Management of Cirrhotic Ascites Under the Add-On Administration of Tolvaptan
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Specifications of Approved Drug Compound Library
Annexure-I : Specifications of Approved drug compound library The compounds should be structurally diverse, medicinally active, and cell permeable Compounds should have rich documentation with structure, Target, Activity and IC50 should be known Compounds which are supplied should have been validated by NMR and HPLC to ensure high purity Each compound should be supplied as 10mM solution in DMSO and at least 100µl of each compound should be supplied. Compounds should be supplied in screw capped vial arranged as 96 well plate format. -
Vasopressin in Pediatric Critical Care
182 Review Article Vasopressin in Pediatric Critical Care Karen Choong1 1 Department of Pediatrics, Critical Care, Epidemiology and Address for correspondence Karen Choong, MB, BCh, MSc, Biostatistics, McMaster University, Hamilton, Ontario, Canada Department of Pediatrics, Critical Care, Epidemiology and Biostatistics, McMaster University, 1280 Main Street West, Room 3E20, J Pediatr Intensive Care 2016;5:182–188. Hamilton, Ontario, Canada L8S4K1 (e-mail: [email protected]). Abstract Vasopressin is a unique hormone with complex receptor physiology and numerous physiologic functions beyond its well-known vascular actions and osmoregulation. While vasopressin has in the past been primarily used in the management of diabetes insipidus and acute gastrointestinal bleeding, an increased understanding of the physiology of refractory shock, and the role of vasopressin in maintaining cardiovascular homeostasis prompted a renewed interest in the therapeutic roles for this hormone in the critical care setting. Identifying vasopressin-deficient individuals for the purposes of assessing responsiveness to exogenous hormone and prognosticating outcome has expanded research into the evaluation of vasopressin and its precursor, copeptin as Keywords useful biomarkers. This review summarizes the current evidence for vasopressin in ► vasopressin critically ill children, with a specific focus on its use in the management of shock. We ► pediatrics outline important considerations and current guidelines, when considering the use of ► shock vasopressin or its -
Long-Term Administration of Tolvaptan to Patients with Decompensated
Int. J. Med. Sci. 2020, Vol. 17 874 Ivyspring International Publisher International Journal of Medical Sciences 2020; 17(7): 874-880. doi: 10.7150/ijms.41454 Research Paper Long-term administration of Tolvaptan to patients with decompensated cirrhosis Kengo Kanayama1, Tetsuhiro Chiba1, Kazufumi Kobayashi1, Keisuke Koroki1, Susumu Maruta1, Hiroaki Kanzaki1, Yuko Kusakabe1, Tomoko Saito1, Soichiro Kiyono1, Masato Nakamura1, Sadahisa Ogasawara1, Eiichiro Suzuki1, Yoshihiko Ooka1, Shingo Nakamoto1, Shin Yasui1, Tatsuo Kanda2, Hitoshi Maruyama3, Jun Kato1, Naoya Kato1 1. Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan. 2. Department of Gastroenterology and Hepatology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo 173-8610, Japan. 3. Department of Gastroenterology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan. Corresponding author: Tetsuhiro Chiba, M.D., Ph.D. Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan. Telephone: +81-43-2262083, Fax: +81-43-2262088, E-mail: [email protected]. © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2019.10.24; Accepted: 2020.02.20; Published: 2020.03.15 Abstract Aim: Tolvaptan, an oral vasopressin-2 antagonist, sometimes improves hepatic edema including ascites in patients with decompensated cirrhosis. In this study, we examined the effectiveness and survival advantage in patients with the long-term administration of tolvaptan. -
Glypressin Ferring Pharmaceuticals Pty Ltd PM-2010-03182-3-3 Final 26 November 2012
Attachment 1: Product information for AusPAR Glypressin Ferring Pharmaceuticals Pty Ltd PM-2010-03182-3-3 Final 26 November 2012. This Product Information was approved at the time this AusPAR was published. Product Information ® GLYPRESSIN Solution for Injection NAME OF THE MEDICINE Terlipressin (as terlipressin acetate). The chemical name is N-[N-(N-Glycylglycyl)glycyl]-8-L- lysinevasopressin. Terlipressin has an empirical formula of C52H74N16O15S2 and a molecular weight of 1227.4. CAS No: 14636-12-5. The pKa is approximately 10. Terlipressin is freely soluble in water. Although the active ingredient is terlipressin, the drug substance included in this product contains non-stoichiometric amounts of acetic acid and water, and this material is freely soluble in water. The structural formula of terlipressin is DESCRIPTION GLYPRESSIN is for intravenous injection. It consists of a clear, colourless liquid containing 0.85 mg terlipressin (equivalent to 1 mg terlipressin acetate) in 8.5 mL solution in an ampoule. The concentration of terlipressin is 0.1 mg/mL (equivalent to terlipressin acetate 0.12 mg/mL). List of excipients GLYPRESSIN contains the following excipients: Sodium chloride, acetic acid, sodium acetate trihydrate, Water for Injections PHARMACOLOGY Pharmacodynamics Terlipressin belongs to the pharmacotherapeutic group: Posterior pituitary lobe hormones (vasopressin and analogues), ATC code: H 01 BA 04. Terlipressin is a dodecapeptide that has three glycyl residues attached to the N-terminal of lysine vasopressin (LVP). Terlipressin acts as a pro-drug and is converted via enzymatic cleavage of its three glycyl residues to the biologically active lysine vasopressin. A large body of evidence has consistently shown that terlipressin given at doses of 0.85 mg and 1.7 mg respectively (equivalent to terlipressin acetate 1 mg and 2 mg respectively) can effectively reduce the portal venous pressure and produces marked vasoconstriction. -
Therapeutic Potential of Vasopressin-Receptor Antagonists in Heart Failure
J Pharmacol Sci 124, 1 – 6 (2014) Journal of Pharmacological Sciences © The Japanese Pharmacological Society Current Perspective Therapeutic Potential of Vasopressin-Receptor Antagonists in Heart Failure Yasukatsu Izumi1,*, Katsuyuki Miura2, and Hiroshi Iwao1 1Department of Pharmacology, 2Applied Pharmacology and Therapeutics, Osaka City University Medical School, Osaka 545-8585, Japan Received October 2, 2013; Accepted November 17, 2013 Abstract. Arginine vasopressin (AVP) is a 9-amino acid peptide that is secreted from the posterior pituitary in response to high plasma osmolality and hypotension. AVP has important roles in circulatory and water homoeostasis, which are mediated by oxytocin receptors and by AVP receptor subtypes: V1a (mainly vascular), V1b (pituitary), and V2 (renal). Vaptans are orally and intravenously active nonpeptide vasopressin-receptor antagonists. Recently, subtype-selective nonpeptide vasopressin-receptor agonists have been developed. A selective V1a-receptor antago- nist, relcovaptan, has shown initial positive results in the treatment of Raynaud’s disease, dysmen- orrhea, and tocolysis. A selective V1b-receptor antagonist, nelivaptan, has beneficial effects in the treatment of psychiatric disorders. Selective V2-receptor antagonists including mozavaptan, lixivaptan, satavaptan, and tolvaptan induce highly hypotonic diuresis without substantially affecting the excretion of electrolytes. A nonselective V1a/V2-receptor antagonist, conivaptan, is used in the treatment for euvolaemic or hypervolemic hyponatremia. Recent basic and clinical studies have shown that AVP-receptor antagonists, especially V2-receptor antagonists, may have therapeutic potential for heart failure. This review presents current information about AVP and its antagonists. Keywords: arginine vasopressin, diuretic, heart failure, vasopressin receptor antagonist 1. Introduction receptor blockers, diuretics, b-adrenoceptor blockers, digitalis glycosides, and inotropic agents (4). -
Subject: Samsca (Tolvaptan) Original Effective Date: 07/27/15
Subject: Samsca (tolvaptan) Original Effective Date: 07/27/15 Policy Number: MCP-252 Revision Date(s): Review Date(s): 12/15/2016; 6/22/2017 DISCLAIMER This Medical Policy is intended to facilitate the Utilization Management process. It expresses Molina's determination as to whether certain services or supplies are medically necessary, experimental, investigational, or cosmetic for purposes of determining appropriateness of payment. The conclusion that a particular service or supply is medically necessary does not constitute a representation or warranty that this service or supply is covered (i.e., will be paid for by Molina) for a particular member. The member's benefit plan determines coverage. Each benefit plan defines which services are covered, which are excluded, and which are subject to dollar caps or other limits. Members and their providers will need to consult the member's benefit plan to determine if there are any exclusion(s) or other benefit limitations applicable to this service or supply. If there is a discrepancy between this policy and a member's plan of benefits, the benefits plan will govern. In addition, coverage may be mandated by applicable legal requirements of a State, the Federal government or CMS for Medicare and Medicaid members. CMS's Coverage Database can be found on the CMS website. The coverage directive(s) and criteria from an existing National Coverage Determination (NCD) or Local Coverage Determination (LCD) will supersede the contents of this Molina Clinical Policy (MCP) document and provide the directive for all Medicare members. SUMMARY OF EVIDENCE/POSITION This policy addresses the coverage of Samsca (tolvaptan) for the treatment of clinically significant hypervolemic and euvolemic hyponatremia when appropriate criteria are met. -
Vasopressin V2 Is a Promiscuous G Protein-Coupled Receptor That Is Biased by Its Peptide Ligands
bioRxiv preprint doi: https://doi.org/10.1101/2021.01.28.427950; this version posted January 28, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Vasopressin V2 is a promiscuous G protein-coupled receptor that is biased by its peptide ligands. Franziska M. Heydenreich1,2,3*, Bianca Plouffe2,4, Aurélien Rizk1, Dalibor Milić1,5, Joris Zhou2, Billy Breton2, Christian Le Gouill2, Asuka Inoue6, Michel Bouvier2,* and Dmitry B. Veprintsev1,7,8,* 1Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland and Department of Biology, ETH Zürich, 8093 Zürich, Switzerland 2Department of Biochemistry and Molecular medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada 3Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA 4The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, United Kingdom 5Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus-Vienna-Biocenter 5, 1030 Vienna, Austria 6Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan. 7Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK. 8Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK. *Correspondence should be addressed to: [email protected], [email protected], [email protected]. -
Addition of Tolvaptan Compared with Increased Dose of Furosemide in Heart Failure Patients with Chronic Kidney Disease Under Furosemide Treatment
Circulation Reports ORIGINAL ARTICLE Circ Rep 2019; 1: 35 – 41 doi: 10.1253/circrep.CR-18-0002 Heart Failure Addition of Tolvaptan Compared With Increased Dose of Furosemide in Heart Failure Patients With Chronic Kidney Disease Under Furosemide Treatment Toshiki Tanaka, MD, PhD; Shingo Minatoguchi, MD, PhD; Yoshihisa Yamada, MD, PhD; Hiromitsu Kanamori, MD, PhD; Masanori Kawasaki, MD, PhD; Kazuhiko Nishigaki, MD, PhD; Shinya Minatoguchi, MD, PhD Background: Given that residual congestion is a predictor of poor outcome in patients with heart failure (HF), a therapeutic strategy for decongestion is required. Methods and Results: Eighteen HF patients with fluid retention despite oral furosemide >20 mg/day, with chronic kidney disease (CKD; estimated glomerular filtration rate [eGFR], <59 mL/min/1.73 m2) were enrolled. Patients were randomized into 2 groups: a tolvaptan group (tolvaptan, 7.5 mg/day, n=10) and a furosemide group (additional furosemide 20 mg/day, n=8), and followed up for 7 days. The urine volume significantly increased on day 3 in the tolvaptan group but not in the furosemide group. The body weight significantly decreased in the tolvaptan compared with the furosemide group on days 3 and 5. Although there was no difference in serum creatinine or eGFR in the 7 days between the 2 groups, serum cystatin C significantly decreased on day 7 in the tolvaptan group compared with the furosemide group. The residual congestion was more improved in the tolvaptan group than in the furosemide group. Conclusions: Adding tolvaptan but not furosemide significantly increased urine volume, decreased body weight and improved residual congestion without affecting the renal function or electrolytes in patients with HF with CKD under furosemide treatment. -
Specialty Pharmacy Program Drug List
Specialty Pharmacy Program Drug List The Specialty Pharmacy Program covers certain drugs commonly referred to as high-cost Specialty Drugs. To receive in- network benefits/coverage for these drugs, these drugs must be dispensed through a select group of contracted specialty pharmacies or your medical provider. Please call the BCBSLA Customer Service number on the back of your member ID card for information about our contracted specialty pharmacies. All specialty drugs listed below are limited to the retail day supply listed in your benefit plan (typically a 30-day supply). As benefits may vary by group and individual plans, the inclusion of a medication on this list does not imply prescription drug coverage. Please refer to your benefit plan for a complete list of benefits, including specific exclusions, limitations and member cost-sharing amounts you are responsible for such as a deductible, copayment and coinsurance. Brand Name Generic Name Drug Classification 8-MOP methoxsalen Psoralen ACTEMRA SC tocilizumab Monoclonal Antibody/Arthritis ACTHAR corticotropin Adrenocortical Insufficiency ACTIMMUNE interferon gamma 1b Interferon ADCIRCA tadalafil Pulmonary Vasodilator ADEMPAS riociguat Pulmonary Vasodilator AFINITOR everolimus Oncology ALECENSA alectinib Oncology ALKERAN (oral) melphalan Oncology ALUNBRIG brigatinib Oncology AMPYRA ER dalfampridine Multiple Sclerosis APTIVUS tipranavir HIV/AIDS APOKYN apomorphine Parkinson's Disease ARCALYST rilonacept Interleukin Blocker/CAPS ATRIPLA efavirenz-emtricitabine-tenofovir HIV/AIDS AUBAGIO -
Largescale Synthesis of Peptides
Lars Andersson1 Lennart Blomberg1 Large-Scale Synthesis of Martin Flegel2 Ludek Lepsa2 Peptides Bo Nilsson1 Michael Verlander3 1 PolyPeptide Laboratories (Sweden) AB, Malmo, Sweden 2 PolyPeptide Laboratories SpoL, Prague, Czech Republic 3 PolyPeptide Laboratories, Inc., Torrance, CA, 90503 USA Abstract: Recent advances in the areas of formulation and delivery have rekindled the interest of the pharmaceutical community in peptides as drug candidates, which, in turn, has provided a challenge to the peptide industry to develop efficient methods for the manufacture of relatively complex peptides on scales of up to metric tons per year. This article focuses on chemical synthesis approaches for peptides, and presents an overview of the methods available and in use currently, together with a discussion of scale-up strategies. Examples of the different methods are discussed, together with solutions to some specific problems encountered during scale-up development. Finally, an overview is presented of issues common to all manufacturing methods, i.e., methods used for the large-scale purification and isolation of final bulk products and regulatory considerations to be addressed during scale-up of processes to commercial levels. © 2000 John Wiley & Sons, Inc. Biopoly 55: 227–250, 2000 Keywords: peptide synthesis; peptides as drug candidates; manufacturing; scale-up strategies INTRODUCTION and plants,5 have all combined to increase the avail- ability and lower the cost of producing peptides. For For almost half a century, since du Vigneaud first many years, however, the major obstacle to the suc- presented his pioneering synthesis of oxytocin to the cess of peptides as pharmaceuticals was their lack of world in 1953,1 the pharmaceutical community has oral bioavailability and, therefore, relatively few pep- been excited about the potential of peptides as “Na- tides reached the marketplace as approved drugs. -
Vasopressin and Terlipressin in Adult Vasodilatory Shock: a Systematic Review and Meta-Analysis of Nine Randomized Controlled Tr
Serpa Neto et al. Critical Care 2012, 16:R154 http://ccforum.com/content/16/4/R154 RESEARCH Open Access Vasopressin and terlipressin in adult vasodilatory shock: a systematic review and meta-analysis of nine randomized controlled trials Ary Serpa Neto1*, Antônio P Nassar Júnior2, Sérgio O Cardoso1, José A Manetta1, Victor GM Pereira1, Daniel C Espósito1, Maria CT Damasceno1 and James A Russell3 Abstract Introduction: Catecholamines are the most used vasopressors in vasodilatory shock. However, the development of adrenergic hyposensitivity and the subsequent loss of catecholamine pressor activity necessitate the search for other options. Our aim was to evaluate the effects of vasopressin and its analog terlipressin compared with catecholamine infusion alone in vasodilatory shock. Methods: A systematic review and meta-analysis of publications between 1966 and 2011 was performed. The Medline and CENTRAL databases were searched for studies on vasopressin and terlipressin in critically ill patients. The meta-analysis was limited to randomized controlled trials evaluating the use of vasopressin and/or terlipressin compared with catecholamine in adult patients with vasodilatory shock. The assessed outcomes were: overall survival, changes in the hemodynamic and biochemical variables, a decrease of catecholamine requirements, and adverse events. Results: Nine trials covering 998 participants were included. A meta-analysis using a fixed-effect model showed a reduction in norepinephrine requirement among patients receiving terlipressin or vasopressin infusion compared with control (standardized mean difference, -1.58 (95% confidence interval, -1.73 to -1.44); P < 0.0001). Overall, vasopressin and terlipressin, as compared with norepinephrine, reduced mortality (relative risk (RR), 0.87 (0.77 to 0.99); P = 0.04). -
Hemmo Pharmaceuticals Private Limited
Global Supplier of Quality Peptide Products Hemmo Pharmaceuticals Private Limited Corporate Presentation Privileged & Confidential Privileged & Confidential Corporate Overview Privileged & Confidential 2 Company at a glance • Commenced operations in 1966 as a Key Highlights trading house, focusing on Oxytocin amongst other products Amongst the largest Indian peptide manufacturing company • In 1979, ventured into manufacturing of Oxytocin Competent team of 154 people including 6 PhDs, 60+ chemistry graduates/post graduates and 3 engineers • Privately held family owned company Portfolio – Generic APIs, Custom Peptides for Research and Clinical Development and Peptide • Infrastructure Fragments − State of art manufacturing facility in Developed 21 generic products in-house. Navi Mumbai, 5 more in progress − R&D facilities at Thane and Spain − Corporate office at Worli First and the only independent Indian company to have a US FDA approved peptide manufacturing site Privileged & Confidential 3 Transition from a trading house to a research based manufacturing facility Commenced Commenced Investment in State of the Art Opened R& D Expanded operations manufacturing greenfield project facility at Navi Centre in manufacturing as a trading of peptides intended for Mumbai Girona,Spain capacity House regulated markets commissioned R&D center set up in Infrastructure Mumbai 1966 1979 2005 2007 2008 2010 2011 2012 2014 2015 Oxytocin Oxytocin Desmopressin Buserelin Triptorelin Goserelin Linaclotide Glatiramer amongst Gonadorelin Decapeptide Cetrorelix