The Influence of Programming Languages: from Fortran and Lisp to V and Qore

Total Page:16

File Type:pdf, Size:1020Kb

The Influence of Programming Languages: from Fortran and Lisp to V and Qore The Influence of Programming Languages: from Fortran and Lisp to V and Qore CCache'ache' OObjectScriptbjectScript PPSLSL TTELCOMPELCOMP FFOCALOCAL MMUMPSUMPS BBLISSLISS CCALAL JJOSSOSS BBASICASIC PLUSPLUS SSYMPLYMPL SSUPERUPER BBASICASIC JJCLCL PPlankalküllankalkül BBasic4ppcasic4ppc XXLNTLNT XXojoojo MMSS BBASICASIC IIDLDL CCedaredar YYaccacc iiCLCL SSP/kP/k AAlma-0lma-0 Oberon-07Oberon-07 AutoHotkeyAutoHotkey ConcurrentConcurrent EEucliduclid ActiveActive OOberonberon UUniconnicon AutoItAutoIt AAlgollgol 5588 DDCLCL TTuringuring EaseEase SSuperplanuperplan CCMS-2MS-2 BBASICASIC CCOMALOMAL EEXECXEC JOVIALJOVIAL SSpeedcodingpeedcoding GGRASSRASS CC/AL/AL CCOMITOMIT EXECEXEC 2 VB.NETVB.NET CComponentomponent PPascalascal AssemblerAssembler TTMGMG ZZonnononnon CChomskihomski LLiveCodeiveCode EEucliduclid SS33 RatforRatfor ZZPLPL CCoraloral 6666 VVerilogerilog LLingoingo VisualVisual BBasicasic CCSPSP SSuperTalkuperTalk MMaryary AlgolAlgol W PL/IPL/I OOberon-2beron-2 GGambasambas IISETLSETL VVHDLHDL FFortranortran MMesaesa OOberonberon SSenseTalkenseTalk RREXXEXX B sseded PPowerShellowerShell MModulaodula occamoccam PatcherPatcher SSNOBOLNOBOL IIconcon MModula-2odula-2 FreeBASICFreeBASIC �MLML HHyperTalkyperTalk PureDataPureData SSystemVerilogystemVerilog QB64QB64 LustreLustre SSETLETL PPL/SQLL/SQL GGenieenie AAleflef NNetRexxetRexx CCooproopr CChapelhapel OOxygenexygene �BBasicasic PPL/pgSQLL/pgSQL AAlgollgol 6688 kkshsh MModula-3odula-3 PPascalascal BBeanShelleanShell LLuciducid IBMIBM CassetteCassette BBASICASIC SSETL2ETL2 JJ++++ SStarsettarset AAlgollgol 6600 VVilniusilnius BBasicasic SSQL/PSMQL/PSM AAWKWK RRinging NNewsqueakewsqueak SSISALISAL BASICABASICA SmallSmall BBasicasic BCPLBCPL AAtScripttScript AA## AABCBC SSeed7eed7 LLimboimbo BBoooo JJ## AAldorldor MMSXSX BBASICASIC IBMIBM DiskDisk BASICBASIC AAMPLMPL �oorere PParaSailaraSail MMirahirah AActionScriptctionScript HHaxeaxe GW-BASICGW-BASIC RRapiraapira VValaala PProcessingrocessing AAdada C FFortressortress TTypescriptypescript GoGo BBallerinaallerina YYAMLAML PPerlerl �uickBasicuickBasic OObjectRexxbjectRexx CC---- CCrystalrystal CCycloneyclone CCamlaml SSparkpark NNimim GGosuosu RReasoneason EEGLGL CPLCPL D TclTcl JJavaava AAppleScriptppleScript PPikeike EECMAscriptCMAscript CobolScriptCobolScript XXLL PPizzaizza MMATH-MATICATH-MATIC UUMLML SquirrelSquirrel CC## CCOBOLOBOL JJavaScriptavaScript DDafnyafny COMTRANCOMTRAN EulerEuler V PPythonython CoCo�eeScripteeScript OOCamlCaml EEii�eell CC++++ WWhileyhiley RustRust ISWIMISWIM F*F* FLOW-MATICFLOW-MATIC AAIMACOIMACO MMiniDiniD LLuaua SSASLASL PPHPHP HHackack IMPIMP CLUCLU RRubyuby CCoolool FF## LLiveScriptiveScript ARITH-MATICARITH-MATIC PPL/BL/B KKotlinotlin PPureScriptureScript LLeanean POP-2POP-2 LLPCPC GroovyGroovy ElmElm FFACTACT RRakuaku SStandardtandard MMLL CrocCroc Z CCobraobra CCoqoq SSimulaimula SACSAC SSwiftwift CCleanlean KKRCRC S TTeaea MMLL FFantomantom AATSTS MirandaMiranda DDylanylan DDartart WolframWolfram MMoonScriptoonScript IIdrisdris OOmegamega HugsHugs SatherSather HHaskellaskell AAgdagda �UUIKSCRIPTIKSCRIPT ArgusArgus SScalacala StrongtalkStrongtalk OOpapa OOrwellrwell GGoferofer CCOWSELOWSEL IoIo SSmalltalkmalltalk CCeyloneylon SSimscriptimscript JuliaJulia OObjective-Jbjective-J IIsabellesabelle ALFALF OObjective-Cbjective-C NNemerleemerle DependentDependent MMLL EEpigrampigram BETABETA AAct1ct1 SSelfelf RReded RRacketacket FFregerege NewtonScriptNewtonScript CClojurelojure HopeHope NewspeakNewspeak IokeIoke SSchemecheme EErlangrlang BBluespecluespec NPLNPL LLassoasso NNuu MDLMDL KKTurtleTurtle IIdd LLogoogo PPotionotion RReiaeia TTimberimber EElixirlixir PonyPony LLispisp E EEscherscher PharoPharo R EuLispEuLisp Snap!Snap! AliceAlice CCayenneayenne SketchpadSketchpad NNetLogoetLogo AgentCubesAgentCubes JJoyoy LogtalkLogtalk OOzz MMercuryercury AAgentSheetsgentSheets FFLL EtoysEtoys RREBOLEBOL LFELFE SSqueakqueak PPPLPL SSMPMP FFPP JouleJoule CurryCurry StarLogoStarLogo AAPLPL PlannerPlanner DatalogDatalog FactorFactor TOMTOM SScratchcratch SCMSCM AAgoragora KKawaawa HHyy PPrologrolog KKL0L0 SIODSIOD XXSBSB HyperCardHyperCard ISLISPISLISP SketchpadSketchpad PixiePixie CHRCHR IPLIPL GuileGuile NILNIL RPLRPL T PPLEXLEX KKL1L1 LMLM LispLisp InterlispInterlisp RhineRhine ScratchJrScratchJr OPS5OPS5 FForthorth StrandStrand TweakTweak MaclispMaclisp NialNial Q K J CroquetCroquet OpenLispOpenLisp HopHop LeLe LispLisp SSuperCollideruperCollider InterpressInterpress PostScriptPostScript MATLABMATLAB AA/A+/A+ PPL/0L/0 SpeakeasySpeakeasy Based on data from Wikipedia OOctavectave LLYaPASYaPAS Copyright © 2020 by D. Zinoviev.
Recommended publications
  • Typology of Programming Languages E Early Languages E
    Typology of programming languages e Early Languages E Typology of programming languages Early Languages 1 / 71 The Tower of Babel Typology of programming languages Early Languages 2 / 71 Table of Contents 1 Fortran 2 ALGOL 3 COBOL 4 The second wave 5 The finale Typology of programming languages Early Languages 3 / 71 IBM Mathematical Formula Translator system Fortran I, 1954-1956, IBM 704, a team led by John Backus. Typology of programming languages Early Languages 4 / 71 IBM 704 (1956) Typology of programming languages Early Languages 5 / 71 IBM Mathematical Formula Translator system The main goal is user satisfaction (economical interest) rather than academic. Compiled language. a single data structure : arrays comments arithmetics expressions DO loops subprograms and functions I/O machine independence Typology of programming languages Early Languages 6 / 71 FORTRAN’s success Because: programmers productivity easy to learn by IBM the audience was mainly scientific simplifications (e.g., I/O) Typology of programming languages Early Languages 7 / 71 FORTRAN I C FIND THE MEAN OF N NUMBERS AND THE NUMBER OF C VALUES GREATER THAN IT DIMENSION A(99) REAL MEAN READ(1,5)N 5 FORMAT(I2) READ(1,10)(A(I),I=1,N) 10 FORMAT(6F10.5) SUM=0.0 DO 15 I=1,N 15 SUM=SUM+A(I) MEAN=SUM/FLOAT(N) NUMBER=0 DO 20 I=1,N IF (A(I) .LE. MEAN) GOTO 20 NUMBER=NUMBER+1 20 CONTINUE WRITE (2,25) MEAN,NUMBER 25 FORMAT(11H MEAN = ,F10.5,5X,21H NUMBER SUP = ,I5) STOP TypologyEND of programming languages Early Languages 8 / 71 Fortran on Cards Typology of programming languages Early Languages 9 / 71 Fortrans Typology of programming languages Early Languages 10 / 71 Table of Contents 1 Fortran 2 ALGOL 3 COBOL 4 The second wave 5 The finale Typology of programming languages Early Languages 11 / 71 ALGOL, Demon Star, Beta Persei, 26 Persei Typology of programming languages Early Languages 12 / 71 ALGOL 58 Originally, IAL, International Algebraic Language.
    [Show full text]
  • A Politico-Social History of Algolt (With a Chronology in the Form of a Log Book)
    A Politico-Social History of Algolt (With a Chronology in the Form of a Log Book) R. w. BEMER Introduction This is an admittedly fragmentary chronicle of events in the develop­ ment of the algorithmic language ALGOL. Nevertheless, it seems perti­ nent, while we await the advent of a technical and conceptual history, to outline the matrix of forces which shaped that history in a political and social sense. Perhaps the author's role is only that of recorder of visible events, rather than the complex interplay of ideas which have made ALGOL the force it is in the computational world. It is true, as Professor Ershov stated in his review of a draft of the present work, that "the reading of this history, rich in curious details, nevertheless does not enable the beginner to understand why ALGOL, with a history that would seem more disappointing than triumphant, changed the face of current programming". I can only state that the time scale and my own lesser competence do not allow the tracing of conceptual development in requisite detail. Books are sure to follow in this area, particularly one by Knuth. A further defect in the present work is the relatively lesser availability of European input to the log, although I could claim better access than many in the U.S.A. This is regrettable in view of the relatively stronger support given to ALGOL in Europe. Perhaps this calmer acceptance had the effect of reducing the number of significant entries for a log such as this. Following a brief view of the pattern of events come the entries of the chronology, or log, numbered for reference in the text.
    [Show full text]
  • Easyaccess: Enhanced SQL Command Line Interpreter for Astronomical Surveys
    easyaccess: Enhanced SQL command line interpreter for astronomical surveys Matias Carrasco Kind1, Alex Drlica-Wagner2, Audrey Koziol1, and Don Petravick1 1 National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign. 1205 W Clark St, Urbana, IL USA 61801 2 Fermi National Accelerator Laboratory, P. O. Box 500, DOI: 00.00000/joss.00000 Batavia,IL 60510, USA Software • Review Summary • Repository • Archive easyaccess is an enhanced command line interpreter and Python package created to Submitted: 00 January 0000 facilitate access to astronomical catalogs stored in SQL Databases. It provides a custom Published: 00 January 0000 interface with custom commands and was specifically designed to access data from the License Dark Energy Survey Oracle database, although it can easily be extended to another survey Authors of papers retain copyright or SQL database. The package was completely written in Python and support customized and release the work under a Cre- addition of commands and functionalities. Visit https://github.com/mgckind/easyaccess ative Commons Attribution 4.0 In- to view installation instructions, tutorials, and the Python source code for easyaccess. ternational License (CC-BY). The Dark Energy Survey The Dark Energy Survey (DES) (DES Collaboration 2005; DES Collaboration 2016) is an international, collaborative effort of over 500 scientists from 26 institutions in seven countries. The primary goals of DES are reveal the nature of the mysterious dark energy and dark matter by mapping hundreds of millions of galaxies, detecting thousands of supernovae, and finding patterns in the large-scale structure of the Universe. Survey operations began on on August 31, 2013 and will conclude in early 2019.
    [Show full text]
  • Standards for Computer Aided Manufacturing
    //? VCr ~ / Ct & AFML-TR-77-145 )R^ yc ' )f f.3 Standards for Computer Aided Manufacturing Office of Developmental Automation and Control Technology Institute for Computer Sciences and Technology National Bureau of Standards Washington, D.C. 20234 January 1977 Final Technical Report, March— December 1977 Distribution limited to U.S. Government agencies only; Test and Evaluation Data; Statement applied November 1976. Other requests for this document must be referred to AFML/LTC, Wright-Patterson AFB, Ohio 45433 Manufacturing Technology Division Air Force Materials Laboratory Wright-Patterson Air Force Base, Ohio 45433 . NOTICES When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement opera- tion, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawing, specification, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specified document This final report was submitted by the National Bureau of Standards under military interdepartmental procurement request FY1457-76 -00369 , "Manufacturing Methods Project on Standards for Computer Aided Manufacturing." This technical report has been reviewed and is approved for publication. FOR THE COMMANDER: DtiWJNlb L.
    [Show full text]
  • Functional Thinking
    Functional Thinking director / software architect NEAL FORD meme wrangler ® ThoughtWorks [email protected] 2002 Summit Boulevard, Atlanta, GA 30319 nealford.com thoughtworks.com memeagora.blogspot.com @neal4d 1 a metaphor an essay a history lesson 2 3 4 new language: easy new paradigm: hard 5 “functional” is more a way of thinking than a tool set 6 Execution in the Kingdom of Nouns Steve Yegge http://steve-yegge.blogspot.com/ 2006/03/execution-in-kingdom-of-nouns.html 7 v e r b s ! 8 ! 9 http://oreilly.com/news/languageposter_0504.html 1954 1957 1960 1965 1970 1975 1980 1985 1990 1995 2000 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 PostScript level 3 PostScript level 3 PostScript PostScript level 2 PostScript level 3 v 3016 v 3017 1982 1992 september 11, 1996 OO Forth 2003 september 11, 2005 1987 Forth FIG-Forth Forth-83 ANS Forth ISO Forth 1968 1978 1983 1986 1997 Logo Object Logo Tcl Tcl/Tk Tcl/Tk 8.1 Tcl/Tk 8.2.3 Tcl/Tk 8.3 Tcl/Tk 8.4 Tcl/Tk 8.4.1 Tcl/Tk 8.4.2 Tcl/Tk 8.4.3 Tcl/Tk 8.4.4 Tcl/Tk 8.4.5 Tcl/Tk 8.4.6 Tcl/Tk 8.4.7 Tcl/Tk 8.4.8 Tcl/Tk 8.4.9 Tcl/Tk 8.4.11 Tcl/Tk 8.4.12 Tcl/Tk 8.4.13 Tcl/Tk 8.4.14 Tcl/Tk 8.4.15 Tcl/Tk 8.5 Tcl/Tk 8.5.5 Tcl/Tk 8.5.6 Tcl/Tk 8.5.7 Tcl/Tk 8.5.9 1968 1986 mid 1988 end 1988 april 1999 dec.
    [Show full text]
  • A Command-Line Interface for Analysis of Molecular Dynamics Simulations
    taurenmd: A command-line interface for analysis of Molecular Dynamics simulations. João M.C. Teixeira1, 2 1 Previous, Biomolecular NMR Laboratory, Organic Chemistry Section, Inorganic and Organic Chemistry Department, University of Barcelona, Baldiri Reixac 10-12, Barcelona 08028, Spain 2 DOI: 10.21105/joss.02175 Current, Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Software Canada • Review Summary • Repository • Archive Molecular dynamics (MD) simulations of biological molecules have evolved drastically since its application was first demonstrated four decades ago (McCammon, Gelin, & Karplus, 1977) and, nowadays, simulation of systems comprising millions of atoms is possible due to the latest Editor: Richard Gowers advances in computation and data storage capacity – and the scientific community’s interest Reviewers: is growing (Hospital, Battistini, Soliva, Gelpí, & Orozco, 2019). Academic groups develop most of the MD methods and software for MD data handling and analysis. The MD analysis • @amritagos libraries developed solely for the latter scope nicely address the needs of manipulating raw data • @luthaf and calculating structural parameters, such as: MDAnalysis (Gowers et al., 2016; Michaud- Agrawal, Denning, Woolf, & Beckstein, 2011); (McGibbon et al., 2015); (Romo, Submitted: 03 March 2020 MDTraj LOOS Published: 02 June 2020 Leioatts, & Grossfield, 2014); and PyTraj (Hai Nguyen, 2016; Roe & Cheatham, 2013), each with its advantages and drawbacks inherent to their implementation strategies. This diversity License enriches the field with a panoply of strategies that the community can utilize. Authors of papers retain copyright and release the work The MD analysis software libraries widely distributed and adopted by the community share under a Creative Commons two main characteristics: 1) they are written in pure Python (Rossum, 1995), or provide a Attribution 4.0 International Python interface; and 2) they are libraries: highly versatile and powerful pieces of software that, License (CC BY 4.0).
    [Show full text]
  • Ed 060 620 Author Title Institution Spons Agency Pub Date
    DOCUMENT RESUME ED 060 620 EM 009 626 AUTHOR Bork, Alfred M. TITLE Introduction to Computer Programming Languages. INSTITUTION California Univ., Irvine. Physics Computer Development Project. SPONS AGENCY National Science Foundation, Washington, D-C. PUB DATE Dec 71 NOTE 5p. JOURNAL CIT JCST; P 12-16 December 1971 EDRS PRICE MF-$0.65 HC-$3.29 DESCRIPTORS Computer Assisted Instruction; Computer Science Education; *Guides; *Programing; *Programing Languages ABSTRACT A brief introduction to computer programing explains the basic grammar of ccmputer language as well as fundamental computer techniques. What constitutes a computer program is made clear, then three simple kinds of statements basic to the computational computer are defined: assignment statements, input-output statements, and branching statements. A short description of several available computer languages is given along with an explanation of how the newcomer would make use of basic computer software. Finally, five different versions of a simple program (for solving the harmonic oscillator numerically) are given with comparison. (RB) 74.-E U.S. DEPARTMENT OF HEALTH. F749 EDUCATION & WELFARE erP\ e-"ri". "79' - A ott, Tritl OFFICE OF EDUCATION t,.4 taicta- THIS DOCUMENT HAS BEEN REPRO- DUCED EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIG- '14r- C-1"?Fig ErtrIgf7t Or>re!9,1 2 INATING IT. POINTS OF VIEW OR OPIN- 616 ti LiS kC..".4 .2) szyj /ONS STATED DO NOT NECESSARILY cp-S.e REPRESENT OFFICIAL OFFICE OF EDU- CATION POSITION OR POLICY. By Affred M. Bork r,9 he digital computer is a powerful, calculating. andwhat the programmer wants it to do. For convenience, L logical device.
    [Show full text]
  • BBN and Computer Technology Timeline 1948 • Establishment Of
    BBN and Computer Technology Timeline 1948 • Establishment of Bolt Beranek and Newman Inc. (BBN) 1958 • Purchase of BBN's first computer, an LPG-30, manufactured by the Royal McBee Company 1959 • Purchase of PDP-1 from the Digital Equipment Corporation (DEC); Serial #0 [??] 1960 • Design of a priority-interrupt system for the PDP-1. • Development of Cyclops, an AI program for pattern recognition. 1962 • Public demonstration of computer time-sharing. 1963 • Demonstration of Data Dial, a modem to enable remote communication with computers by telephone. 1964 • Public demonstration of a computer-based communications system for the Massachusetts General Hospital. • Development of MENTOR and the SOCRATIC SYSTEM, systems for computer- based mixed-initiative tutoring. 1965 • Development of TELCOMP, an interactive computer language. • Development of the Grafacon, a tablet for scanning and digitizing graphic data. • Publication of Libraries of the Future, a consideration of the implications of computer technology for future libraries, based on a project for the Council of Library Resources. 1966 • Creation of LOGO, a computer programming language designed especially for use by children. 1967 • Formation of Time Share Ltd., a subsidiary offering computing services in the UK. 1968 • Development of packet-switching protocols for the ARPANET 1969 • Launching of the ARPANET; demonstration of four-node network. • Automation of odd-lot stock transactions for the Pacific Coast Stock Exchange. • Grammatical analysis of English text by augmented transition networks. 1970 • Development of TENEX, a virtual-memory operating system for DEC computers. • Demonstration of SCHOLAR, a computer-based system that modeled a Socratic tutor. • 1971 Transmission of person-to-person email message using the @ sign.
    [Show full text]
  • Learning to Code
    PART ILEARNING TO CODE How Important is Programming? “To understand computers is to know about programming. The world is divided… into people who have written a program and people who have not.” Ted Nelson, Computer Lib/Dream Machines (1974) How important is it for you to learn to program a computer? Since the introduction of the first digital electronic computers in the 1940s, people have answered this question in surprisingly different ways. During the first wave of commercial computing—in the 1950s and 1960s, when 1large and expensive mainframe computers filled entire rooms—the standard advice was that only a limited number of specialists would be needed to program com- puters using simple input devices like switches, punched cards, and paper tape. Even during the so-called “golden age” of corporate computing in America—the mid- to late 1960s—it was still unclear how many programming technicians would be needed to support the rapid computerization of the nation’s business, military, and commercial operations. For a while, some experts thought that well-designed computer systems might eventually program themselves, requiring only a handful of attentive managers to keep an eye on the machines. By the late 1970s and early 1980s, however, the rapid emergence of personal computers (PCs), and continuing shortages of computer professionals, shifted popular thinking on the issue. When consumers began to adopt low-priced PCs like the Apple II (1977), the IBM PC (1981), and the Commodore 64 (1982) by the millions, it seemed obvious that ground-breaking changes were afoot. The “PC Revolution” opened up new frontiers, employed tens of thousands of people, and (according to some enthusiasts) demanded new approaches to computer literacy.
    [Show full text]
  • A GTK+ Binding to Build Graphical User Interfaces in Fortran Vincent Magnin, James Tappin, Jens Hunger, Jerry De Lisle
    gtk-fortran: a GTK+ binding to build Graphical User Interfaces in Fortran Vincent Magnin, James Tappin, Jens Hunger, Jerry de Lisle To cite this version: Vincent Magnin, James Tappin, Jens Hunger, Jerry de Lisle. gtk-fortran: a GTK+ binding to build Graphical User Interfaces in Fortran. Journal of Open Source Software, Open Journals, 2019, 4 (34), pp.1109. 10.21105/joss.01109. hal-02113675 HAL Id: hal-02113675 https://hal.archives-ouvertes.fr/hal-02113675 Submitted on 29 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License gtk-fortran: a GTK+ binding to build Graphical User Interfaces in Fortran Vincent MAGNIN1, James TAPPIN2, Jens HUNGER3, and Jerry DE LISLE4 1 Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 - IEMN, F-59000 Lille, France 2 RAL Space, STFC Rutherford Appleton Laboratory, Harwell Campus ,Didcot,Oxfordshire OX11 0QX, United Kingdom 3 Technische Universität Dresden, Department of Chemistry and Food Chemistry, Dresden, Germany 4 GFortran Team, USA DOI: 10.21105/joss.01109 Software • Review Summary • Repository • Archive Fortran is still much used in research because it is suited by design to scientific computing Submitted: 11 October 2018 and there is a lot of legacy code written in this language.
    [Show full text]
  • Application Notes for Telcomp Software Applications and Avaya IP Office - Issue 1.0
    Avaya Solution & Interoperability Test Lab Application Notes for Telcomp Software Applications and Avaya IP Office - Issue 1.0 Abstract These Application Notes describe the configuration steps required for Telcomp software applications to successfully interoperate with the Avaya IP Office. The Telcomp PickUpIp application provides Caller ID capabilities to a single computer, or to a network of computers via the Telcomp PickUp application. The Telcomp PickUpEm application provides 911 emergency alert messages to be directed at a central console. All three of these applications work in conjunction with the Telcomp TcIpOff connection server application. Each of the Telcomp applications requires the functionality of run-time telephony event data streams provided by the Avaya IP Office DevLink PRO SDK interface. Information in these Application Notes has been obtained through DevConnect compliance testing and additional technical discussions. Testing was conducted via the DevConnect Program at the Avaya Solution and Interoperability Test Lab. SVS; Reviewed: Solution & Interoperability Test Lab Application Notes 1 of 18 SPOC 10/16/2007 ©2007 Avaya Inc. All Rights Reserved. IPO40-Telcomp 1. Introduction These Application Notes describe the compliance-tested configuration utilizing Telcomp software applications and Avaya IP Office. The Telcomp software application solution for Avaya IP Office consists of the following applications: PickUpIp – CallerID IP Server for IP Office TcIpOff – IP Office / Partner Translator for IP Office PickUp – CallerID client PickUpEm - 911 Alert Indicator Telcomp PickUpIp is a client/server middleware application that provides CallerID number information via a single-line screen pop and/or a multi-line menu capability from Avaya IP Office to a single computer, or a network of computers.
    [Show full text]
  • Evolution of the Major Programming Languages
    COS 301 Programming Languages Evolution of the Major Programming Languages UMaine School of Computing and Information Science COS 301 - 2018 Topics Zuse’s Plankalkül Minimal Hardware Programming: Pseudocodes The IBM 704 and Fortran Functional Programming: LISP ALGOL 60 COBOL BASIC PL/I APL and SNOBOL SIMULA 67 Orthogonal Design: ALGOL 68 UMaine School of Computing and Information Science COS 301 - 2018 Topics (continued) Some Early Descendants of the ALGOLs Prolog Ada Object-Oriented Programming: Smalltalk Combining Imperative and Object-Oriented Features: C++ Imperative-Based Object-Oriented Language: Java Scripting Languages A C-Based Language for the New Millennium: C# Markup/Programming Hybrid Languages UMaine School of Computing and Information Science COS 301 - 2018 Genealogy of Common Languages UMaine School of Computing and Information Science COS 301 - 2018 Alternate View UMaine School of Computing and Information Science COS 301 - 2018 Zuse’s Plankalkül • Designed in 1945 • For computers based on electromechanical relays • Not published until 1972, implemented in 2000 [Rojas et al.] • Advanced data structures: – Two’s complement integers, floating point with hidden bit, arrays, records – Basic data type: arrays, tuples of arrays • Included algorithms for playing chess • Odd: 2D language • Functions, but no recursion • Loops (“while”) and guarded conditionals [Dijkstra, 1975] UMaine School of Computing and Information Science COS 301 - 2018 Plankalkül Syntax • 3 lines for a statement: – Operation – Subscripts – Types • An assignment
    [Show full text]