Nanoporous Silicon from Low-Cost Natural Clinoptilolite for Lithium Storage

Total Page:16

File Type:pdf, Size:1020Kb

Nanoporous Silicon from Low-Cost Natural Clinoptilolite for Lithium Storage RSC Advances View Article Online PAPER View Journal | View Issue Nanoporous silicon from low-cost natural clinoptilolite for lithium storage† Cite this: RSC Adv.,2015,5, 56772 Rongrong Miao,a Jun Yang,*a Yanan Wu,a Jiulin Wang,a Yanna Nulia and Wei Lub Despite the fact that silicon materials can be synthesized from various sources, deriving them from earth- abundant resources is of strategic significance for industrial processing. Here nanoporous silicon (pSi) was Received 9th May 2015 derived from earth-abundant natural clinoptilolite (NCLI) without complicated pretreatment. After surface Accepted 22nd June 2015 carbon coating, the pSi–C composite displayed a superior stable capacity of ca. 1257 mA h gÀ1 and good DOI: 10.1039/c5ra08622a cycling stability with 87.5% capacity retention on the 200th cycle versus the 3rd one, which benefit from www.rsc.org/advances its nanoporous structure, very small primary particle size of 10 nm and highly conductive carbon-matrix. Introduction materials have been proven to be effective in improving cycle life and/or rate properties, but the high-cost silica source (e.g. Lithium ion batteries, as the most dominant power source SBA-15,9 KIT-6 (ref. 10)) and complicated synthesis process may currently, have been extensively used in portable devices, hinder its large-scale production. As we all know, with the (hybrid) electric vehicles (HEV) and grid-scale stationary energy increase of transportation markets in hybrid electrical vehicles storage. However, the limitation in energy density and power (HEVs), plug-in hybrid electrical vehicles (PHEVs) and electrical density of existing lithium ion battery systems based on vehicles (EV), this broader and large-scale application raises conventional graphite anodes and lithium metal oxide or issues of price and environment, as well as scalability, thus new phosphate cathodes (LiCoO2, LiMn2O4, LiFePO4) is becoming designs of Si anodes with the desired combination of functional more and more prominent.1 During searching for new material features have to be supplemented by using cost-effective silica with much higher energy density, silicon (Si) attracts tremen- precursor and preparation method, which is becoming dous attention due to its ten times higher theoretical capacity extremely signicant for its practical application. À (4200 mA h g 1) than traditionally used graphite anodes.2 Recently, the developments on synthesizing porous or nano- Whereas the main impediment of silicon as anode material is scaled Si from low cost silica precursors look quite promising.11 its severe particle pulverization and loss of electronic conduc- Some synthetic silica precursors (e.g. modied stober silica or tivity of the electrode originated from huge volumetric change silica aerogels) are employed to synthesize porous silicon.12,13 during repeated lithiation/delithiation. Therefore, extensive Although excellent cyclability can be obtained, the preparation research has been devoted to address the aforementioned issue. process of silica precursor seems to be complicated. Thereby, For instance, downsizing the dimensions of silicon to nanoscale some natural silica precursors also attract attention. For could buffer the large (de)lithiation strains without fracture to instance, Wang et al.14 synthesized porous silicon by employing some extent; other strategies are to design some inner free diatomaceous earth as cheap silica source. Nevertheless, the space in silicon to accommodate the large volume expansions obtained porous silicon with carbon coating demonstrated and thereby well-designed silicon with various special struc- relatively poor performance with a reversible capacity of 633 À tures have been proposed, including pomegranate-like hierar- mA h g 1 aer 30 cycles and silicon without carbon coating was À chical structure, lotus-root-like mesoporous structure, etc.3–5 In even lower with only 376 mA h g 1. Other cheap silica sources addition, carbon materials have also been put inside to form such as sand or rice husk have also been selected and some diverse Si–C composite, which is used to stabilize the whole silicon materials keeping the original silica structures were structure and further enhance electronic conductivity of active prepared successfully by magnesiothermic reduction – material.6–8 Among these strategies, constructing porous silicon process.15 17 However, the tedious pre-treatments of sand, such as milling, calcining and washing with HCl, HF and NaOH, may be unfavorable for its potential industrial application.17 aShanghai Electrochemical Energy Devices Research Center, School of Chemistry & Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China. Although silicon derived from rice husk exhibits high reversible À1 E-mail: [email protected]; Fax: +86-21-54747667; Tel: +86-21-54747667 capacity of 2790 mA h g and long cycle life of 86% capacity bDepartment of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, retention over 300 cycles, the relatively low silica content (23% USA in mass) in rice husks largely reduces the single conversion † Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ra08622a 56772 | RSC Adv.,2015,5, 56772–56779 This journal is © The Royal Society of Chemistry 2015 View Article Online Paper RSC Advances yield of silicon.16 And the sophisticated pretreatments are also low-cost, energy-efficient and simple to be realized in large-scale disadvantageous to large-scale production. production. Herein, nanoporous silicon with primary particle size in 10 nm was directly synthesized from low-cost natural cli- noptilolite (NCLI) through magnesiothermic reduction method Experimental with simple and facile pretreatment. Natural clinoptilolite is an Synthesis of porous silicon earth-abundant resource of aluminosilicate available all over Scheme 1 gives an overview of the synthesis procedure of the À1 the world with extremely low-cost (RMB 2.0 kg ). It is the most porous Si material from NCLI. Natural clinoptilolite (NCLI) common natural zeolite and commercially used in wastewater containing ca. 68.6 wt% SiO2 from Zhejiang province, was rstly processing, with cage-like structure containing AlO4 and SiO4 ball-milled with a Planetary Mono Mill P-6 (Fritsch, Germany) at 18,19 tetrahedra linked through the common oxygen atoms. It a rotation speed of 500 rpm for 10 h to decrease the particle size belongs to heulandite family with the molar Si/Al ratio above and open the transfer channels (mass ratio of balls/material/ 20 4, and its speci c crystal building is characterized by two water ¼ 10 : 2 : 1). channels running parallel to c-axis: a channel consisting of a The mixture of obtained NCLI powder and magnesium – 10-member ring with the size of 0.44 0.72 nm and a channel powder (Sinopharm Chemical Reagent Co. Ltd, 100–200 mesh) consisting of 8-member ring with the size of 0.41–0.47 nm, and ¼ were loaded in an alundum boat with a molar ratio of Mg/SiO2 a channel running parallel to a-axis consisting of an 8-member 2.1. And then heated in a tube furnace at 650 C for 4 h under Ar tetrahedral ring with the size of 0.40–0.55 nm (Scheme 1).21 (95 vol%)/H2 (5 vol%) mixed atmosphere. The heating speed À These channels in NCLI framework structure form the primary was kept at 2 C min 1. The obtained brown powder was rstly micro-pores. Notably, the presence of secondary porosity is immersed in 2 M HCl solution for 12 h to remove MgO and another interesting feature of NCLI, which is connected with other impurities in NCLI. To further remove small amount of cleavage of NCLI grains and other minerals in the NCLI rocks.22 unreacted and surface-grown SiO2, 5 wt% HF/EtOH(10 vol%) This unique polymodal pore size distribution is favorable for solution was used and stirred for 15 min, then washed with the homogeneity of magnesiothermic reduction reaction and distilled water and ethanol by ltration, nally vacuum-dried at nanoporous silicon was successfully obtained even in the 65 C for 2 h. presence of alumina and other mineral species. Carbon was coated on the as-prepared porous silicon (pSi) by Compared with the reported silica templates for producing CVD method using toluene as the carbon source. The obtained porous silicon, the silica source of natural clinoptilolite (NCLI) pSi powder was loaded in an alundum boat and placed at the in this paper has several advantages: (i) the intricate cage and center of a quartz tube furnace. Next, the precursor gas (argon À channel architectures in NCLI are bene cial to obtain porous and toluene with the gas ow of 200 ml min 1) was introduced structured silicon with nano-scaled primary particles in size of into the furnace for 30 min to ush away any oxygen in the 10 nm, which accommodate the large volume expansion and reactor. Then, the furnace temperature was increased from À ensure the facile strain relaxation; (ii) as-synthesized porous room temperature to 800 C at a rate of 10 C min 1 and kept at silicon a er carbon modi cation exhibits excellent capacity 800 C for 25 min. The furnace was cooled slowly to room retention and rate performance; (iii) NCLI inherits relatively temperature. At high temperature, the toluene decomposed – high SiO2 content of 50 70 wt%, extremely low cost and abun- quickly and carbon deposited onto the surface of pSi particles. dant reserves in nature; (iv) there is no any complicated pre- The carbon content in the composite was controlled at treatment for the NCLI and the overall synthesis process is 23.6 wt%. Structure and morphology characterization X-ray diffraction (XRD) patterns were recorded using Cu-Ka radiation at 40 kV with an X-ray Diffractometer (D/max-2200/PC, Rigaku). The morphologies of synthesized silicon and related composite materials were observed by a eld emission scanning electron microscope (FESEM, JEOL JSM-7401F). Transmission electron microscope (TEM, JOEL JEM-100CX) was employed to characterize the microstructures of as-synthesized materials.
Recommended publications
  • The Characterization of Indonesian's Natural Zeolite for Water Filtration System
    Valensi Vol. 3 No. 2, November 2013 (129-137) ISSN : 1978 - 8193 The Characterization of ,ndonesian‘s Natural Zeolite For Water Filtration System Mirzan T. Razzak1,2*, Thamzil Las2, Priyambodo1 1Center for Integrated Laboratory, 2Faculty of Science and Technology State Islamic University of Syarif Hidayatullah Jakarta 15412 *Email: [email protected] Abstract The characterization of ,ndonesian‘s natural zeolite for water purification has been done. The objective is to obtain a general guidance for development of natural zeolite in molecular sieves, ion exchange and catalyst applications. The zeolites originated from Lampung (ZL) was characterized by using XRD. It was found that the zeolites indicate belong to clinoptilatite and mordenite groups, respectively. The crystal system for ZL was monoclinic with end-centered lattice and space group of Cm/2 (12). The crystal system for ZB was orthorhombic with end- centered lattice and space group of CmC21 (36). The character of both zeolites were confirm by ICDD standard library. It was also found that the particle size of zeolites did not affect the XRD spectra where zeolite of 40-50 mesh was similar to that XRD spectra of zeolite of 170-200 mesh. The chemical analyses show that both zeolites contain almost similar chemical elements. The contents of Fe, Ca, and K were found higher in ZL as it is compared to ZB. Reciprocally, Na was found higher in ZB. The water filtration ability shows that ZB was better than ZL for filtering of Pb and Fe elements. These ability were improved by chemical activation of zeolites. These two zeolites, howover, behave similar less ability for the filtering of Ca and Mg elements due to that elements probably were originally exist in the zeolite structure.
    [Show full text]
  • Distribution and Genesis of Authigenic Silicate Minerals in Tuffs of Pleistocene Lake Tecopa, Inyo County California
    Distribution and Genesis of Authigenic Silicate Minerals In Tuffs of Pleistocene Lake Tecopa, Inyo County California GEOLOGICAL SURVEY PROFESSIONAL PAPER 597 Distribution and Genesis of Authigenic Silicate Minerals In Tuffs of Pleistocene Lake Tecopa, Inyo County California By RICHARD A. SHEPPARD and ARTHUR J. GUDE 3d GEOLOGICAL SURVEY PROFESSIONAL PAPER 597 Zeolites, potassium feldspar, searlesite and clay minerals formed during diagenesis of rhyolitic vitric tuffs that were deposited in a saline lake UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1968 UNITED STATES DEPARTl\fENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library of Congress catalog-card No. GS 68-196 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 -Price 40 cents (paper cover) CONTENTS Page Page Abstract __________________________________________ _ 1 Authigenic minerals-Continued Introduction--------------------------------------- 1 Erionite ___ ------ __ --------- __ - ----- ____ ------- 15 Location ______________________________________ _ 1 Opal---------------------------------------~-- 16 Geography ____________________________________ _ 1 Phillipsite_________________________ ---_____ ·--_- 16 Previous work _________________________________ _ 2 Potassium feldspar _____________________________ _ 18 Name of the lake ______________________________ _ 2 Searlesite ________________ -- _______ ------------- 18 , Scope of investigation __________________________ _ 2 Diagenetic
    [Show full text]
  • 1 Critical Review on Clinoptilolite Safety and Medical Applications in Vivo 1
    1 Critical review on clinoptilolite safety and medical applications in vivo 2 Sandra Kraljević Pavelić1*, Jasmina Simović Medica2, Darko Gumbarević1, Ana Filošević, 3 Nataša Pržulj3, Kresimir Pavelic1,4, 4 5 1 University of Rijeka, Department of Biotechnology, Centre for High-throughput 6 technologies, Radmile Matejčić 2, 51000 Rijeka, Croatia 7 2 General Hospital Pula, Negrijeva 6/Zagrebačka 30, 5100 Pula, Croatia 8 3 University College London, Computer Science Department, London, WC1E 6BT, UK 9 4 Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia 10 Correspondence: 11 Professor Sandra Kraljević Pavelić, University of Rijeka, Department of Biotechnology, 12 Centre for High-throughput technologies, Radmile Matejčić 2, 51000 Rijeka, Croatia, 13 [email protected], 14 15 E-mail addresses: 16 Jasmina Simović Medica [email protected] 17 Darko Gumbarević [email protected] 18 Ana Filošević [email protected] 19 Kresimir Pavelic [email protected], [email protected] 20 Nataša Pržulj [email protected] 21 1 22 Abstract: 23 Unique and outstanding physical and chemical properties of zeolite materials have made them 24 extremely useful in a variety of applications including agronomy, ecology, manufacturing and 25 industrial processes. Recently, a more specific application of one naturally occurring zeolite 26 material, clinoptilolite, has widely been studied in veterinary and human medicine. Due to a 27 number of positive effects on health, including detoxification properties, usage of clinoptilolite- 28 based products in vivo increased enormously. However, concerns have been raised in the 29 public of the safety of clinoptilolite materials for in vivo applications. Here, we review the 30 scientific literature on the health effects and safety in medical applications of different 31 clinoptilolite-based materials and propose some comprehensive, scientifically-based 32 hypotheses on possible biological mechanisms underlying observed effects on the health and 33 body homeostasis.
    [Show full text]
  • The Genesis of Zeolites
    Eur. J. Mineral. 1989,1,479-487 The genesis of zeolites GLAUCoGOTTARDIt* Istituto di Mineralogia e Petrologia, Università di Modena, via S. Eufemia 19,1-41100 Modena, Italy Abstract: The equilibrium diagrams of zeolites and the different possibilities of synthesizing zeolites starting from chemicals, minerals, and natural glasses are reviewed so to have a general picture of the conditions of crystallization of these minerals. Subsequently, a description and interpretation is given of the geological environments where zeolites crystallize in nature. Key-words: zeolite, diagenesis, very-low-grade metamorphism, hydrothermalism, volcanic glass. 1. Introduction and heulandite generally contain some M+ ca­ tions, which are almost absent in laumontite, yu­ This topic has been the subject of so many publi­ gawaralite and wairakite, so the alkali metal con­ cations (e.g. Hay, 1978, 1986; Iijima, 1978, 1980; centration in the system may influence the given Kastner & Stonecipher, 1978; Surdam & Shep- boundaries. Additional diagrams on these zeolites pard, 1978) over the last ten years, that one may can be found in the literature, but none is known wonder "Why another one?". As a matter of fact, to the author for zeolites other than those men­ all these previous studies give detailed informa­ tioned here. Field and laboratory evidence suggests tion on rock-forming zeolites, generally crystal­ that some other alkali zeolites may have a stabil­ lized from natural glasses during diagenesis, but ity field; this is certainly true for clinoptilolite, they omit any consideration of zeolites in veins the siliceous alkali-rich variant of heulandite, and and vugs of massive rocks. The author also aims is also probably true for natrolite and mordenite.
    [Show full text]
  • Kinetic Studies of Cs+ and Sr2+ Ion Exchange Using Clinoptilolite in Static Columns and an Agitated Tubular Reactor (ATR)
    chemengineering Article Kinetic Studies of Cs+ and Sr2+ Ion Exchange Using Clinoptilolite in Static Columns and an Agitated Tubular Reactor (ATR) Muhammad Yusuf Prajitno 1,* , Mohamad Taufiqurrakhman 2 , David Harbottle 1 and Timothy N. Hunter 1,* 1 School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK; [email protected] 2 School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK; [email protected] * Correspondence: [email protected] (M.Y.P.); [email protected] (T.N.H.); Tel.: +44-(0)113-343-2790 (T.N.H.) Abstract: Natural clinoptilolite was studied to assess its performance in removing caesium and stron- tium ions, using both static columns and an agitated tube reactor (ATR) for process intensification. Kinetic breakthrough curves were fitted using the Thomas and Modified Dose Response (MDR) mod- els. In the static columns, the clinoptilolite adsorption capacity (qe) for 200 ppm ion concentrations was found to be ~171 and 16 mg/g for caesium and strontium, respectively, highlighting the poor material ability to exchange strontium. Reducing the concentration of strontium to 100 ppm, however, led to a higher strontium qe of ~48 mg/g (close to the maximum adsorption capacity). Conversely, halving the column residence time to 15 min decreased the q for 100 ppm strontium solutions e to 13–14 mg/g. All the kinetic breakthrough data correlated well with the maximum adsorption Citation: Prajitno, M.Y.; capacities found in previous batch studies, where, in particular, the influence of concentration on the Taufiqurrakhman, M.; Harbottle, D.; slow uptake kinetics of strontium was evidenced.
    [Show full text]
  • Synthesis of a Heulandite-Type Zeolite by Hydrothermal Conversion of Zeolite Pl
    Synthesis of a heulandite-type zeolite by hydrothermal conversion of zeolite Pl Shervin Khodabandeh and Mark E. Davis* Department of Chemical Engineering, California Institute of Technology, Pasadena, CA 91 125, USA A synthetic analogue of the zeolite heulandite is elemental analysis). The powder X-ray diffraction pattern of synthesized by hydrothermal treatment of zeolite P1 with this solid is shown in Fig. l(a). solutions containing CaClz and NaOH. Since perlite glass is a natural material, it contains impurities similar to those found in natural heulandite. Therefore, we Heulandite-type zeolites (heulandite and clinoptilolite) are the developed a synthesis route to heulandite that utilized pure most abundant natural zeolites; in spite of this, their synthesis in starting reagents. Zeolite P1 was prepared from an amorphous the laboratory has been extremely difficult. A natural calcium- aluminosilicate gel having the composition A1203: 9.4 dominant zeolite, heulandite possesses a two-dimensional pore Si02:3.7 Na20:x H20 as follows. Two grams of sodium structure consisting of intersecting channels in distinct crys- aluminate (from EM) were dissolved in 60 ml of distilled water tallographic directions bounded by eight and ten tetrahedral and 4 g of a SO% m/m solution of NaOH were added to this atoms.' Heulandite zeolites have Si/Al ratios between 2.8 and 4. solution. The solution was stirred while 5.20 g of Cab-0-Sil Clinoptilolite is a heulandite-type zeolite that has an Si/Al ratio (grade M5) were slowly added. The resulting gel was stirred at > 4, and a sodium and potassium content such that (Na + K) > room temp.
    [Show full text]
  • Gravimetric Adsorption Measurements of Helium on Natural Clinoptilolite and Synthetic Molecular Sieves at Pressures up to 3500 K
    Gravimetric adsorption measurements of helium on natural clinoptilolite and synthetic molecular sieves at pressures up to 3500 kPa Arash Arami-Niya, Thomas E. Rufford*, Greg Birkett, Zhonghua Zhu School of Chemical Engineering, The University of Queensland, St Lucia 4072 Australia *Corresponding author: [email protected] Abstract We report helium adsorption capacities and the true specific impenetrable solid volumes of a clinoptilolite-rich Escott zeolite from Werris Creek (Australia), synthetic 3A and 4A zeolites, and carbon molecular sieve 3K-172 measured by a gravimetric method at pressures of (300 - 3500) kPa and temperatures in the range of (303 - 343) K. Our helium adsorption procedure extends the previous works by Gumma and Talu [1] to determine the impenetrable solid volume of the adsorbent, which in standard helium pycnometry is determined under the assumption that helium does not adsorb at room temperature. Our results confirm helium adsorption on these solids is small, but not zero: equilibrium helium adsorption capacities measured at 3500 kPa and 303 K were 0.067 mmol/g on Escott, 0.085 mmol/g on 3A, 0.096 mmol/g on 4A and 0.089 mmol/g on 3K-172. The specific solid volumes determined by the Gumma and Talu method were 10 – 15 % larger than the specific solid volumes measured by standard helium pycnometry, and this error can result in uncertainties of 2.6 – 28 % in the equilibrium adsorption capacities of CO2 and N2 measured at high pressures. The uncertainties were largest for N2 on the Escott zeolite, which had the lowest equilibrium adsorption capacity for N2.
    [Show full text]
  • A Review: Insecticidal Potential of Zeolite (Clinoptilolite), Toxicity Ratings and General Properties of Turkish Zeolites
    11th International Working Conference on Stored Product Protection A review: Insecticidal potential of Zeolite (Clinoptilolite), toxicity ratings and general properties of Turkish Zeolites Eroglu, N.*# The Scientific and Technological Research Council of Turkey, Food Institute, Gebze, Kocaeli, Turkey *Corresponding author, Email: [email protected], [email protected] #Presenting author, Email: [email protected], [email protected] DOI: 10.14455/DOA.res.2014.116 Abstract Zeolites are microporous crystalline aluminosilicates derived from the reaction of volcanic rocks, ash layers and an alkaline groundwater. Atlas of Zeolite Framework Types currently recognizes about 218 framework Zeolite structures. Since its first discovery in 1756 by Swedish mineralogist A.F. Cronstedt, over 40 natural zeolites are listed. Non-toxicity (IARC, 1997a,b) and safety for human consumption (FDA GRAS Listings, 2006) of natural zeolites accelerate recognition and expand the applications of agricultural uses. Furthermore, Codex Alimentarius Commission (1999) endorses pest control in food commodities and lists Zeolite as granted substance in organic food production and in plant protection. Public awareness and growing concern to environmental issues encourage new approaches of alternative ecofriendly methods such as inert dusts. Hence, post-harvest organic minerals application as insecticide compare to synthetic insecticides provides no chemical residue, affordability, and virtually more benefit to environment with end users. Among inert dusts used in stored-product protection, Zeolites are included the group contain natural silica similarly diatomaceous earth. Review of entomology and agricultural literatures present insecticide potential of Zeolites formulations recently studied on Sitophilus zeamais Motschulsk, Rhyzopertha dominica (F.), Sitophilus oryzae (L.), Tribolium castaneum (Herbst), Lasioderma serricorne (F.), Tribolium confusum Jacquelin du Val, Meligethes spp., Aedes aegypti (L.), Cimex lectularius Linnaeus progressively.
    [Show full text]
  • Evaluation of Different Clinoptilolite Zeolites As Adsorbent for Ammonium Removal from Highly Concentrated Synthetic Wastewater
    water Article Evaluation of Different Clinoptilolite Zeolites as Adsorbent for Ammonium Removal from Highly Concentrated Synthetic Wastewater Stephan Wasielewski 1,*, Eduard Rott 1 ID , Ralf Minke 1 and Heidrun Steinmetz 2 1 Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA), University of Stuttgart, Bandtaele 2, 70569 Stuttgart, Germany; [email protected] (E.R.); [email protected] (R.M.) 2 Faculty of Civil Engineering, University of Kaiserslautern, Paul-Ehrlich-Str. 14, 67663 Kaiserslautern, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-711-685-65425 Received: 3 April 2018; Accepted: 25 April 2018; Published: 30 April 2018 Abstract: The supply of food to the growing world population requires an increasing amount of nitrogen fertilizers, which can be achieved both by the energy-intensive Haber–Bosch process and by recovering ammonium from wastewater. Within the scope of this work, it is investigated to what extent different clinoptilolites (CLIs) can be used as ion-exchangers for the removal of ammonium from highly concentrated solutions. To this end, finely ground CLIs with different grain sizes (EcoZeo 20 and CCP 20: 0–20 µm, Micro 200: 0–200 µm) were tested for their sorption properties by varying the parameters of the sorption solution (c0 = 1000 mg NH4-N/L) such as pH, temperature, or contact time. All three CLIs tested were effective at adsorbing ammonium. In a pH range from 2 to 8, all CLIs were able to eliminate ammonium equally well. Furthermore, a contact time of 60 min was sufficient to achieve 84–88% of the maximum load.
    [Show full text]
  • Cak-Clinoptilolite, Kna-Chabazite, Kna-Heulandite, Kna-Erionite and Na-Phillipsite from Tuffaceous Rocks, Province of the Mesa Central, Mexico
    REVISTADe Pablo etMEXICANA al. DE CIENCIAS GEOLÓGICAS v. 31, núm. 1, 2014, p. 116-126 CaK-clinoptilolite, KNa-chabazite, KNa-heulandite, KNa-erionite and Na-phillipsite from tuffaceous rocks, Province of the Mesa Central, Mexico Liberto de Pablo1*, Mercedes Doval†2, Angel La Iglesia3, Jesús Soriano4 1 Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México D.F., Mexico. 2 Departamento de Cristalografía y Mineralogía, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain. 3 Instituto de Geociencias CSIC-UCM, Facultad de Ciencias Geológicas, Avda. Antonio Novais 2, 28040 Madrid, Spain. 4 Laboratorio Central de Estructuras y Materiales CEDEX, Ministerio de Fomento, Madrid, Spain. * [email protected] ABSTRACT de poro silícicos alcalinos y vidrios de composición (Si0.890-0.825Al0.202-0.102) (K0.072-0.020Ca0.020-0.010Fe0.050-0.010)O2 en tobas al noreste de Jalpa. This paper presents the occurrence, mineralogy and process of KNa-heulandita, (Si28.080Al8.010)(K4.680Na2.250Ca0.270Fe0.180)O72, formation of CaK-clinoptilolite, KNa-chabazite, KNa-heulandite, KNa-chabazita, (Si9.210-9.000Al3.090-2.940)(K0.750-1.180Na0.360-1.260Ca0.150-0.030 KNa-erionite and Na-phillipsite in pyroclastic rocks from the Calvillo- Fe0.210-0.090Mg0.380-0.210)O24, NaK-erionita, (Si27.990Al7.830)(K2.000) Jalpa-Nochixtlán area in the Province of the Mesa Central, Mexico. (K4.210Na1.620Ca0.090Fe0.090Mg0.180)O72, y Na-phillipsita, (Si12.080Al3.920) CaK-clinoptilolite, (Si30.600-30.150Al5.760-5.220)(Ca1.890-1.800K1.080-0.810Mg0.540-0.450)
    [Show full text]
  • Ammonium and Lead Exchange in Clinoptilolite Zeolite Column
    AMMONIUM AND LEAD EXCHANGE IN CLINOPTILOLITE ZEOLITE COLUMN A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY AHMAD DH. BAHAALLDDIN IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN CHEMICAL ENGINEERING DECEMBER 2010 Approval of the thesis: AMMONIUM AND LEAD EXCHANGE IN CLINOPTILOLITE ZEOLITE COLUMN submitted by AHMAD DH. BAHAALDDIN in partial fulfillment of the requirements for the degree of Master of Science in Chemical Engineering Department, Middle East Technical University by, Prof. Dr. Canan Özgen __________________ Dean, Graduate School of Natural and Applied Sciences Prof. Dr. Gürkan Karakaş __________________ Head of Department, Chemical Engineering Prof. Dr. Hayrettin Yücel __________________ Supervisor, Chemical Engineering, METU Examining Committee Members: Assoc. Prof. Dr. Halil Kalıpçılar __________________ Chemical Engineering Dept., METU Prof. Dr. Hayrettin Yücel __________________ Chemical Engineering Dept., METU Assoc. Prof. Dr. Naime Aslı Sezgi __________________ Chemical Engineering Dept., METU Assoc. Prof. Dr. İpek İmamoğlu __________________ Environmental Engineering Dept., METU Dr. Cevdet Öztin __________________ Chemical Engineering Dept., METU Date: December 17, 2010 I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last name: Ahmad Dh. Bahaalddin Signature: iii ABSTRACT AMMONIUM AND LEAD EXCHANGE IN CLINOPTILOLITE ZEOLITE COLUMN Bahaalddin, Ahmad Dh. M.Sc., Department of Chemical Engineering Supervisor: Prof. Dr. Hayrettin Yücel December 2010, 152 pages Wastewaters resulted from anthropogenic influence can encompass a wide range of potential contaminants and concentrations.
    [Show full text]
  • Sustainable Gas Separation by Application of Natural Zeolites As Membranes and Adsorbents by Afrooz Farjoo a Thesis Submitted In
    Sustainable Gas Separation by Application of Natural Zeolites as Membranes and Adsorbents By Afrooz Farjoo A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemical Engineering Department of Chemical and Materials Engineering University of Alberta ©Afrooz Farjoo, 2016 Abstract The objective of this research was to develop new molecular sieve materials and to study their applications in membrane as well as adsorptive gas separation processes. Membrane based processes have the potential to surpass the limitations of conventional gas separation techniques such as energy intensiveness, environmental concerns and possibly affordability. Natural zeolite membranes have recently been shown to demonstrate potential in separation of H2 from H2/CO2 mixtures or H2/light hydrocarbon mixtures and can be utilized to develop high performance molecular sieve membranes with advanced separation characteristics. In the previous work of this research team, disk membranes produced from dense natural clinoptilolite zeolite rocks showed high performance in gas separation. In this work, membranes from natural clinoptilolite powders are designed, studied and scaled up in disk and tubular configurations for gas separation applications. The membranes’ permeation, separation performance and separation mechanisms were evaluated using different characterization methods and tests at several operating conditions. The results showed that natural zeolite membranes such as compact disk or coated stainless steel tubular ones, have great potential for large-scale gas separation at high temperature and pressures. To evaluate the potential of membranes in industrial applications, single versus multi-component gas permeance was compared and discussed. In another study, a new adsorbent for the adsorptive separation of ethylene from ethane as one of the most energy intensive separations was created by incrementally changing the pore size of clinoptilolite.
    [Show full text]