. paper; (meta)data is abbreviated as M/D : IC Vocabulary mappings, entity interlinking, and value normal- F - Findability ization are needed to allow actual (semantic) interoperability. F1 M/D are assigned a globally unique and persistent identifier. R - Reusability F1C Linked Data as a technology uses globally unique, HTTP- R1 M/D are richly described with a plurality of accurate and relevant accessible identifier schemes and is therefore in its core well-suited. attributes. These schemes, however, are independently managed and heteroge- R1C Defining "accurate and relevant" M/D can be highly com- neous and thus needs to cope with identifier deduplication, change munity specific and lead to many heterogeneous specialized FAIR adaption (e.g. link rot) and cost of persistence. repositories that are incompatible to each other. A variety of "rich" F2 Data are described with rich metadata (defined by R1 below). metadata vocabularies to attract all kinds of communities and pre- F2C Deciding on the richness and granularity of metadata in- vent isolated solutions needs to be supported. volves multiple trade-offs between being homogeneous but still R1.1 M/D are released with a clear and accessible data usage license. flexible enough to accommodate a variety of use cases; between R1.2 M/D are associated with detailed provenance. being simple to understand and lightweight (especially in terms of R1.2C For reliable and meaningful provenance the used in- scalability for F4) but being verbose and accurate. Finding a consent put/referenced data also needs to be FAIR and the implementation for a publishing platform that scales and serves data from various needs to be compatible. domains seems tough to achieve in the long tail. Moreover, granu- R1.3 M/D meet domain-relevant community standards. larity can be dependent on the search context / information demand. R1.3C General purpose data can be used interdisciplinary and There is a need to be able to find/query via multiple granularity cross-domain. A Mechanism to associate multiple metadata de- layers of metadata. scriptions (without registering duplicates in the same or across F3 Metadata clearly and explicitly include the identifier of the data repositories) needs to be supported. they describe. F4 M/D are registered or indexed in a searchable resource. 4 APPROACHES F4C We argue that "searchable" is not enough in terms of A,I,R. We present four major approaches that address individual chal- The resource index must be FAIR itself to prevent M/D silos. Fur- lenges of FAIR data publishing, try to foster adherence to FAIR or thermore, indexing M/D relevant for all communities in one place aim at actively improving FAIRness. The chapter is summarized in will be hard or impossible to scale. If M/D is split across multiple Table 1. "FAIR data repositories/indexes" that non-FAIR itself, questions like a) "How to query multiple metadata (catalogs or repositories) in one 4.1 Databus, DataID & Collections attempt/unified way to find relevant information?", and b) "How to The development of the DBpedia Databus1 was driven by the need access, integrate and reuse these?" arise. for a flexible, heavily automatizable dataset management and pub- A - Accessibility lishing platform for a new and more agile DBpedia release cycle A1 M/D are retrievable by their identifier using a standardised com- [7]. It is inspired by the idea of transferring paradigms and tech- munications protocol. niques from software (release) management/deployment to data A1C Linked Data standards need to be enforced with validation. management, and the Maven Central Repository. Even with PURL(s) link rot occurs. The community is dependent The Databus uses the Apache Maven concept hierarchy group, on the registrar to take action (change redirection target). artifact, version and ports them to a Linked Data platform, in or- A1.1 The protocol is open, free, and universally implementable. der to manage data pipelines and enable automated publishing A1.1C Invalid deployments of Linked Data (invalid serialization, and consumption of data. Artifacts form the abstract identity of incorrect content-negotiation) limit or prevent access. a dataset with a stable dataset ID and can be used as entry point A1.2 The protocol allows for an authentication and authorisation to discover all versions.A version usually contains the same set of procedure, where necessary.
Recommended publications
  • Introduction to Linked Data and Its Lifecycle on the Web
    Introduction to Linked Data and its Lifecycle on the Web Sören Auer, Jens Lehmann, Axel-Cyrille Ngonga Ngomo, Amrapali Zaveri AKSW, Institut für Informatik, Universität Leipzig, Pf 100920, 04009 Leipzig {lastname}@informatik.uni-leipzig.de http://aksw.org Abstract. With Linked Data, a very pragmatic approach towards achieving the vision of the Semantic Web has gained some traction in the last years. The term Linked Data refers to a set of best practices for publishing and interlinking struc- tured data on the Web. While many standards, methods and technologies devel- oped within by the Semantic Web community are applicable for Linked Data, there are also a number of specific characteristics of Linked Data, which have to be considered. In this article we introduce the main concepts of Linked Data. We present an overview of the Linked Data lifecycle and discuss individual ap- proaches as well as the state-of-the-art with regard to extraction, authoring, link- ing, enrichment as well as quality of Linked Data. We conclude the chapter with a discussion of issues, limitations and further research and development challenges of Linked Data. This article is an updated version of a similar lecture given at Reasoning Web Summer School 2011. 1 Introduction One of the biggest challenges in the area of intelligent information management is the exploitation of the Web as a platform for data and information integration as well as for search and querying. Just as we publish unstructured textual information on the Web as HTML pages and search such information by using keyword-based search engines, we are already able to easily publish structured information, reliably interlink this informa- tion with other data published on the Web and search the resulting data space by using more expressive querying beyond simple keyword searches.
    [Show full text]
  • Linked Data Services for Internet of Things
    International Conference on Recent Advances in Computer Systems (RACS 2015) Linked Data Services for Internet of Things Jaroslav Pullmann, Dr. Yehya Mohamad User-Centered Ubiquitous Computing department Fraunhofer Institute for Applied Information Technology FIT Sankt Augustin, Germany {jaroslav.pullmann, yehya.mohamad}@fit.fraunhofer.de Abstract — In this paper we present the open source “LinkSmart Resource Framework” allowing developers to II. LINKSMART RESOURCE FRAMEWORK incorporate heterogeneous data sources and physical devices through a generic service facade independent of the data model, A. Rationale persistence technology or access protocol. We particularly consi- The Java Data Objects standard [2] specifies an interface to der the integration and maintenance of Linked Data, a widely persist Java objects in a technology agnostic way. The related accepted means for expressing highly-structured, machine reada- ble (meta)data graphs. Thanks to its uniform, technology- Java Persistence specification [3] concentrates on object-rela- agnostic view on data, the framework is expected to increase the tional mapping only. We consider both specifications techno- ease-of-use, maintainability and usability of software relying on logy-driven, overly detailed with regards to common data ma- it. The development of various technologies to access, interact nagement tasks, while missing some important high-level with and manage data has led to rise of parallel communities functionality. The rationale underlying the LinkSmart Resour- often unaware of alternatives beyond their technology bounda- ce Platform is to define a generic, uniform interface for ries. Systems for object-relational mapping, NoSQL document or management, retrieval and processing of data while graph-based Linked Data storage usually exhibit complex, maintaining a technology and implementation agnostic facade.
    [Show full text]
  • Using Shape Expressions (Shex) to Share RDF Data Models and to Guide Curation with Rigorous Validation B Katherine Thornton1( ), Harold Solbrig2, Gregory S
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repositorio Institucional de la Universidad de Oviedo Using Shape Expressions (ShEx) to Share RDF Data Models and to Guide Curation with Rigorous Validation B Katherine Thornton1( ), Harold Solbrig2, Gregory S. Stupp3, Jose Emilio Labra Gayo4, Daniel Mietchen5, Eric Prud’hommeaux6, and Andra Waagmeester7 1 Yale University, New Haven, CT, USA [email protected] 2 Johns Hopkins University, Baltimore, MD, USA [email protected] 3 The Scripps Research Institute, San Diego, CA, USA [email protected] 4 University of Oviedo, Oviedo, Spain [email protected] 5 Data Science Institute, University of Virginia, Charlottesville, VA, USA [email protected] 6 World Wide Web Consortium (W3C), MIT, Cambridge, MA, USA [email protected] 7 Micelio, Antwerpen, Belgium [email protected] Abstract. We discuss Shape Expressions (ShEx), a concise, formal, modeling and validation language for RDF structures. For instance, a Shape Expression could prescribe that subjects in a given RDF graph that fall into the shape “Paper” are expected to have a section called “Abstract”, and any ShEx implementation can confirm whether that is indeed the case for all such subjects within a given graph or subgraph. There are currently five actively maintained ShEx implementations. We discuss how we use the JavaScript, Scala and Python implementa- tions in RDF data validation workflows in distinct, applied contexts. We present examples of how ShEx can be used to model and validate data from two different sources, the domain-specific Fast Healthcare Interop- erability Resources (FHIR) and the domain-generic Wikidata knowledge base, which is the linked database built and maintained by the Wikimedia Foundation as a sister project to Wikipedia.
    [Show full text]
  • Linked Data Vs Schema.Org: a Town Hall Debate About the Future of Information
    Linked Data vs Schema.org: A Town Hall Debate about the Future of Information Schema.org Resources Schema.org Microdata Creation and Analysis Tools Schema.org Google Structured Data Testing Tool http://schema.org/docs/full.html http://www.google.com/webmasters/tools/richsnippets The entire hierarchy in one file. Microdata Parser Schema.org FAQ http://tools.seomoves.org/microdata http://schema.org/docs/faq.html This tool parses HTML5 microdata on a web page and displays the results in a graphical view. You can see the full details of each microdata type by clicking on it. Getting Started with Schema.org http://schema.org/docs/gs.html Drupal module Includes information about how to mark up your content http://drupal.org/project/schemaorg using microdata, using the schema.org vocabulary, and advanced topics. A drop-in solution to enable the collections of schemas available at schema.org on your Drupal 7 site. Micro Data & Schema.org: Guide To Generating Rich Snippets Wordpress plugins http://seogadget.com/micro-data-schema-org-guide-to- http://wordpress.org/extend/plugins/tags/schemaorg generating-rich-snippets A list of Wordpress plugins that allow you to easily insert A very comprehensive guide that includes an schema.org microdata on your site. introduction, a section on integrating microdata (use cases) schema.org, and a section on tools and useful Microdata generator resources. http://www.microdatagenerator.com A simple generator that allows you to input basic HTML5 Microdata and Schema.org information and have that info converted into the http://journal.code4lib.org/articles/6400 standard schema.org markup structure.
    [Show full text]
  • Linked Data Search and Browse Application
    IT 17 019 Examensarbete 30 hp Maj 2017 Linked Data Search and Browse Application Chao Cai Fatemeh Shirazi Nasab Institutionen för informationsteknologi Department of Information Technology Abstract Linked Data Search and Browse Application Chao Cai and Fatemeh Shirazi Nasab Teknisk- naturvetenskaplig fakultet UTH-enheten In order to achieve the ISO 26262 standard on the perspective of requirements traceability, a huge volume of data has been converted into RDF format, and been Besöksadress: stored in a Triple store. The need to have a web application to search and browse Ångströmlaboratoriet Lägerhyddsvägen 1 that RDF data has been raised. In order to build this application, several open- Hus 4, Plan 0 source components such as Apache Solr, Apache Jena, Fuseki and Technologies such as Java, HTML, CSS, and Javascript have been used. The application has Postadress: been evaluated with SUS method, an industry standard and reliable tool for Box 536 751 21 Uppsala measuring the system usability, by six engineers from Scania, the evaluation result in general is positive, five out of six participants successfully retrieved their desired Telefon: search results. 018 – 471 30 03 Telefax: Keyword: ISO 26262, Traceability, Triple store, Web application 018 – 471 30 00 Hemsida: http://www.teknat.uu.se/student Handledare: Mattias Nyberg Ämnesgranskare: Tore Risch Examinator: Mats Daniels IT 17 019 Tryckt av: Reprocentralen ITC Acknowledgement We wish to extend our deepest gratitude to our advisors, Dr. Mat- tias Nyberg and Dr. Tore Risch, for their thoughtful guidance throughout our master thesis. We appreciate many fruitful discus- sions and helpful advice from the members of the Scania RESA group.
    [Show full text]
  • Creating a Linked Data-Friendly Metadata Application Profile for Archival Description Poster
    Proc. Int’l Conf. on Dublin Core and Metadata Applications 2017 Creating a Linked Data-Friendly Metadata Application Profile for Archival Description Poster Matienzo, Mark A. Roke, Elizabeth Russey Carlson, Scott Stanford University, U.S.A. Emory University, U.S.A. Rice University, U.S.A. [email protected] [email protected] [email protected] Keywords: archival description; linked data; archives; Schema.org; metadata mapping Abstract We provide an overview of efforts to apply and extend Schema.org for archives and archival description. The authors see the application of Schema.org and extensions as a low barrier means to publish easily consumable linked data about archival resources, institutions that hold them, and contextual entities such as people and organizations responsible for their creation. Rationale and Objectives Schema.org has become one of the most widely recognized and adopted mechanisms for publishing structured data on the World Wide Web, and has incorporated extensions to address the needs of specialist communities (Guha, et al., 2016). It has been used with some success in cultural heritage sector through libraries and digital collections platforms using both Schema.org core types and properties, as well as SchemaBibExtend, an extension for bibliographic information (bib.schema.org, n.d.). These uses include leveraging it as a means to improve search engine rankings (Scott, 2014), to publish library staff directories (Clark and Young, 2017) and to expose linked data about collections materials (Lampron, et al., 2016). However, the adoption of Schema.org in the context of archives has been somewhat limited. Our project focuses on identifying pragmatic methods to publish linked data about archives, archival resources, and their relationships, and to identify gaps between existing models.
    [Show full text]
  • Entity Linking with a Knowledge Base: Issues, Techniques, and Solutions Wei Shen, Jianyong Wang, Senior Member, IEEE, and Jiawei Han, Fellow, IEEE
    1 Entity Linking with a Knowledge Base: Issues, Techniques, and Solutions Wei Shen, Jianyong Wang, Senior Member, IEEE, and Jiawei Han, Fellow, IEEE Abstract—The large number of potential applications from bridging Web data with knowledge bases have led to an increase in the entity linking research. Entity linking is the task to link entity mentions in text with their corresponding entities in a knowledge base. Potential applications include information extraction, information retrieval, and knowledge base population. However, this task is challenging due to name variations and entity ambiguity. In this survey, we present a thorough overview and analysis of the main approaches to entity linking, and discuss various applications, the evaluation of entity linking systems, and future directions. Index Terms—Entity linking, entity disambiguation, knowledge base F 1 INTRODUCTION Entity linking can facilitate many different tasks such as knowledge base population, question an- 1.1 Motivation swering, and information integration. As the world HE amount of Web data has increased exponen- evolves, new facts are generated and digitally ex- T tially and the Web has become one of the largest pressed on the Web. Therefore, enriching existing data repositories in the world in recent years. Plenty knowledge bases using new facts becomes increas- of data on the Web is in the form of natural language. ingly important. However, inserting newly extracted However, natural language is highly ambiguous, es- knowledge derived from the information extraction pecially with respect to the frequent occurrences of system into an existing knowledge base inevitably named entities. A named entity may have multiple needs a system to map an entity mention associated names and a name could denote several different with the extracted knowledge to the corresponding named entities.
    [Show full text]
  • Data Extraction Using NLP Techniques and Its Transformation to Linked Data
    Vincent Kríž, Barbora Hladká, Martin Nečaský, Tomáš Knap Data Extraction using NLP techniques and its Transformation to Linked Data MICAI 2014 Mexico, Tuxtla Gutiérrez Institute of Formal and Applied Linguistics Faculty of Mathematics and Physics Charles University in Prague [email protected] Czech Republic http://ufal.mff.cuni.cz/intlib Kríž, Hladká, Nečaský, Knap: Data Extraction using NLP techniques and its Transformation to Linked Data | MICAI2014 Motivation ● large collections of documents ● efficient browsing & querying ● typical approaches – full-text search no semantics – metadata search ● semantic interpretation of documents → suitable DB & query language → user-friendly browsing & querying Kríž, Hladká, Nečaský, Knap: Data Extraction using NLP techniques and its Transformation to Linked Data | MICAI2014 Scenario ● Cooperation between – Information Extraction – Semantic Web Kríž, Hladká, Nečaský, Knap: Data Extraction using NLP techniques and its Transformation to Linked Data | MICAI2014 Scenario ● Extracting knowledge base – set of entities and relations between them – linguistic analysis (RExtractor) ● Knowledge base representation – Linked Data Principles – Resource Description Framework (RDF) Kríž, Hladká, Nečaský, Knap: Data Extraction using NLP techniques and its Transformation to Linked Data | MICAI2014 Scenario ● Extracting knowledge base – set of entities and relations between them – linguistic analysis (RExtractor) ● Knowledge base representation – Linked Data Principles – Resource Description Framework (RDF) Kríž,
    [Show full text]
  • Semantic Web: a Review of the Field Pascal Hitzler [email protected] Kansas State University Manhattan, Kansas, USA
    Semantic Web: A Review Of The Field Pascal Hitzler [email protected] Kansas State University Manhattan, Kansas, USA ABSTRACT which would probably produce a rather different narrative of the We review two decades of Semantic Web research and applica- history and the current state of the art of the field. I therefore do tions, discuss relationships to some other disciplines, and current not strive to achieve the impossible task of presenting something challenges in the field. close to a consensus – such a thing seems still elusive. However I do point out here, and sometimes within the narrative, that there CCS CONCEPTS are a good number of alternative perspectives. The review is also necessarily very selective, because Semantic • Information systems → Graph-based database models; In- Web is a rich field of diverse research and applications, borrowing formation integration; Semantic web description languages; from many disciplines within or adjacent to computer science, Ontologies; • Computing methodologies → Description log- and a brief review like this one cannot possibly be exhaustive or ics; Ontology engineering. give due credit to all important individual contributions. I do hope KEYWORDS that I have captured what many would consider key areas of the Semantic Web field. For the reader interested in obtaining amore Semantic Web, ontology, knowledge graph, linked data detailed overview, I recommend perusing the major publication ACM Reference Format: outlets in the field: The Semantic Web journal,1 the Journal of Pascal Hitzler. 2020. Semantic Web: A Review Of The Field. In Proceedings Web Semantics,2 and the proceedings of the annual International of . ACM, New York, NY, USA, 7 pages.
    [Show full text]
  • The Relationship Between BIBFRAME and OCLC•S Linked-Data Model Of
    The Relationship between BIBFRAME and OCLC’s Linked-Data Model of Bibliographic Description: A Working Paper Carol Jean Godby Senior Research Scientist OCLC Research The Relationship between BIBFRAME and OCLC’s Linked-Data Model of Bibliographic Description: A Working Paper Carol Jean Godby, for OCLC Research © 2013 OCLC Online Computer Library Center, Inc. This work is licensed under a Creative Commons Attribution 3.0 Unported License. http://creativecommons.org/licenses/by/3.0/ June 2013 Updates: September 2013 — This version corrects a problem with attribution noted by reviewers of the previous draft. The models based on Schema.org described in Section 2 were derived from ideas being discussed by the W3C Schema Bib Extend community group but were developed by OCLC. The previous version of this draft incorrectly attributes this work to the W3C group. The analysis is otherwise unchanged. OCLC Research Dublin, Ohio 43017 USA www.oclc.org ISBN: 1-55653-460-4 (978-1-55653-460-7) OCLC (WorldCat): 850705869 Please direct correspondence to: Carol Jean Godby Senior Research Scientist [email protected] Suggested citation: Godby, Carol Jean. 2013. The Relationship between BIBFRAME and OCLC’s Linked-Data Model of Bibliographic Description: A Working Paper. Dublin, Ohio: OCLC Research. http://www.oclc.org/content/dam/research/publications/library/2013/2013-05.pdf. The Relationship between BIBFRAME and OCLC’s Schema.org ‘Bib Extensions’ Model: A Working Paper Acknowledgement The ideas described in the document represent a team effort with my OCLC colleagues Jonathan Fausey, Ted Fons, Tod Matola, Richard Wallis, and Jeff Young. I am also grateful for comments by Karen Coyle and other members of the W3C ‘Schema Bib Extend’ Community Group on an earlier version of this draft, which led to many improvements.
    [Show full text]
  • Connecting RDA and RDF Linked Data for a Wide World of Connected Possibilities
    Practice Connecting RDA and RDF Linked Data for a Wide World of Connected Possibilities Ashleigh Faith & Michelle Chrzanowski Ashleigh N. Faith, MLIS is an Adjunct Instructor at the University of Pittsburgh Information School, [email protected] Michelle Chrzanowski, MLS is a Reference Librarian at the Tidewater Community College Norfolk Campus Library, [email protected] Libraries have struggled with connecting a plethora of content and the metadata stored in catalogs to patrons. Adding more value to catalogs, more tools for reference librarians, and enriched patron search, linked data is a means to connect more people with more relevant information. With the recent transition to the Resource Description and Access (RDA) cataloging standard within libraries, linking data in library databases has become a much easier project to tackle, largely because of another standard called Resource Description Framework (RDF). Both focus on resource description and both are components of linked data within the library. Tying them together is the Functional Requirements for Bibliographic Records (FRBR) conceptual framework. Acknowledging that linked data components are most likely new to many librarians, this article seeks to explain what linked data is, how RDA and RDF are connected by FRBR, and how knowledge maps may improve information access. Introduction Interest in linked data has been growing. Recently, a search of the abstract databases Scopus, Web of Science, and Google Scholar show “linked data” as a search term an average of 45,633 times from 2010 to July 2015. From January to July 2015 alone, "linked data" was searched an average of 3,573 times. It is therefore no wonder that more people are paying attention to data and how it can be linked to other data.
    [Show full text]
  • Improving Data Identification and Tagging for More Effective Decision Making in Agriculture Pascal Neveu, Romain David, Clement Jonquet
    Improving data identification and tagging for more effective decision making in agriculture Pascal Neveu, Romain David, Clement Jonquet To cite this version: Pascal Neveu, Romain David, Clement Jonquet. Improving data identification and tagging for more effective decision making in agriculture. Leisa Armstrong. Improving Data Management and Decision Support Systems in Agriculture, 85, Burleigh Dodds Science Publishing, 2020, Series in Agricultural Science, 978-1-78676-340-2. hal-02164149 HAL Id: hal-02164149 https://hal.archives-ouvertes.fr/hal-02164149 Submitted on 11 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Improving data identification and tagging for more effective decision making in agriculture Pascal Neveu and Romain David, INRA, France and Clement Jonquet, LIRMM, France Abstract Data integration, data analytics and decision support methods can help increase agriculture challenges such as climate change adaptation or food security. In this context, smart data acquisition systems, interoperable information systems and frameworks for data structuring are required. In this chapter we describe methods for data identification and provide some recommendations. We also describe how to enrich data with semantics and a way to tag data with the relevant ontology.
    [Show full text]