<<

THE COTTON AND THE RICCI FLOW

CARLO MANTEGAZZA, SAMUELE MONGODI, AND MICHELE RIMOLDI

ABSTRACT. We compute the evolution equation of the Cotton and the under the Ricci flow of a Riemannian manifold, with particular attention to the three dimensional case, and we discuss some applications.

CONTENTS 1. Preliminaries 1 2. The Evolution Equation of the in 3D2 3. Three–Dimensional Gradient Ricci Solitons 10 4. The Evolution Equation of the Cotton Tensor in any Dimension 13 5. The Bach Tensor 23 5.1. The Evolution Equation of the Bach Tensor in 3D 24 5.2. The Bach Tensor of Three–Dimensional Gradient Ricci Solitons 26 References 28

1. PRELIMINARIES The Riemann curvature operator of a Riemannian manifold (M n, g) is defined, as in [6], by

Riem(X,Y )Z = ∇Y ∇X Z − ∇X ∇Y Z + ∇[X,Y ]Z. In a local coordinate system the components of the (3, 1)– are given by l ∂ ∂ ∂  ∂ m Rijk ∂xl = Riem ∂xi , ∂xj ∂xk and we denote by Rijkl = glmRijk its (4, 0)–version. n i j k l With the previous choice, for the sphere S we have Riem(v, w, v, w) = Rabcdv w v w > 0. In all the paper the Einstein convention of summing over the repeated indices will be adopted. jl ik The Ricci tensor is obtained by the contraction Rik = g Rijkl and R = g Rik will denote the . We recall the interchange of derivative formula, 2 2 pq ∇ijωk − ∇jiωk = Rijkpg ωq , and Schur lemma, which follows by the second Bianchi identity, pq 2g ∇pRqi = ∇iR . They both will be used extensively in the computations that follows. The so called is then defined by the following decomposition formula (see [6, Chapter 3, Section K]) in dimension n ≥ 3, 1 R (1.1) R = (R g − R g + R g − R g ) − (g g − g g ) + W . ijkl n − 2 ik jl il jk jl ik jk il (n − 1)(n − 2) ik jl il jk ijkl The Weyl tensor satisfies all the symmetries of the curvature tensor, moreover, all its traces with the metric are zero, as it can be easily seen by the above formula. In dimension three W is identically zero for every Riemannian manifold. It becomes relevant instead when n ≥ 4 since its vanishing is a condition equivalent for (M n, g) to be locally conformally flat, that is, n f around every point p ∈ M there is a conformal deformation geij = e gij of the original metric g, such that the new metric is flat, namely, the Riemann tensor associated to ge is zero in Up (here f : Up → R is a smooth function defined in a open neighborhood Up of p).

Date: March 4, 2014. 1 2 CARLO MANTEGAZZA, SAMUELE MONGODI, AND MICHELE RIMOLDI

In dimension n = 3, instead, locally conformally flatness is equivalent to the vanishing of the follow- ing Cotton tensor 1 (1.2) C = ∇ R − ∇ R − ∇ Rg − ∇ Rg  , ijk k ij j ik 2(n − 1) k ij j ik which expresses the fact that the Rg S = R − ij ij ij 2(n − 1) is a Codazzi tensor (see [1, Chapter 16, Section C]), that is, a symmetric bilinear form Tij such that ∇kTij = ∇iTkj. By means of the second Bianchi identity, one can easily get (see [1]) that n − 3 (1.3) ∇lW = − C . lijk n − 2 ijk Hence, when n ≥ 4, if we assume that the manifold is locally conformally flat (that is, W = 0), the Cotton tensor is identically zero also in this case, but this is only a necessary condition. By direct computation, we can see that the tensor Cijk satisfies the following symmetries

(1.4) Cijk = −Cikj, Cijk + Cjki + Ckij = 0 , moreover it is trace–free in any two indices, ij ik jk (1.5) g Cijk = g Cijk = g Cijk = 0 , by its skew–symmetry and Schur lemma. We suppose now that (M n, g(t)) is a Ricci flow in some time interval, that is, the time–dependent metric g(t) satisfies ∂ g = −2R . ∂t ij ij We have then the following evolution equations for the , the Ricci tensor and the scalar curvature (see for instance [7]), ∂ Γk = −gks∇ R − gks∇ R + gks∇ R ∂t ij i js j is s ij ∂ (1.6) R = ∆R − 2RklR − 2gpqR R ∂t ij ij kijl ip jq ∂ R = ∆R + 2|Ric|2 . ∂t

All the computations which follow will be done in a fixed local frame, not in a moving frame.

Acknowledgments. The first and second authors are partially supported by the Italian FIRB Ideas “Analysis and Beyond”. Note. We remark that Huai-Dong Cao also, independently by us, worked out the computation of the evolution of the Cotton tensor in dimension three, in an unpublished note.

2. THE EVOLUTION EQUATION OF THE COTTON TENSORIN 3D The goal of this section is to compute the evolution equation under the Ricci flow of the Cotton tensor Cijk in dimension three (see [5] for the evolution of the Weyl tensor), the general computation in any dimension is postponed to section4. In the special three–dimensional case we have, R (2.1) R = R g − R g + R g − R g − (g g − g g ) , ijkl ik jl il jk jl ik jk il 2 ik jl il jk 1 (2.2) C = ∇ R − ∇ R − ∇ Rg − ∇ Rg  , ijk k ij j ik 4 k ij j ik THE COTTON TENSOR AND THE RICCI FLOW 3 hence, the evolution equations (1.6) become

∂ Γk = − gks∇ R − gks∇ R + gks∇ R ∂t ij i js j is s ij ∂ R = ∆R − 6gpqR R + 3RR + 2|Ric|2g − R2g ∂t ij ij ip jq ij ij ij ∂ R = ∆R + 2|Ric|2 . ∂t

From these formulas we can compute the evolution equations of the derivatives of the curvatures assuming, from now on, to be in normal coordinates,

∂ ∇ R = ∇ ∆R + 2∇ |Ric|2 , ∂t l l l ∂ ∇ R = ∇ ∆R − 6∇ R R − 6R ∇ R + 3∇ RR + 3R∇ R ∂t s ij s ij s ip jp ip s jp s ij s ij 2 2 +2∇s|Ric| gij − ∇sR gij

+(∇iRsp + ∇sRip − ∇pRis)Rjp

+(∇jRsp + ∇sRjp − ∇pRjs)Rip

= ∇s∆Rij − 5∇sRipRjp − 5Rip∇sRjp + 3∇sRRij + 3R∇sRij 2 2 +2∇s|Ric| gij − ∇sR gij

+(∇iRsp − ∇pRis)Rjp + (∇jRsp − ∇pRjs)Rip

= ∇s∆Rij − 5∇sRipRjp − 5Rip∇sRjp + 3∇sRRij + 3R∇sRij 2 2 +2∇s|Ric| gij − ∇sR gij + CspiRjp + CspjRip

+Rjp[∇iRgsp − ∇pRgis]/4 + Rip[∇jRgsp − ∇pRgjs]/4 ,

where in the last passage we substituted the expression of the Cotton tensor. 4 CARLO MANTEGAZZA, SAMUELE MONGODI, AND MICHELE RIMOLDI

We then compute,

∂ ∂ ∂ ∂ C = ∇ R − ∇ R − ∇ Rg − ∇ Rg /4 ∂t ijk ∂t k ij ∂t j ik ∂t k ij j ik = ∇k∆Rij − 5∇kRipRjp − 5Rip∇kRjp + 3∇kRRij + 3R∇kRij 2 2 +2∇k|Ric| gij − ∇kR gij + CkpiRjp + CkpjRip

+Rjp[∇iRgkp − ∇pRgik]/4 + Rip[∇jRgkp − ∇pRgjk]/4

−∇j∆Rik + 5∇jRipRkp + 5Rip∇jRkp − 3∇jRRik − 3R∇jRik 2 2 −2∇j|Ric| gik + ∇jR gik − CjpiRkp − CjpkRip

−Rkp[∇iRgjp − ∇pRgij]/4 − Rip[∇kRgjp − ∇pRgkj]/4  +(Rij∇kR − Rik∇jR /2 2 2 − ∇k∆R + 2∇k|Ric| gij/4 + ∇j∆R + 2∇j|Ric| gik/4

= ∇k∆Rij − 5∇kRipRjp − 5Rip∇kRjp + 3∇kRRij + 3R∇kRij 2 2 +3∇k|Ric| gij/2 − ∇kR gij + CkpiRjp + CkpjRip

+Rjk∇iR/4 − Rjp∇pRgik/4 + Rik∇jR/4 − Rip∇pRgjk/4

−∇j∆Rik + 5∇jRipRkp + 5Rip∇jRkp − 3∇jRRik − 3R∇jRik 2 2 −3∇j|Ric| gik/2 + ∇jR gik − CjpiRkp − CjpkRip

−Rkj∇iR/4 + Rkp∇pRgij/4 − Rij∇kR/4 + Rip∇pRgkj/4  +(Rij∇kR − Rik∇jR /2

−∇k∆Rgij/4 + ∇j∆Rgik/4

= ∇k∆Rij − 5∇kRipRjp − 5Rip∇kRjp + 13∇kRRij/4 + 3R∇kRij 2 2 +3∇k|Ric| gij/2 − ∇kR gij + CkpiRjp + CkpjRip

−Rjp∇pRgik/4

−∇j∆Rik + 5∇jRipRkp + 5Rip∇jRkp − 13∇jRRik/4 − 3R∇jRik 2 2 −3∇j|Ric| gik/2 + ∇jR gik − CjpiRkp − CjpkRip

+Rkp∇pRgij/4

−∇k∆Rgij/4 + ∇j∆Rgik/4 and

∆Cijk = ∆∇kRij − ∆∇jRik − ∆∇kRgij/4 + ∆∇jRgik/4 , hence,

∂ C − ∆C = ∇ ∆R − ∇ ∆R − ∆∇ R + ∆∇ R ∂t ijk ijk k ij j ik k ij j ik −∇k∆Rgij/4 + ∇j∆Rgik/4 + ∆∇kRgij/4 − ∆∇jRgik/4

−5∇kRipRjp − 5Rip∇kRjp + 13∇kRRij/4 + 3R∇kRij 2 2 +3∇k|Ric| gij/2 − ∇kR gij + CkpiRjp + CkpjRip

−Rjp∇pRgik/4

+5∇jRipRkp + 5Rip∇jRkp − 13∇jRRik/4 − 3R∇jRik 2 2 −3∇j|Ric| gik/2 + ∇jR gik − CjpiRkp − CjpkRip

+Rkp∇pRgij/4 THE COTTON TENSOR AND THE RICCI FLOW 5

Now to proceed, we need the following commutation rules for the derivatives of the Ricci tensor and of the scalar curvature, where we will employ the special form of the Riemann tensor in dimen- sion three given by formula (2.1),

3 3 3 3 ∇k∆Rij − ∆∇kRij = ∇kllRij − ∇lklRij + ∇lklRij − ∇llkRij = −Rkp∇pRij + Rklip∇lRjp + Rkljp∇lRip 3 3 +∇lklRij − ∇llkRij = −Rkp∇pRij + Rik∇jR/2 + Rjk∇iR/2

−Rkp∇iRjp − Rkp∇jRip + Rlp∇lRjpgik + Rlp∇lRipgjk

−Rli∇lRjk − Rlj∇lRik − R∇jRgik/4 − R∇iRgjk/4

+R∇iRjk/2 + R∇jRik/2  +∇l RklipRpj + RkljpRpi

= −Rkp∇pRij + Rik∇jR/2 + Rjk∇iR/2

−Rkp∇iRjp − Rkp∇jRip + Rlp∇lRjpgik + Rlp∇lRipgjk

−Rli∇lRjk − Rlj∇lRik − R∇jRgik/4 − R∇iRgjk/4

+R∇iRjk/2 + R∇jRik/2 +∇l RikRlj − RilRkj + RplRpjgik − RpkRpjgil − gikRRlj/2 + gilRRjk/2  +RjkRli − RjlRki + RplRpigjk − RpkRpigjl − gjkRRli/2 + gjlRRik/2

= −Rkp∇pRij + Rik∇jR/2 + Rjk∇iR/2

−Rkp∇iRjp − Rkp∇jRip + Rlp∇lRjpgik + Rlp∇lRipgjk

−Rli∇lRjk − Rlj∇lRik − R∇jRgik/4 − R∇iRgjk/4

+R∇iRjk/2 + R∇jRik/2

−∇iRpkRpj + ∇iRRjk/2 + gikRpl∇lRpj

−Rpk∇iRpj − gikR∇jR/4 + R∇iRjk/2

−∇jRpkRpi + ∇jRRik/2 + gjkRpl∇lRpi

−Rpk∇jRpi − gjkR∇iR/4 + R∇jRik/2

= −Rkp∇pRij + Rik∇jR + Rjk∇iR

−2Rkp∇iRjp − 2Rkp∇jRip + 2Rlp∇lRjpgik + 2Rlp∇lRipgjk

−Rli∇lRjk − Rlj∇lRik − Rpj∇iRpk − Rpi∇jRpk

−R∇jRgik/2 − R∇iRgjk/2 + R∇iRjk + R∇jRik

and

∇k∆R − ∆∇kR = Rkllp∇pR = −Rkp∇pR . 6 CARLO MANTEGAZZA, SAMUELE MONGODI, AND MICHELE RIMOLDI

Then, getting back to the main computation, we obtain

∂ C − ∆C = −R ∇ R + R ∇ R + R ∇ R ∂t ijk ijk kp p ij ik j jk i −2Rkp∇iRjp − 2Rkp∇jRip + 2Rlp∇lRjpgik + 2Rlp∇lRipgjk

−Rli∇lRjk − Rlj∇lRik − Rpj∇iRpk − Rpi∇jRpk

−R∇jRgik/2 − R∇iRgjk/2 + R∇iRjk + R∇jRik

+Rjp∇pRik − Rij∇kR − Rkj∇iR

+2Rjp∇iRkp + 2Rjp∇kRip − 2Rlp∇lRkpgij − 2Rlp∇lRipgkj

+Rli∇lRkj + Rlk∇lRij + Rpk∇iRpj + Rpi∇kRpj

+R∇kRgij/2 + R∇iRgkj/2 − R∇iRkj − R∇kRij

+Rkp∇pRgij/4 − Rjp∇pRgik/4

−5∇kRipRjp − 5Rip∇kRjp + 13∇kRRij/4 + 3R∇kRij 2 2 +3∇k|Ric| gij/2 − ∇kR gij + CkpiRjp + CkpjRip

−Rjp∇pRgik/4

+5∇jRipRkp + 5Rip∇jRkp − 13∇jRRik/4 − 3R∇jRik 2 2 −3∇j|Ric| gik/2 + ∇jR gik − CjpiRkp − CjpkRip

+Rkp∇pRgij/4

= CkpiRjp + CkpjRip − CjpiRkp − CjpkRip 2 +[2Rlp∇lRjp + 3R∇jR/2 − Rjp∇pR/2 − 3∇j|Ric| /2]gik 2 +[−2Rlp∇lRkp − 3R∇kR/2 + Rkp∇pR/2 + 3∇k|Ric| /2]gij

−Rkp∇iRjp + Rjp∇iRkp

−3∇kRipRjp − 4Rip∇kRjp + 9∇kRRij/4 + 2R∇kRij

+3∇jRipRkp + 4Rip∇jRkp − 9∇jRRik/4 − 2R∇jRik

Now, by means of the very definition of the Cotton tensor in dimension three (2.2) and the identi- ties (1.4), we substitute

Ckpj − Cjpk = − Ckjp − Cjpk = Cpkj 1 ∇ R = ∇ R + C + ∇ Rg − ∇ Rg  l jp j lp pjl 4 l pj j pl 1 ∇ R = ∇ R + C + ∇ Rg − ∇ Rg  l kp k lp pkl 4 l pk k pl 1 ∇ R = ∇ R + C + ∇ Rg − ∇ Rg  i jp j ip pji 4 i jp j ip 1 ∇ R = ∇ R + C + ∇ Rg − ∇ Rg  i kp k ip pki 4 i kp k ip THE COTTON TENSOR AND THE RICCI FLOW 7 in the last expression above, getting

∂ C − ∆C = R C − R C + R C ∂t ijk ijk jp kpi kp jpi ip pkj h  + 2Rlp ∇jRlp + Cpjl + ∇lRgpj/4 − ∇jRgpl/4

2 i + 3R∇jR/2 − Rjp∇pR/2 − 3∇j|Ric| /2 gik h  + − 2Rlp ∇kRlp + Cpkl + ∇lRgpk/4 − ∇kRgpl/4

2 i − 3R∇kR/2 + Rkp∇pR/2 + 3∇k|Ric| /2 gij  −Rkp ∇jRip + Cpji + ∇iRgjp/4 − ∇jRgip/4  +Rjp ∇kRip + Cpki + ∇iRgkp/4 − ∇kRgip/4

−3∇kRipRjp − 4Rip∇kRjp + 9∇kRRij/4 + 2R∇kRij

+3∇jRipRkp + 4Rip∇jRkp − 9∇jRRik/4 − 2R∇jRik   = Rjp Ckpi + Cpki − Rkp Cjpi + Cpji + RipCpkj

+2RlpCpjlgik − 2RlpCpklgij  2   2  + R∇jR − ∇j|Ric| /2 gik − R∇kR − ∇k|Ric| /2 gij

−2∇kRipRjp − 4Rip∇kRjp + 2∇kRRij + 2R∇kRij

+2∇jRipRkp + 4Rip∇jRkp − 2∇jRRik − 2R∇jRik .

then, we substitute again

1 ∇ R = ∇ R + C + ∇ Rg − ∇ Rg  k jp p kj jpk 4 k jp p jk 1 ∇ R = ∇ R + C + ∇ Rg − ∇ Rg  j kp p jk kpj 4 j kp p kj 1 ∇ R = ∇ R + C + ∇ Rg − ∇ Rg  k ij i kj jik 4 k ij i jk 1 ∇ R = ∇ R + C + ∇ Rg − ∇ Rg  , j ik i jk kij 4 j ik i kj 8 CARLO MANTEGAZZA, SAMUELE MONGODI, AND MICHELE RIMOLDI

finally obtaining

∂ C − ∆C = R C + C  − R C + C  + R C ∂t ijk ijk jp kpi pki kp jpi pji ip pkj +2RlpCpjlgik − 2RlpCpklgij  2   2  + R∇jR − ∇j|Ric| /2 gik − R∇kR − ∇k|Ric| /2 gij  −2∇kRipRjp − 4Rip ∇pRkj + Cjpk + ∇kRgjp/4 − ∇pRgjk/4  +2∇kRRij + 2R ∇iRkj + Cjik + ∇kRgij/4 − ∇iRgjk/4  +2∇jRipRkp + 4Rip ∇pRjk + Ckpj + ∇jRgkp/4 − ∇pRgkj/4  −2∇jRRik − 2R ∇iRjk + Ckij + ∇jRgik/4 − ∇iRgkj/4   = Rjp Ckpi + Cpki − Rkp Cjpi + Cpji + RipCpkj   +4Rip Ckpj − Cjpk + 2R Cjik − Ckij

+2RlpCpjlgik − 2RlpCpklgij  2   2  + R∇jR/2 − ∇j|Ric| /2 gik − R∇kR/2 − ∇k|Ric| /2 gij

−2∇kRipRjp + 2∇jRipRkp

+∇kRRij − ∇jRRik   = Rjp Ckpi + Cpki − Rkp Cjpi + Cpji + 5RipCpkj

+2RCijk + 2RlpCpjlgik − 2RlpCpklgij  2   2  + R∇jR/2 − ∇j|Ric| /2 gik − R∇kR/2 − ∇k|Ric| /2 gij

+2∇jRipRkp − 2∇kRipRjp

+∇kRRij − ∇jRRik , where in the last passage we used again the identities (1.4). Hence, we can resume this long computation in the following proposition, getting back to a generic coordinate basis.

Proposition 2.1. During the Ricci flow of a 3–dimensional Riemannian manifold (M 3, g(t)), the Cotton tensor satisfies the following evolution equation

 pq pq pq (2.3) ∂t − ∆ Cijk = g Rpj(Ckqi + Cqki) + 5g RipCqkj + g Rpk(Cjiq + Cqij) ql ql +2RCijk + 2R Cqjlgik − 2R Cqklgij 1 1 R R + ∇ |Ric|2g − ∇ |Ric|2g + ∇ Rg − ∇ Rg 2 k ij 2 j ik 2 j ik 2 k ij pq pq +2g Rpk∇jRqi − 2g Rpj∇kRqi + Rij∇kR − Rik∇jR .

In particular if the Cotton tensor vanishes identically along the flow we obtain,

2 2 (2.4) 0 = ∇k|Ric| gij − ∇j|Ric| gik + R∇jRgik − R∇kRgij pq pq +4g Rpk∇jRqi − 4g Rpj∇kRqi + 2Rij∇kR − 2Rik∇jR .

Corollary 2.2. If the Cotton tensor vanishes identically along the Ricci flow of a 3–dimensional Riemannian manifold (M 3, g(t)), the following tensor

7 |Ric|2g − 4R R + 3RR − R2g ij pj pi ij 8 ij is a Codazzi tensor (see [1, Chapter 16, Section C]). THE COTTON TENSOR AND THE RICCI FLOW 9

Proof. We compute in an orthonormal basis,

4Rpk∇jRpi − 4 Rpj∇kRpi + 2Rij∇kR − 2Rik∇jR

= 4∇j(RpkRpi) − 4∇k(RpjRpi) − 4Rpi∇jRpk + 4Rpi∇kRpj

+ 2Rij∇kR − 2Rik∇jR

= 4∇j(RpkRpi) − 4∇k(RpjRpi) + Rpi(4Cpjk + ∇kRgpj − ∇jRgpk)

+ 2Rij∇kR − 2Rik∇jR

= 4∇j(RpkRpi) − 4∇k(RpjRpi) + 3Rij∇kR − 3Rik∇jR

= 4∇j(RpkRpi) − 4∇k(RpjRpi) + 3∇k(RRij) − 3∇j(RRik)

− 3R(∇kRij − ∇jRik)

= 4∇j(RpkRpi) − 4∇k(RpjRpi) + 3∇k(RRij) − 3∇j(RRik)

− 3R(4Cijk + ∇kRgij − ∇jRgik)/4

= 4∇j(RpkRpi) − 4∇k(RpjRpi) + 3∇k(RRij) − 3∇j(RRik) 3 3 − ∇ R2g + ∇ R2g . 8 k ij 8 j ik

Hence, we have, by the previous proposition,

2 2 0 = ∇k|Ric| gij − ∇j|Ric| gik + 4∇j(RpkRpi) − 4∇k(RpjRpi) 7 7 + 3∇ (RR ) − 3∇ (RR ) − ∇ R2g + ∇ R2g , k ij j ik 8 k ij 8 j ik which is the thesis of the corollary. 

Remark 2.3. All the traces of the 3–tensor in the LHS of equation (2.4) are zero.

Remark 2.4. From the trace–free property (1.5) of the Cotton tensor and the fact that along the Ricci flow there holds

 ij ij ∂t − ∆ g = 2R , we conclude that the following relations have to hold

ij ij g (∂t − ∆)Cijk = −2R Cijk , ik ik g (∂t − ∆)Cijk = −2R Cijk , jk jk g (∂t − ∆)Cijk = −2R Cijk = 0 .

They are easily verified for formula (2.3).

Corollary 2.5. During the Ricci flow of a 3–dimensional Riemannian manifold (M 3, g(t)), the squared norm of the Cotton tensor satisfies the following evolution equation, in an orthonormal basis,

 2 2 2 ∂t − ∆ |Cijk| = −2|∇Cijk| − 16CipkCiqkRpq + 24CipkCkqiRpq + 4R|Cijk|

+8CijkRpk∇jRpi + 4CijkRij∇kR . 10 CARLO MANTEGAZZA, SAMUELE MONGODI, AND MICHELE RIMOLDI

Proof.  2 2 ijk pq ijk pq ijk pq ∂t − ∆ |Cijk| = −2|∇Cijk| + 2C Ripg Cqjk + 2C Rjpg Ciqk + 2C Rkpg Cijq ijkh pq pq pq +2C g Rpj(Ckqi + Cqki) + 5g RipCqkj + g Rpk(Cjiq + Cqij) ql ql +2RCijk + 2R Cqjlgik − 2R Cqklgij 1 1 R R + ∇ |Ric|2g − ∇ |Ric|2g + ∇ Rg − ∇ Rg 2 k ij 2 j ik 2 j ik 2 k ij pq pq i +2g Rpk∇jRqi − 2g Rpj∇kRqi + Rij∇kR − Rik∇jR 2 kij jki pq = −2|∇Cijk| + 2(C + C )Ripg (Ckqj + Cjkq) ijk pq ikj pq +2C Rjpg Ciqk + 2C Rkpg Ciqj ijkh pq pq i +2C 2g Rpj(Ckqi + Cqki) + 5g RipCqkj 2 pq ijk ijk +4R|Cijk| + 8g C Rpk∇jRqi + 4C Rij∇kR 2 2 = −2|∇Cijk| − 16CipkCiqkRpq + 24CipkCkqiRpq + 4R|Cijk|

+8CijkRpk∇jRpi + 4CijkRij∇kR where in the last line we assumed to be in a orthonormal basis. 

3. THREE–DIMENSIONAL GRADIENT RICCI SOLITONS The structural equation of a gradient Ricci soliton (M n, g, ∇f) is the following

(3.1) Rij + ∇i∇jf = λgij , for some λ ∈ R. The soliton is said to be steady, shrinking or expanding according to the fact that the constant λ is zero, positive or negative, respectively. It follows that in dimension three, for (M 3, g, ∇f) there holds 2 2 (3.2) ∆Rij = ∇lRij∇lf + 2λRij − 2|Ric| gij + R gij − 3RRij + 4RisRsj 2 (3.3) ∆R = ∇lR∇lf + 2λR − 2|Ric|

(3.4) ∇iR = 2Rli∇lf Rlkgij Rljgik Rgik Rgij (3.5) C = ∇ f − ∇ f + R ∇ f − R ∇ f + ∇ f − ∇ f ijk 2 l 2 l ij k ik j 2 j 2 k ∇ R ∇ R  R   R  = k g − j g + R − g ∇ f − R − g ∇ f . 4 ij 4 ik ij 2 ij k ik 2 ik j In the special case of a steady soliton the first two equations above simplify as follows, 2 2 ∆Rij = ∇lRij∇lf − 2|Ric| gij + R gij − 3RRij + 4RisRsj 2 ∆R = ∇lR∇lf − 2|Ric| . Remark 3.1. We notice that, by relation (3.5), we have ∇ R∇ f ∇ R∇ f R R C ∇ f = k j − j k + R ∇ f∇ f − ∇ f∇ f − R ∇ f∇ f + ∇ f∇ f ijk i 4 4 ij i k 2 j k ik i j 2 k j ∇ R∇ f ∇ R∇ f = j k − k j , 4 4 where in the last passage we used relation (3.4). It follows that h∇f, ∇Ri |∇f|2 C ∇ f∇ f = ∇ f − ∇ R . ijk i j 4 k 4 k Hence, if the Cotton tensor of a three–dimensional gradient Ricci soliton is identically zero, we have that at every point where ∇R is not zero, ∇f and ∇R are proportional. This relation is a key step in (yet another) proof of the fact that a three–dimensional, locally con- formally flat, steady or shrinking gradient Ricci soliton is locally a warped product of a constant curvature surface on a interval of R, leading to a full classification, first obtained by H.-D. Cao and Q. Chen [4] for the steady case and H.-D. Cao, B.-L. Chen and X.-P. Zhu [3] for the shrinking case THE COTTON TENSOR AND THE RICCI FLOW 11

(actually this is the last paper of a series finally classifying, in full generality, all the three-dimensional gradient shrinking Ricci solitons, even without the LCF assumption).

Proposition 3.2. Let (M 3, g, f) be a three–dimensional gradient Ricci soliton. Then,

2 2 2 2 ∆|Cijk| = ∇l|Cijk| ∇lf + 2|∇Cijk| − 2R|Cijk|

−6CijkRij∇kR + 8CjskCjikRsi − 16CjskCkijRsi − 8CijkRlk∇jRil .

Proof. First observe that

2 2 ∆|Cijk| = 2Cijk∆Cijk + 2|∇Cijk| .

Using relations (3.5), (3.2) and, repeatedly, the trace–free property (1.5) of the Cotton tensor, we have that

Cijk∆Cijk = ∆(Rij∇kf − Rik∇jf)Cijk

= (∆Rij∇kf + Rij∆∇kf + 2∇lRij∇l∇kf)Cijk

−(∆Rik∇jf + Rik∆∇jf + 2∇lRik∇l∇jf)Cijk

= (∇sRij∇sf − 3RRij + 4RisRsj)∇kfCijk

+Rij∆∇kfCijk + 2∇lRij∇l∇kfCijk

−(∇sRik∇sf − 3RRik + 4RisRsk)∇jfCijk

−Rik∆∇jfCijk − 2∇lRik∇l∇jfCijk

= (∇sRij∇kf − ∇sRik∇jf)∇sfCijk

−3R(Rij∇kf − Rik∇jf)Cijk

+4Ris(Rsj∇kf − Rsk∇jf)Cijk

+(Rij∇l∇l∇kf − Rik∇l∇l∇jf)Cijk

+2(∇lRij∇l∇kf − ∇lRik∇l∇jf)Cijk

= (∇sRij∇kf − ∇sRik∇jf)∇sfCijk 2 +(−3R)|Cijk|

+4Ris(Rsj∇kf − Rsk∇jf)Cijk

+(Rij∇l∇l∇kf − Rik∇l∇l∇jf)Cijk

+2(∇lRij∇l∇kf − ∇lRik∇l∇jf)Cijk ,

where we used the identity

2 (3.6) (Rij∇kf − Rik∇jf)Cijk = |Cijk| 12 CARLO MANTEGAZZA, SAMUELE MONGODI, AND MICHELE RIMOLDI which follows easily by equation (3.5) and the fact that every trace of the Cotton tensor is zero. Using now equations (3.1), (3.5), (1.5), (1.4), and (3.4), we compute

(∇sRij∇kf − ∇sRik∇jf)∇sfCijk = (∇s(Rij∇kf) − Rij∇s∇kf)∇sfCijk

−(∇s(Rik∇jf) − Rik∇s∇jf)∇sfCijk

= (∇s(Rij∇kf − Rik∇jf) + Rij(Rsk))∇sfCijk

−(Rik(Rsj))∇sfCijk

= ∇sCijkCijk∇sf + RijRsk∇sfCijk − RikRsj∇sfCijk 1 1 1 = ∇ |C |2∇ f + R ∇ RC − R ∇ RC 2 s ijk s 2 ij k ijk 2 ik j ijk

1 1 R R 4R (R ∇ f − R ∇ f)C = 4R (C − ∇ Rg + ∇ Rg + ∇ fg − ∇ fg )C is sj k sk j ijk is sjk 4 k sj 4 j sk 2 k sj 2 j sk ijk = 4Ris(−Cjks − Cksj)(−Cjki − Ckij) − Rij∇kRCijk

+Rik∇jRCijk + 2RRij∇kfCijk − 2RRik∇jfCijk

= 8RisCjskCjik − 8RisCjskCkij 2 −Rij∇kRCijk + Rik∇jRCijk + 2R|Cijk|

(Rij∇l∇l∇kf − Rik∇l∇l∇jf)Cijk = (Rij∇l(−Rlk) − Rik∇l(−Rlj))Cijk 1 1 = − R ∇ RC + R ∇ RC 2 ij k ijk 2 ik j ijk

1 1 2(∇ R ∇ ∇ f − ∇ R ∇ ∇ f)C = 2((C + ∇ R + ∇ Rg − ∇ Rg )(−R ))C l ij l k l ik l j ijk ijl j il 4 l ij 4 j il lk ijk 1 1 −2((C + ∇ R + ∇ Rg − ∇ Rg )(−R ))C ikl k il 4 l ik 4 k il lj ijk 1 = −2C C R − 2C R ∇ R + C R ∇ R ijl ijk lk ijk lk j il 2 ijk ik j 1 +2C C R + 2C R ∇ R − C R ∇ R ikl ijk lj ijk lj k il 2 ijk ij k 1 = −2C C R − 2C R ∇ R + C R ∇ R ilj ikj lk ijk lk j il 2 ijk ik j 1 −2C C R + 2C R ∇ R − C R ∇ R. ilk ijk lj ijk lj k il 2 ijk ij k

Hence, getting back to the main computation and using again the symmetry relations (1.4), we finally get

1 C ∆C = ∇ |C |2∇ f − R|C |2 ijk ijk 2 s ijk s ijk 3 3 − C R ∇ R + C R ∇ R 2 ijk ij k 2 ijk ik j +4CjskCjikRsi − 8CjskCkijRsi

−2CijkRlk∇jRil + 2CijkRlj∇kRil 1 = ∇ |C |2∇ f − R|C |2 2 s ijk s ijk −3CijkRij∇kR + 4CjskCjikRsi − 8CjskCkijRsi − 4CijkRlk∇jRil where in the last passage we applied the skew–symmetry of the Cotton tensor in its last two indexes. The thesis follows.  THE COTTON TENSOR AND THE RICCI FLOW 13

4. THE EVOLUTION EQUATION OF THE COTTON TENSORINANY DIMENSION In this section we will compute the evolution equation under the Ricci flow of the Cotton tensor n Cijk, for every n–dimensional Riemannian manifold (M , g(t)) evolving by Ricci flow. Among the evolution equations (1.6) we expand the one for the Ricci tensor,

∂ 2n 2n 2 R = ∆R − gpqR R + RR + |Ric|2g ∂t ij ij n − 2 ip jq (n − 1)(n − 2) ij n − 2 ij 2 − R2g − 2RpqW . (n − 1)(n − 2) ij pijq

Then, we compute the evolution equations of the derivatives of the curvatures assuming, from now on, to be in normal coordinates,

∂ ∇ R = ∇ ∆R + 2∇ |Ric|2 , ∂t l l l ∂ 2n 2n 2n ∇ R = ∇ ∆R − ∇ R R − R ∇ R + ∇ RR ∂t s ij s ij n − 2 s ip jp n − 2 ip s jp (n − 1)(n − 2) s ij 2n 2 2 + R∇ R + ∇ |Ric|2g − ∇ R2g (n − 1)(n − 2) s ij n − 2 s ij (n − 1)(n − 2) s ij

−2∇sRklWkijl − 2Rkl∇sWkijl + (∇iRsp + ∇sRip − ∇pRis)Rjp

+(∇jRsp + ∇sRjp − ∇pRjs)Rip n + 2 n + 2 2n = ∇ ∆R − ∇ R R − R ∇ R + ∇ RR s ij n − 2 s ip jp n − 2 ip s jp (n − 1)(n − 2) s ij 2n 2 2 + R∇ R + ∇ |Ric|2g − ∇ R2g (n − 1)(n − 2) s ij n − 2 s ij (n − 1)(n − 2) s ij

−2∇sRklWkijl − 2Rkl∇sWkijl + (∇iRsp − ∇pRis)Rjp + (∇jRsp − ∇pRjs)Rip n + 2 n + 2 2n = ∇ ∆R − ∇ R R − R ∇ R + ∇ RR s ij n − 2 s ip jp n − 2 ip s jp (n − 1)(n − 2) s ij 2n 2 2 + R∇ R + ∇ |Ric|2g − ∇ R2g (n − 1)(n − 2) s ij n − 2 s ij (n − 1)(n − 2) s ij −2∇sRklWkijl − 2Rkl∇sWkijl + CspiRjp + CspjRip 1 1 + R [∇ Rg − ∇ Rg ] + R [∇ Rg − ∇ Rg ] , 2(n − 1) jp i sp p is 2(n − 1) ip j sp p js

where in the last passage we substituted the expression of the Cotton tensor. 14 CARLO MANTEGAZZA, SAMUELE MONGODI, AND MICHELE RIMOLDI

We then compute,

∂ ∂ ∂ 1 ∂ C = ∇ R − ∇ R − ∇ Rg − ∇ Rg  ∂t ijk ∂t k ij ∂t j ik 2(n − 1) ∂t k ij j ik n + 2 n + 2 2n = ∇ ∆R − ∇ R R − R ∇ R + ∇ RR k ij n − 2 k ip jp n − 2 ip k jp (n − 1)(n − 2) k ij 2n 2 2 + R∇ R + ∇ |Ric|2g − ∇ R2g (n − 1)(n − 2) k ij n − 2 k ij (n − 1)(n − 2) k ij −2∇kRplWpijl − 2Rpl∇kWpijl + CkpiRjp + CkpjRip R R + jp [∇ Rg − ∇ Rg ] + ip [∇ Rg − ∇ Rg ] 2(n − 1) i kp p ik 2(n − 1) j kp p jk n + 2 n + 2 2n −∇ ∆R + ∇ R R + R ∇ R − ∇ RR j ik n − 2 j ip kp n − 2 ip j kp (n − 1)(n − 2) j ik 2n 2 2 − R∇ R − ∇ |Ric|2g + ∇ R2g (n − 1)(n − 2) j ik n − 2 j ik n − 1 j ik −2∇kRplWpijl − 2Rpl∇kWpijl − CjpiRkp − CjpkRip R R − kp [∇ Rg − ∇ Rg ] − ip [∇ Rg − ∇ Rg ] 2(n − 1) i jp p ij 2(n − 1) k jp p kj 1 + (R ∇ R − R ∇ R n − 1 ij k ik j g g −∇ ∆R + 2∇ |Ric|2 ij + ∇ ∆R + 2∇ |Ric|2 ik k k 2(n − 1) j j 2(n − 1) n + 2 n + 2 = ∇ ∆R − ∇ R R − R ∇ R k ij n − 2 k ip jp n − 2 ip k jp 5n − 2 2n + ∇ RR + R∇ R 2(n − 1)(n − 2) k ij (n − 1)(n − 2) k ij n 2 + ∇ |Ric|2g − ∇ R2g (n − 1)(n − 2) k ij (n − 1)(n − 2) k ij +CkpiRjp + CkpjRip − 2∇kRplWpijl − 2Rpl∇kWpijl 1 − R ∇ Rg 2(n − 1) pj p ik n + 2 n + 2 −∇ ∆R + ∇ R R + R ∇ R j ik n − 2 j ip kp n − 2 ip j kp 5n − 2 2n − ∇ RR − R∇ R 2(n − 1)(n − 2) j ik (n − 1)(n − 2) j ik n 2 − ∇ |Ric|2g + ∇ R2g (n − 1)(n − 2) j ik (n − 1)(n − 2) j ik −CjpiRkp − CjpkRip + 2∇jRplWpikl + 2Rpl∇jWpikl 1 1 1 + ∇ RR g − ∇ ∆Rg + ∇ ∆Rg 2(n − 1) l lk ij 2(n − 1) k ij 2(n − 1) j ik

and

1 1 ∆C = ∆∇ R − ∆∇ R − ∆∇ Rg + ∆∇ Rg , ijk k ij j ik 2(n − 1) k ij 2(n − 1) j ik THE COTTON TENSOR AND THE RICCI FLOW 15 hence,

∂ C − ∆C = ∇ ∆R − ∇ ∆R − ∆∇ R + ∆∇ R ∂t ijk ijk k ij j ik k ij j ik 1 − (∇ ∆Rg − ∇ ∆Rg − ∆∇ Rg + ∆∇ Rg ) 2(n − 1) k ij j ik k ij j ik n + 2 5n − 2 − (∇ R R + R ∇ R ) + ∇ RR n − 2 k ip jp ip k jp 2(n − 1)(n − 2) k ij 2n + R∇ R (n − 1)(n − 2) k ij n 2 + ∇ |Ric|2g − ∇ R2g (n − 1)(n − 2) k ij (n − 1)(n − 2) k ij +CkpiRjp + CkpjRip − 2∇kRplWpijl − 2Rpl∇kWpijl 1 − R ∇ Rg 2(n − 1) jp p ik n + 2 5n − 2 + (∇ R R + R ∇ R ) − ∇ RR n − 2 j ip kp ip j kp 2(n − 1)(n − 2) j ik 2n − R∇ R (n − 1)(n − 2) j ik n 2 − ∇ |Ric|2g + ∇ R2g (n − 1)(n − 2) j ik (n − 1)(n − 2) j ik −CjpiRkp − CjpkRip + 2∇jRplWpikl + 2Rpl∇jWpikl 1 + R ∇ Rg 2(n − 1) kp p ij

Now to proceed, we need the following commutation rules for the derivatives of the Ricci ten- sor and of the scalar curvature, where we will employ the decomposition formula of the Riemann 16 CARLO MANTEGAZZA, SAMUELE MONGODI, AND MICHELE RIMOLDI tensor (1.1).

3 3 3 3 ∇k∆Rij − ∆∇kRij = ∇kllRij − ∇lklRij + ∇lklRij − ∇llkRij = −Rkp∇pRij + Rklip∇lRjp + Rkljp∇lRip 3 3 +∇lklRij − ∇llkRij 1 = −R ∇ R + (R ∇ R + R ∇ R) kp p ij 2(n − 2) ik j jk i 1 − (R ∇ R + R ∇ R − R ∇ R g − R ∇ R g ) n − 2 kp i jp kp j ip lp l jp ik lp l ip jk 1 1 − (R ∇ R + R ∇ R ) − (R∇ Rg + R∇ Rg ) n − 2 li l jk lj l ik 2(n − 1)(n − 2) j ik i jk 1 + (R∇ R + R∇ R ) (n − 1)(n − 2) i jk j ik  +∇l RklipRpj + RkljpRpi

+Wkljp∇lRip + Wklip∇jRjp 1 = −R ∇ R + (R ∇ R + R ∇ R) kp p ij 2(n − 2) ik j jk i 1 − (R ∇ R + R ∇ R − R ∇ R g − R ∇ R g ) n − 2 kp i jp kp j ip lp l jp ik lp l ip jk 1 1 − (R ∇ R + R ∇ R ) − (R∇ Rg + R∇ Rg ) n − 2 li l jk lj l ik 2(n − 1)(n − 2) j ik i jk 1 + (R∇ R + R∇ R ) (n − 1)(n − 2) i jk j ik  1 +∇ (R g R + R g R − R g R − R g R ) l n − 2 ki pl pj pl ki pj li kp pj kp li pj 1 − (RR g g − RR g g ) + W R (n − 1)(n − 2) pj ki lp pj kp il klip pj 1 + (R g R + R g R − R g R − R g R ) n − 2 kj lp pi lp kj pi lj kp pi kp lj pi 1  − (RR g g − RR g g ) + W R (n − 1)(n − 2) pi kj pl pi kp lj kljp pi +Wkljp∇lRip + Wklip∇jRjp 1 = −R ∇ R + (R ∇ R + R ∇ R) kp p ij 2(n − 2) ik j jk i 1 − (R ∇ R + R ∇ R − R ∇ R g − R ∇ R g ) n − 2 kp i jp kp j ip lp l jp ik lp l ip jk 1 1 − (R ∇ R + R ∇ R ) − (R∇ Rg + R∇ Rg ) n − 2 li l jk lj l ik 2(n − 1)(n − 2) j ik i jk 1 + (R∇ R + R∇ R ) (n − 1)(n − 2) i jk j ik 1 + (∇ R R + R ∇ R/2 + ∇ Rg R /2 n − 2 p ki pj ki j p ki pj +Rlp∇lRpjgik − ∇iRRjk/2 − Rpi∇pRkj − ∇iRkpRpj

−Rkp∇iRpj) 1 − (∇ RR g + R∇ Rg /2 − ∇ RR − R∇ R ) (n − 1)(n − 2) p pj ik j ik i kj i jk n − 3 + C R + W ∇ R n − 2 kip pj klip l pj THE COTTON TENSOR AND THE RICCI FLOW 17

1 + (∇ R R + R ∇ R/2 + ∇ Rg R /2 n − 2 p kj pi kj i p kj pi +Rlpgkj∇lRpi − ∇jRRki/2 − Rpj∇pRki − ∇jRkpRpi − Rkp∇jRpi) 1 − (∇ RR g + R∇ Rg /2 − ∇ RR − R∇ R ) (n − 1)(n − 2) p pi kj i jk j ki j ki n − 3 + C R + W ∇ R n − 2 kjp pi kljp l pi +Wkljp∇lRip + Wklip∇jRjp n + 1 2 = −R ∇ R + R ∇ R − R ∇ R kp p ij 2(n − 1)(n − 2) kj i n − 2 kp j ip 2 1 1 + R ∇ R g − R ∇ R − R∇ Rg n − 2 lp l pi jk n − 2 pj p ik (n − 1)(n − 2) i jk 2 n + 1 2 + R∇ R + ∇ RR − R ∇ R (n − 1)(n − 2) j ik 2(n − 1)(n − 2) j ki n − 2 kp i jp 2 1 1 + R ∇ R g − R ∇ R − R∇ Rg n − 2 lp l pj ik n − 2 pi p jk (n − 1)(n − 2) j ik 2 + R∇ R + 2W ∇ R + 2W ∇ R (n − 1)(n − 2) i jk kljp l pi klip l pj n − 3 + (∇ Rg R + ∇ Rg R ) 2(n − 1)(n − 2) p ik pj p jk pi n − 3 1 + (C R + C R ) − (∇ R R + ∇ R R ) n − 2 kip pj kjp pi n − 2 i kp pj j kp pi

and

∇k∆R − ∆∇kR = Rkllp∇pR = −Rkp∇pR . 18 CARLO MANTEGAZZA, SAMUELE MONGODI, AND MICHELE RIMOLDI

Then, getting back to the main computation, we obtain

∂ n + 1 C − ∆C = −R ∇ R + R ∇ R ∂t ijk ijk kp p ij 2(n − 1)(n − 2) kj i 2 2 − R ∇ R + R ∇ R g n − 2 kp j ip n − 2 lp l pi jk 1 1 − R ∇ R − R∇ Rg n − 2 jp p ik (n − 1)(n − 2) i jk 2 n + 1 + R∇ R + ∇ RR (n − 1)(n − 2) j ik 2(n − 1)(n − 2) j ki 2 2 − R ∇ R + R ∇ R g n − 2 kp i pj n − 2 lp l pj ik 1 1 − R ∇ R − R∇ Rg n − 2 pi p kj (n − 1)(n − 2) j ik 2 + R∇ R + 2W ∇ R + 2W ∇ R (n − 1)(n − 2) i jk kljp l pi klip l pj n − 3 + (∇ Rg R + ∇ Rg R ) 2(n − 1)(n − 2) p ik pj p jk pi n − 3 + (C R + C R ) n − 2 kip pj kjp pi 1 − (∇ R R + ∇ R R ) n − 2 i kp jp j kp pi n + 1 2 +R ∇ R − R ∇ R + R ∇ R jp p ik 2(n − 1)(n − 2) kj i n − 2 jp k ip 2 1 − R ∇ R g + R ∇ R n − 2 lp l pi kj n − 2 pk p ij 1 2 + R∇ Rg − R∇ R (n − 1)(n − 2) i jk (n − 1)(n − 2) k ij n + 1 2 − ∇ RR + R ∇ R 2(n − 1)(n − 2) k ij n − 2 jp i kp 2 1 − R ∇ R g + R ∇ R n − 2 lp p pk ij n − 2 pi p kj 1 2 + R∇ Rg − R∇ R (n − 1)(n − 2) k ij (n − 1)(n − 2) i kj −2Wjlkp∇lRpi − 2Wjlip∇lRpk n − 3 − (∇ Rg R + ∇ Rg R ) 2(n − 2)(n − 2) p ij pk p jk pi n − 3 1 − (C R + C R ) + (∇ R R + ∇ R R ) n − 2 jip pk jkp pi n − 2 i pj pk k jp pi 1 n + 2 + (R ∇ Rg − R ∇ Rg ) − (∇ R R + R ∇ R ) 2(n − 1) kp p ij jp p ki n − 2 k pi pj pi k pj n 5n − 2 + ∇ |Ric|2g + ∇ RR (n − 1)(n − 2) k ij 2(n − 1)(n − 2) k ij 2n 2 + R∇ R − ∇ R2g (n − 1)(n − 2) k ij (n − 1)(n − 2) k ij −2∇kRplWpijl − 2Rpl∇kWpijl 1 +C R − ∇ RR g + C R kli lj 2(n − 1) l lj ik klj li THE COTTON TENSOR AND THE RICCI FLOW 19

n + 2 + (∇ R R + R ∇ R ) n − 2 j pi pk pi j pk n 5n − 2 − ∇ |Ric|2g − ∇ RR (n − 1)(n − 2) j ki 2(n − 1)(n − 2) j ik 2n 2 − R∇ R + ∇ R2g (n − 1)(n − 2) j ik (n − 1)(n − 2) j ik +2∇jRplWpikl + 2Rpl∇jWpikl 1 −C R + ∇ RR g − C R jli lk 2(n − 1) l lk ij jlk li 1 = (R C + R C − C R − C R ) n − 2 pi jkp pk jip kip pj kjp pi h 2 3 + R ∇ R + ∇ R2 n − 2 lp l pj 2(n − 1)(n − 2) j 1 n i − ∇ RR − ∇ |Ric|2 g 2(n − 2) p pj (n − 1)(n − 2) j ik h 2 3 − R ∇ R + ∇ R2 n − 2 lp l pk 2(n − 1)(n − 2) k 1 n i − ∇ RR − ∇ |Ric|2 g 2(n − 2) p pk (n − 1)(n − 2) k ij n − 3 n − 3 − R ∇ R + R ∇ R n − 2 kp p ij n − 2 pj p ik n n + 1 2 + R ∇ R + ∇ R R − R∇ R n − 2 kp j pi n − 2 j pk pi n − 2 j ik 4n − 3 1 1 − ∇ RR − R ∇ R + R ∇ R 2(n − 1)(n − 2) j ik n − 2 kp i pj n − 2 pj i pk n n + 1 2 − R ∇ R − ∇ R R + R∇ R n − 2 jp k ip n − 2 k jp ip n − 2 k ij 4n − 3 + ∇ RR + 2W ∇ R + 2W ∇ R − 2W ∇ R 2(n − 1)(n − 2) k ij klip l pj kljp l pi jlkp l pi −2Wjlip∇lRpk − 2∇kRplWpijl − 2Rpl∇kWpijl + 2∇jRplWpikl + 2Rpl∇jWpikl

Now, by means of the very definition of the Cotton tensor (1.2), the identities (1.4), and the symme- tries of the Weyl tensor, we substitute

Ckpj − Cjpk = − Ckjp − Cjpk = Cpkj 1 ∇ R = ∇ R + C + ∇ Rg − ∇ Rg  l jp j lp pjl 2(n − 1) l pj j pl 1 ∇ R = ∇ R + C + ∇ Rg − ∇ Rg  l kp k lp pkl 2(n − 1) l pk k pl 1 ∇ R = ∇ R + C + ∇ Rg − ∇ Rg  i jp j ip pji 2(n − 1) i jp j ip 1 ∇ R = ∇ R + C + ∇ Rg − ∇ Rg  i kp k ip pki 2(n − 1) i kp k ip 1 ∇ R = ∇ R + C + ∇ Rg − ∇ Rg  p ij j pi ijp 2(n − 1) p ji j pi 1 ∇ R = ∇ R + C + ∇ Rg − ∇ Rg  p ik k pi ikp 2(n − 1) p ki k pi 20 CARLO MANTEGAZZA, SAMUELE MONGODI, AND MICHELE RIMOLDI in the last expression above, getting

∂ 1 C − ∆C = (R C + R C − C R ) ∂t ijk ijk n − 2 pi pkj pk jip kip pj h 2  1 + R ∇ R + C + ∇ Rg n − 2 lp j lp pjl 2(n − 1) l pj 1  3 − ∇ Rg ) + ∇ R2 2(n − 1) j pl 2(n − 1)(n − 2) j 1 n i − ∇ RR − ∇ |Ric|2 g 2(n − 2) p pj (n − 1)(n − 2) j ik h 2  1 − R ∇ R + C + ∇ Rg n − 2 lp k pl pkl 2(n − 1) l pk 1  3 − ∇ Rg + ∇ R2 2(n − 1) k pl 2(n − 1)(n − 2) k 1 n i − ∇ RR − ∇ |Ric|2 g 2(n − 2) p pk (n − 1)(n − 2) k ij n − 3  1  − R C + ∇ R + (∇ Rg − ∇ Rg ) n − 2 kp ijp j ip 2(n − 1) p ij j ip n − 3  1  + R C + ∇ R + (∇ Rg − ∇ Rg ) n − 2 pj ikp k ip 2(n − 1) p ik k ip n n + 1 2 + R ∇ R + ∇ R R − R∇ R n − 2 kp j pi n − 2 j pk pi n − 2 j ik 4n − 3 − ∇ RR 2(n − 1)(n − 2) j ik 1  1  − R ∇ R + C + (∇ Rg − ∇ Rg ) n − 2 kp j ip pji 2(n − 1) i jp j ip 1  1  + R ∇ R + C + (∇ Rg − ∇ Rg ) n − 2 pj k ip kpi 2(n − 1) i kp k ip n n + 1 2 − R ∇ R − ∇ R R + R∇ R n − 2 jp k ip n − 2 k jp ip n − 2 k ij 4n − 3 + ∇ RR 2(n − 1)(n − 2) k ij +2CpljWpikl − 2CplkWpijl − 2CpilWjklp

−2Wjklp∇iRpl − 2Rpl∇kWpijl + 2Rpl∇jWpikl 1 = (R C + R (C − C − (n − 3)C ) + R (C − C + (n − 3)C )) n − 2 pi pkj pk jip pji ijp pj pki kip ikp 2 2 + C R g − C R g − 2C W + 2C W − 2C W n − 2 pjl pl ik n − 2 pkl pl ij pjl pikl pkl pijl pil jklp h ∇ R2 1 i +g j − ∇ |Ric|2 ik (n − 1)(n − 2) (n − 1)(n − 2) j h ∇ R2 1 i −g k − ∇ |Ric|2 ij (n − 1)(n − 2) (n − 1)(n − 2) k 2 n + 1 3n − 1 2 − R ∇ R − ∇ R R + ∇ RR + R∇ R n − 2 jp k ip n − 2 k jp ip 2(n − 1)(n − 2) k ij n − 2 k ij 2 n + 1 3n − 1 2 + R ∇ R + ∇ R R − ∇ RR − R∇ R n − 2 kp j ip n − 2 j kp ip 2(n − 1)(n − 2) j ik n − 2 j ik −2Wjklp∇iRlp − 2Rlp∇kWpijl + 2Rpl∇jWpikl . THE COTTON TENSOR AND THE RICCI FLOW 21 then, we substitute again 1 ∇ R = ∇ R + C + ∇ Rg − ∇ Rg  k jp p kj jpk 2(n − 1) k jp p jk 1 ∇ R = ∇ R + C + ∇ Rg − ∇ Rg  j kp p jk kpj 2(n − 1) j kp p kj 1 ∇ R = ∇ R + C + ∇ Rg − ∇ Rg  k ij i kj jik 2(n − 1) k ij i jk 1 ∇ R = ∇ R + C + ∇ Rg − ∇ Rg  , j ik i jk kij 2(n − 1) j ik i kj finally obtaining ∂ 1 C − ∆C = (R C + R (C − C − (n − 3)C ) + R (C − C + (n − 3)C )) ∂t ijk ijk n − 2 pi pkj pk jip pji ijp pj pki kip ikp 2 2 + C R g − C R g − 2C W + 2C W − 2C W n − 2 pjl pl ik n − 2 pkl pl ij pjl pikl pkl pijl pil jklp h ∇ R2 1 i +g j − ∇ |Ric|2 ik (n − 1)(n − 2) (n − 1)(n − 2) j h ∇ R2 1 i −g k − ∇ |Ric|2 ij (n − 1)(n − 2) (n − 1)(n − 2) k 2 n + 1 n + 1 − R ∇ R − R ∇ R − R C n − 2 jp k ip n − 2 ip p kj n − 2 ip jpk n + 1 n + 1 − R ∇ R + R ∇ Rg 2(n − 1)(n − 2) ij k 2(n − 1)(n − 2) ip p jk 3n − 1 2 1 + ∇ RR + R(∇ R + C + (∇ Rg − ∇ Rg )) 2(n − 1)(n − 2) k ij n − 2 i jk jik 2(n − 1) k ij i jk 2 n + 1 n + 1 n + 1 + R ∇ R + R ∇ R + R C + ∇ RR n − 2 kp j ip n − 2 ip p kj n − 2 ip kpj 2(n − 1)(n − 2) j ik n + 1 3n − 1 − R ∇ Rg − ∇ RR 2(n − 1)(n − 2) ip p jk 2(n − 1)(n − 2) j ik 2 1 − R(∇ R + C + (∇ Rg − ∇ Rg )) n − 2 i jk kij 2(n − 1) j ik i jk −2Wjklp∇iRlp − 2Rlp∇kWpijl + 2Rpl∇jWpikl 1 = (R (C − C − (n − 3)C ) − R (C − C − (n − 3)C ) n − 2 pk jip pji ijp pj kip pki ikp 2 2 +(n + 2)R C ) + (C R g − C R g ) + RC pi pkj n − 2 pjl pl ik pkl pl ij n − 2 ijk −2WpiklCpjl + 2WpijlCpkl − 2CpilWjklp h ∇ R2 1 i +g j − ∇ |Ric|2 ik 2(n − 1)(n − 2) (n − 1)(n − 2) j h ∇ R2 1 i −g k − ∇ |Ric|2 ij 2(n − 1)(n − 2) (n − 1)(n − 2) k 2 1 − R ∇ R + ∇ RR n − 2 jp k ip n − 2 k ij 2 1 + R ∇ R − ∇ RR n − 2 kp j ip n − 2 j ik +2Rlp∇jWpikl − 2Rlp∇kWpijl , where in the last passage we used again the identities (1.4) and the fact that

Wjklp∇iRlp = Wjkpl∇iRpl = Wjkpl∇iRlp = −Wjklp∇iRlp . Hence, we can resume this long computation in the following proposition, getting back to a generic coordinate basis. 22 CARLO MANTEGAZZA, SAMUELE MONGODI, AND MICHELE RIMOLDI

Proposition 4.1. During the Ricci flow of a n–dimensional Riemannian manifold (M n, g(t)), the Cotton tensor satisfies the following evolution equation

1 ∂ − ∆C = [gpqR (C + C + (n − 3)C ) t ijk n − 2 pj kqi qki ikq pq pq +(n + 2)g RipCqkj − g Rpk(Cjqi + Cqji + (n − 3)Cijq)] 2 2 2 + RC + RqlC g − RqlC g n − 2 ijk n − 2 qjl ik n − 2 qkl ij 1 1 + ∇ |Ric|2g − ∇ |Ric|2g (n − 1)(n − 2) k ij (n − 1)(n − 2) j ik R R + ∇ Rg − ∇ Rg (n − 1)(n − 2) j ik (n − 1)(n − 2) k ij 2 2 1 1 + gpqR ∇ R − gpqR ∇ R + R ∇ R − R ∇ R n − 2 pk j qi n − 2 pj k qi n − 2 ij k n − 2 ik j pq pq pq pq pq −2g WpiklCqjl + 2g WpijlCqkl − 2g WjklpCqil + 2g Rpl∇jWqikl − 2g Rpl∇kWqijl .

In particular if the Cotton tensor vanishes identically along the flow we obtain,

1 1 0 = ∇ |Ric|2g − ∇ |Ric|2g (n − 1)(n − 2) k ij (n − 1)(n − 2) j ik R R + ∇ Rg − ∇ Rg (n − 1)(n − 2) j ik (n − 1)(n − 2) k ij 2 2 1 1 + gpqR ∇ R − gpqR ∇ R + R ∇ R − R ∇ R n − 2 pk j qi n − 2 pj k qi n − 2 ij k n − 2 ik j pq pq +2g Rpl∇jWqikl − 2g Rpl∇kWqijl ,

while, in virtue of relation (1.3), if the Weyl tensor vanishes along the flow we obtain (compare with [5, Propo- sition 1.1 and Corollary 1.2])

1 1 0 = ∇ |Ric|2g − ∇ |Ric|2g (n − 1)(n − 2) k ij (n − 1)(n − 2) j ik R R + ∇ Rg − ∇ Rg (n − 1)(n − 2) j ik (n − 1)(n − 2) k ij 2 2 1 1 + gpqR ∇ R − gpqR ∇ R + R ∇ R − R ∇ R . n − 2 pk j qi n − 2 pj k qi n − 2 ij k n − 2 ik j

Corollary 4.2. During the Ricci flow of a n–dimensional Riemannian manifold (M n, g(t)), the squared norm of the Cotton tensor satisfies the following evolution equation, in an orthonormal basis,

16 24 ∂ − ∆|C |2 = −2|∇C |2 − C C R + C C R t ijk ijk n − 2 ipk iqk pq n − 2 ipk kqi pq 4 8 4 + R|C |2 + C R ∇ R + C R ∇ R n − 2 ijk n − 2 ijk pk j pi n − 2 ijk ij k +8CijkRlp∇jWpikl − 8CijkCpjlWpikl − 4CjpiCljkWpikl . THE COTTON TENSOR AND THE RICCI FLOW 23

 2 2 ijk pq ijk pq ijk pq ∂t − ∆ |Cijk| = −2|∇Cijk| + 2C Ripg Cqjk + 2C Rjpg Ciqk + 2C Rkpg Ciqk h 1 +2C [(R (C + C + (n − 3)C ) ijk n − 2 pj kpi pki ikp +(n + 2)RpiCpkj − Rpk(Cjpi + Cpji + (n − 3)Cijp)) 2 2 2 + RC + R C g − R C g n − 2 ijk n − 2 ql qjl ik n − 2 ql qkl ij 1 1 + ∇ |Ric|2g − ∇ |Ric|2g (n − 1)(n − 2) k ij (n − 1)(n − 2) j ik R R + ∇ Rg − ∇ Rg (n − 1)(n − 2) j ik (n − 1)(n − 2) k ij 2 2 1 1 + R ∇ R − R ∇ R + R ∇ R − R ∇ R n − 2 qk j qi n − 2 qj k qi n − 2 ij k n − 2 ik j i −2WpiklCpjl + 2WpijlCpkl − 2WjklpCpil + 2Rpl∇jWpikl − 2Rpl∇kWpikl 16 24 = −2|∇C |2 − C C R + C C R ijk n − 2 ipk iqk pq n − 2 ipk kqi pq 4 8 4 + R|C |2 + C R ∇ R + C R ∇ R n − 2 ijk n − 2 ijk pk j pi n − 2 ijk ij k +8CijkRlp∇jWpikl − 8CijkCpjlWpikl − 4CjpiCljkWpikl . Remark 4.3. Notice that if n = 3 the two formulas in Proposition 4.1 and Corollary 4.2 become the ones in Proposition 2.1 and Corollary 2.5.

5. THE BACH TENSOR The Bach tensor in dimension three is given by

Bik = ∇jCijk .

1 Let Sij = Rij − 2(n−1) Rgij be the Schouten tensor, then

(5.1) Bik = ∇jCijk = ∇j(∇kSij − ∇jSik) = ∇j∇kSij − ∆Sik . We compute, in generic dimension n, 1 ∇ C = ∇ ∇ R − ∇ ∇ Rg − ∆S j ijk j k ij 2(n − 1) j k ij ik 1 = +R R + R R + ∇ ∇ R − ∇ ∇ Rg − ∆S jkil jl jkjl il k j ij 2(n − 1) k j ij ik 1  R  = + R g − R g + R g − R g − (g g − g g ) R + W R n − 2 ij kl jl ki kl ij ki jl (n − 1) ij kl jl ki jl jkil jl 1 1 +R R + ∇ ∇ R − ∇ ∇ R − ∆S kl il 2 k i 2(n − 1) k i ik 1 R R2 = + (R R − |Ric|2g + R R − RR ) − R + g n − 2 ji jk ik kl il ik (n − 1)(n − 2) ik (n − 1)(n − 2) ik n − 2 +W R + R R + ∇ ∇ R − ∆S jkil jl kl il 2(n − 1) k i ik n n 1 R2 = R R − RR − |Ric|2g + g n − 2 ij kj (n − 1)(n − 2) ik n − 2 ik (n − 1)(n − 2) ik n − 2 +W R + ∇ ∇ R − ∆S . jkil jl 2(n − 1) k i ik

From this last expression, it is easy to see that the Bach tensor in dimension 3 is symmetric, i.e. Bik = ik ik Bki. Moreover, it is trace–free, that is, g Bik = 0 as g ∇Cijk = 0. 24 CARLO MANTEGAZZA, SAMUELE MONGODI, AND MICHELE RIMOLDI

Remark 5.1. In higher dimension, the Bach tensor is given by 1 B = (∇ C − R W ) . ik n − 2 j ijk jl ijkl

We note that, since RjlWijkl = RjlWklij = RjlWkjil, from the above computation we get that the Bach tensor is symmetric in any dimension; finally, as the Weyl tensor is trace-free in every pair of indexes, ik there holds g Bik = 0. We recall that Schur lemma yields the following equation for the divergence of the Schouten tensor n − 2 (5.2) ∇ S = ∇ R . j ij 2(n − 1) i We write ∇k∇jCijk = ∇k∇j∇kSij − ∇k∇j∇jSik = [∇j, ∇k]∇jSik , therefore,

∇k∇jCijk = Rjkjl∇lSik + Rjkil∇jSlk + Rjkkl∇jSli

= Rkl∇lSik + Rjkil∇jSlk − Rjl∇jSli  1 1  = (R g − R g + R g − R g ) − R(g g − g g ) + W ∇ S n − 2 ij kl jl ik kl ij ik jl (n − 1)(n − 2) ij kl ik jl jkil j lk 1 = (−R ∇ S + R ∇ S ) + W ∇ S n − 2 jl j il kl i kl jkil j lk 1 = R (∇ S − ∇ S ) + W ∇ R n − 2 jl i lj j il jkil j kl 1 = R C + W ∇ R , n − 2 jl lji iljk j kl where we repeatedly used equation (5.2), the trace–free property of the Weyl tensor and the definition of the Cotton tensor. Recalling that n − 3 n − 3 ∇ W = ∇ W = − C = C , k ijkl k klij n − 2 lij n − 2 lji the divergence of the Bach tensor is given by 1 1 n − 3 ∇ B = ∇ (∇ C − R W ) = R C − C R k ik n − 2 k j ijk jl ijkl (n − 2)2 jl jli (n − 2)2 jli jl n − 4 = − C R . (n − 2)2 jli jl

In particular, for n = 3, we obtain ∇kBik = ∇kBki = RjlCjli and, for n = 4, we get the classical result ∇kBik = ∇kBki = 0.

5.1. The Evolution Equation of the Bach Tensor in 3D.

We turn now our attention to the evolution of the Bach tensor along the Ricci flow in dimension three. In order to obtain its evolution equation, instead of calculating directly the time derivative and the Laplacian of the Bach tensor, we employ the following equation

(5.3) (∂t − ∆)Bik = ∇j(∂t − ∆)Cijk − [∆, ∇j]Cijk + 2Rpj∇pCijk + [∂t, ∇j]Cijk , which relates the quantity we want to compute with the evolution of the Cotton tensor, the evolution of the Christoffel symbols and the formulas for the exchange of covariant derivatives. We will work on the various terms separately. By the commutations formulas for derivatives, we have

∇l∇l∇qCijk − ∇l∇q∇lCijk = ∇l(RlqipCpjk + RlqjpCipk + RlqkpCijp)

∇l∇q∇sCijk − ∇q∇l∇sCijk = Rlqsp∇pCijk + Rlqip∇sCpjk + Rlqjp∇sCipk + Rlqkp∇sCijp, THE COTTON TENSOR AND THE RICCI FLOW 25 and putting these together with q = j and l = s, we get

[∆, ∇j]Cijk = ∇l(RljipCpjk − RlpCipk + RljkpCijp)

+Rjp∇pCijk + Rljip∇lCpjk − Rlp∇lCipk + Rljkp∇lCijp  R  = ∇ R g − R g + R g − R g − (g g − g g ) C l li jp lp ji jp li ji lp 2 li jp lp ji pjk  R   −R C + R g − R g + R g − R g − (g g − g g ) C lp ipk lk jp lp jk jp lk jk lp 2 lk jp lp jk ijp +Rjp∇pCijk + Rljip∇lCpjk − Rlp∇lCipk + Rljkp∇lCijp 1 = − ∇ RC − R ∇ C + ∇ R C + R ∇ C − ∇ R C − R ∇ C 2 p pik lp l pik i jp pjk jp i pjk p ji pjk ji p pjk 1 R 1 1 + ∇ RC + ∇ C − ∇ RC − R ∇ C − ∇ RC − R ∇ C 2 p pik 2 p pik 2 p ipk lp l ipk 2 p ikp lp l ikp 1 R +∇ R C + R ∇ C − ∇ R C − R ∇ C + ∇ RC + ∇ C k jp ijp jp k ijp p jk ijp jk p ijp 2 p ikp 2 p ikp R +R ∇ C − R ∇ C + R ∇ C − R ∇ C + ∇ C jp p ijk lp l pik jp i pjk ji p pjk 2 p pik R −R ∇ C − R ∇ C + R ∇ C − R ∇ C + ∇ C lp l ipk lp l ikp jp k ijp jk p ijp 2 p ikp = ∇iRjpCpjk − ∇pRjiCijp − ∇pRjkCijp − ∇pRjkCijp − 2Rlp∇lCpik 1 +2R ∇ C − 2R ∇ C + R∇ C + ∇ RC + 2R ∇ C lp i plk ji p pjk p pik 2 p ikp jp k ijp −2Rjk∇pCijp + R∇pCikp + Rjp∇pCijk

= ∇iRlpCplk − ∇pRliCplk + ∇kRlpCilp − ∇pRlkCilp

−2Rlp∇lCpik + 2Rlp∇iCplk + 2RliBkl − 2RliBlk + 2Rlp∇kCilp 1 +2R B + R ∇ C − RB + ∇ RC + RB − RB lk il lp p ilk ik 2 p ikp ik ik = ∇iRlpCplk − ∇pRliCplk + ∇kRlpCilp − ∇pRlkCilp

+Rlp∇pCilk + 2Rlp∇iCplk + 2Rlp∇kCilp − 2Rlp∇lCipk 1 + ∇ RC + 2R B − RB . 2 p ikp lk il ik The covariant derivative of the evolution of the Cotton tensor is given by 5 ∇ (∂ − ∆)C = ∇ RC + ∇ RC + R ∇ C + R ∇ C − ∇ R C j t ijk 2 p ipk p pki lp p kli lp p lki p kl pli −∇pRklClpi − RkpBpi + 5∇pRilClkp − 5RipBpk + 2RBik

+2∇sRplCpslgik + 2RplBplgik − 2∇iRplCpkl − 2Rpl∇iCpkl 1 1 + (|∇R|2 + R∆R − ∆|Ric|2)g − (∇ R∇ R + R∇ ∇ R − ∇ ∇ |Ric|2) 2 ik 2 i k i k i k +2∆RipRkp + 2∇lRip∇lRkp − 2∇l∇kRipRlp − ∇kRip∇pR 1 +∇ ∇ RR + ∇ R∇ R − ∆RR − ∇ R∇ R . l k il 2 k i ik l l ik Finally, the commutator between the covariant derivative and the time derivative can be expressed in terms of the time derivatives of the Christoffel symbols, as follows p p [∂t, ∇j]Cijk = −∂tΓijCpjk − ∂tΓjkCijp = ∇iRjpCpjk + ∇jRipCpjk − ∇pRijCpjk + ∇jRkpCijp + ∇kRjpCijp − ∇pRjkCijp

= ∇iRjpCpjk + ∇pRijCjpk + ∇pRijCpkj + ∇pRkjCipj + ∇kRjpCijp + ∇pRjkCipj

= ∇iRjpCpjk − ∇pRijCpkj − ∇pRijCkjp + ∇pRijCpkj + 2∇pRkjCipj

= ∇iRjpCpjk − ∇pRijCkjp + 2∇pRkjCipj . Substituting into (5.3), and making some computations, we obtain the evolution equation 26 CARLO MANTEGAZZA, SAMUELE MONGODI, AND MICHELE RIMOLDI

Proposition 5.2. During the Ricci flow of a 3–dimensional Riemannian manifold (M 3, g(t)) the Bach tensor satisfies the following evolution equation

(∂t − ∆)Bik = [3∇pRCipk + ∇pRCpki − ∇pR∇kRip]

+ [−2Rpl∇pCikl − 3RpkBpi − 5RpiBpk + 2∆RipRkp

−2∇l∇kRpiRpl + ∇l∇kRRli − ∆RRik]

+ [−2∇pRklClpi − 2∇pRklCilp − 4∇pRilClpk − 2∇iRplCpkl]

+ [3RBik + 2∇sRplCpslgik + 2RplBplgik 1 1 + (|∇R|2 + R∆R − ∆|Ric|2)g − (R∇ ∇ R − ∇ ∇ |Ric|2) 2 ik 2 i k i k +2∇lRip∇lRkp − ∇lR∇lRik] .

Hence, if the Bach tensor vanishes identically along the flow, we have

0 = 3∇pRCipk + ∇pRCpki − ∇pR∇kRip − 2Rpl∇pCikl

+2∆RipRkp − 2∇l∇kRpiRpl + ∇l∇kRRli − ∆RRik

−2∇pRklClpi − 2∇pRklCilp − 4∇pRilClpk − 2∇iRplCpkl 1 +2∇ R C g + (|∇R|2 + R∆R − ∆|Ric|2)g s pl psl ik 2 ik 1 − (R∇ ∇ R − ∇ ∇ |Ric|2) + 2∇ R ∇ R − ∇ R∇ R . 2 i k i k l ip l kp l l ik

Remark 5.3. Note that, from the symmetry property of the Bach tensor, we have that the RHS in the evolution equation of the Bach tensor should be symmetric in the two indices. It is not so difficult to check that this property is verified for the formula in Proposition 5.2. Indeed, each of the terms in between square brackets is symmetric in the two indices.

As a consequence of Proposition 5.2, we get that during the Ricci flow of a 3–dimensional Riemann- ian manifold the squared norm of the Bach tensor satisfies

2 2 (∂t − ∆)|Bik| = −2|∇Bik| − 12BikBiqRqk + 6Bik∇pR − 4BikRpl∇pCikl 2 +4Bik∇pRklCpil − 8Bik∇pRklClpi − 4Bik∇iRplCpkl + 6R|Bik|

−2Bik∇pR∇kRip + 4Bik∆RipRkp − 4Bik∇l∇kRpiRpl + 2Bik∇l∇kRRli 2 −2Bik∆RRik − BikR∇i∇kR + Bik∇i∇k|Ric| − 2Bik∇lR∇lRik

+4Bik∇lRip∇lRkp.

5.2. The Bach Tensor of Three–Dimensional Gradient Ricci Solitons.

In what follows, we will use formulas (3.1)–(3.5) to derive an expression of the Bach tensor and of its divergence in the particular case of a gradient Ricci soliton in dimension three. THE COTTON TENSOR AND THE RICCI FLOW 27

By straightforward computations, we obtain

Bik = ∇jCijk ∇ ∇ R ∆R g = i k − g − ∇ R ∇ f + ik ∇ R∇ f 4 4 ik j ik j 2 j j  R   R  + R − g ∇ ∇ f − R − g ∆f ij 2 ij j k ik 2 ik 1 1 1 = ∇ ∇ R − ∆Rg − ∇ R ∇ f + ∇ R∇ fg − R R + λR 4 i k 4 ik j ik j 2 j j ik ij jk ik 1 λ 3 1 + RR − Rg − 3λR + RR + λRg − R2g 2 ik 2 ik ik ik 2 ik 2 ik 1 1 λ 1 λ = ∇ R ∇ f − R R + R − ∇ R∇ fg − Rg 2 i lk l 2 lk li 2 ik 4 l l ik 2 ik 1 1 1 + |Ric|2g − ∇ R ∇ f + ∇ R∇ fg − R R + λR + RR 2 ik j ik j 2 j j ik ij jk ik 2 ik λ 3 1 − Rg − 3λR + RR + λRg − R2g 2 ik ik ik 2 ik 2 ik 1 1 3 3 = ∇ R ∇ f + ∇ R∇ fg − ∇ R ∇ f − R R − λR 2 i lk l 4 j j ik j ik j 2 ij jk 2 ik 3 λ 1 1 + RR + Rg + |Ric|2g − R2g . 2 ik 2 ik 2 ik 2 ik A more compact formulation, employing equations (3.2) and (3.3), is given by 1 1 1 1 λ 1 B = ∇ R ∇ f + ∆Rg − ∆R − ∇ R ∇ f − R + R R . ik 2 i lk l 4 ik 2 ik 2 j ik j 2 ik 2 ij jk

Moreover, as we know that ∇kBik = CljiRlj, we have 1 1 1 1 ∇ B = R∇ R − R ∇ R + |Ric|2∇ f − R2∇ f − R ∇ fR + RR ∇ f k ik 4 i 4 ij j i 2 i il j lj 2 ij j 1 3 1 = R∇ R − R ∇ R + |Ric|2∇ f − R2∇ f . 2 i 4 il l i 2 i Therefore, if the divergence of the Bach tensor vanishes, we conclude 1 3 1 R∇ R − R ∇ R + |Ric|2∇ f − R2∇ f = 0 . 2 i 4 ik k i 2 i Taking the scalar product with ∇f in both sides of this equation, we obtain 1 3 1 0 = Rh∇R, ∇fi − |∇R|2 + |Ric|2|∇f|2 − R2|∇f|2 2 8 2 and, from formulas (3.5) and (3.6), we compute ∇ R ∇ R  R   R   |C |2 = (R ∇ f − R ∇ f) k g − j g + R − g ∇ f − R − g ∇ f ijk ij k ik j 4 ij 4 ik ij 2 ij k ik 2 ik j R 1 R2 R = ∇ R∇ f − R ∇ R∇ f + |Ric|2|∇f|2 − |∇f|2 − R ∇ fR ∇ f + R ∇ f∇ f 4 k k 4 kj j k 2 ij j ik k 2 kj k j 1 R R R2 − R ∇ f∇ R + ∇ R∇ f − R ∇ fR ∇ f + R ∇ f∇ f + |Ric|2|∇f|2 − |∇f|2 4 jk j k 4 j j ik k ij j 2 jk j k 2 3 = 2|Ric|2|∇f|2 − R2|∇f|2 + R∇ R∇ f − |∇R|2 , k k 4 where we repeatedly used equation (3.4). Therefore, we obtain 1 ∇ B ∇ f = |C |2 , k ik i 2 ijk so, if the divergence of the Bach tensor vanishes then the Cotton tensor vanishes as well (this was already obtained in [2]). As a consequence, getting back to Section3, the soliton is locally a warped product of a constant curvature surface on a interval of R. 28 CARLO MANTEGAZZA, SAMUELE MONGODI, AND MICHELE RIMOLDI

REFERENCES 1. A. L. Besse, Einstein manifolds, Springer–Verlag, Berlin, 2008. 2. H.-D. Cao, G. Catino, Q. Chen, C. Mantegazza, and L. Mazzieri, Bach–flat gradient steady Ricci solitons, Calc. Var. Partial Differential Equations 49 (2014), no. 1-2, 125–138. 3. H.-D. Cao, B.-L. Chen, and X.-P. Zhu, Recent developments on Hamilton’s Ricci flow, Surveys in . Vol. XII. Geometric flows, vol. 12, Int. Press, Somerville, MA, 2008, pp. 47–112. 4. H.-D. Cao and Q. Chen, On locally conformally flat gradient steady Ricci solitons, Trans. Amer. Math. Soc. 364 (2012), 2377– 2391. 5. G. Catino and C. Mantegazza, Evolution of the Weyl tensor under the Ricci flow, Ann. Inst. Fourier (2011), 1407–1435. 6. S. Gallot, D. Hulin, and J. Lafontaine, Riemannian geometry, Springer–Verlag, 1990. 7. R. S. Hamilton, Three–manifolds with positive , J. Diff. Geom. 17 (1982), no. 2, 255–306.

(Carlo Mantegazza) SCUOLA NORMALE SUPERIORE,PIAZZA CAVALIERI 7, PISA,ITALY, 56126 E-mail address, C. Mantegazza: [email protected]

(Samuele Mongodi) SCUOLA NORMALE SUPERIORE,PIAZZA CAVALIERI 7, PISA,ITALY, 56126 E-mail address, S. Mongodi: [email protected]

(Michele Rimoldi) DIPARTIMENTO DI MATEMATICA E APPLICAZIONI,UNIVERSITADEGLI´ STUDIDI MILANO–BICOCCA, VIA COZZI 55, MILANO,ITALY, 20125 E-mail address, M. Rimoldi: [email protected]