The Impact of Non-Thermal Processes in the Intracluster Medium on Cosmological Cluster Observables
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Puzzling Nature of Dwarf-Sized Gas Poor Disk Galaxies
Dissertation submitted to the Department of Physics Combined Faculties of the Astronomy Division Natural Sciences and Mathematics University of Oulu Ruperto-Carola-University Oulu, Finland Heidelberg, Germany for the degree of Doctor of Natural Sciences Put forward by Joachim Janz born in: Heidelberg, Germany Public defense: January 25, 2013 in Oulu, Finland THE PUZZLING NATURE OF DWARF-SIZED GAS POOR DISK GALAXIES Preliminary examiners: Pekka Heinämäki Helmut Jerjen Opponent: Laura Ferrarese Joachim Janz: The puzzling nature of dwarf-sized gas poor disk galaxies, c 2012 advisors: Dr. Eija Laurikainen Dr. Thorsten Lisker Prof. Heikki Salo Oulu, 2012 ABSTRACT Early-type dwarf galaxies were originally described as elliptical feature-less galax- ies. However, later disk signatures were revealed in some of them. In fact, it is still disputed whether they follow photometric scaling relations similar to giant elliptical galaxies or whether they are rather formed in transformations of late- type galaxies induced by the galaxy cluster environment. The early-type dwarf galaxies are the most abundant galaxy type in clusters, and their low-mass make them susceptible to processes that let galaxies evolve. Therefore, they are well- suited as probes of galaxy evolution. In this thesis we explore possible relationships and evolutionary links of early- type dwarfs to other galaxy types. We observed a sample of 121 galaxies and obtained deep near-infrared images. For analyzing the morphology of these galaxies, we apply two-dimensional multicomponent fitting to the data. This is done for the first time for a large sample of early-type dwarfs. A large fraction of the galaxies is shown to have complex multicomponent structures. -
Curriculum Vitae Avishay Gal-Yam
January 27, 2017 Curriculum Vitae Avishay Gal-Yam Personal Name: Avishay Gal-Yam Current address: Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 76100 Rehovot, Israel. Telephones: home: 972-8-9464749, work: 972-8-9342063, Fax: 972-8-9344477 e-mail: [email protected] Born: March 15, 1970, Israel Family status: Married + 3 Citizenship: Israeli Education 1997-2003: Ph.D., School of Physics and Astronomy, Tel-Aviv University, Israel. Advisor: Prof. Dan Maoz 1994-1996: B.Sc., Magna Cum Laude, in Physics and Mathematics, Tel-Aviv University, Israel. (1989-1993: Military service.) Positions 2013- : Head, Physics Core Facilities Unit, Weizmann Institute of Science, Israel. 2012- : Associate Professor, Weizmann Institute of Science, Israel. 2008- : Head, Kraar Observatory Program, Weizmann Institute of Science, Israel. 2007- : Visiting Associate, California Institute of Technology. 2007-2012: Senior Scientist, Weizmann Institute of Science, Israel. 2006-2007: Postdoctoral Scholar, California Institute of Technology. 2003-2006: Hubble Postdoctoral Fellow, California Institute of Technology. 1996-2003: Physics and Mathematics Research and Teaching Assistant, Tel Aviv University. Honors and Awards 2012: Kimmel Award for Innovative Investigation. 2010: Krill Prize for Excellence in Scientific Research. 2010: Isreali Physical Society (IPS) Prize for a Young Physicist (shared with E. Nakar). 2010: German Federal Ministry of Education and Research (BMBF) ARCHES Prize. 2010: Levinson Physics Prize. 2008: The Peter and Patricia Gruber Award. 2007: European Union IRG Fellow. 2006: “Citt`adi Cefal`u"Prize. 2003: Hubble Fellow. 2002: Tel Aviv U. School of Physics and Astronomy award for outstanding achievements. 2000: Colton Fellow. 2000: Tel Aviv U. School of Physics and Astronomy research and teaching excellence award. -
X-Ray and Gamma-Ray Variability of NGC 1275
galaxies Article X-ray and Gamma-ray Variability of NGC 1275 Varsha Chitnis 1,*,† , Amit Shukla 2,*,† , K. P. Singh 3 , Jayashree Roy 4 , Sudip Bhattacharyya 5, Sunil Chandra 6 and Gordon Stewart 7 1 Department of High Energy Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India 2 Discipline of Astronomy, Astrophysics and Space Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India 3 Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli 140306, India; [email protected] 4 Inter-University Centre for Astronomy and Astrophysics, Ganeshkhind, Pune 411 007, India; [email protected] 5 Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India; [email protected] 6 Centre for Space Research, North-West University, Potchefstroom 2520, South Africa; [email protected] 7 Department of Physics and Astronomy, The University of Leicester, University Road, Leicester LE1 7RH, UK; [email protected] * Correspondence: [email protected] (V.C.); [email protected] (A.S.) † These authors contributed equally to this work. Received: 30 June 2020; Accepted: 24 August 2020; Published: 28 August 2020 Abstract: Gamma-ray emission from the bright radio source 3C 84, associated with the Perseus cluster, is ascribed to the radio galaxy NGC 1275 residing at the centre of the cluster. Study of the correlated X-ray/gamma-ray emission from this active galaxy, and investigation of the possible disk-jet connection, are hampered because the X-ray emission, particularly in the soft X-ray band (2–10 keV), is overwhelmed by the cluster emission. -
Books, Magazines and Organizations
Contents 1 Some Background ..................................................................................... 1 The Many Types of Objects ........................................................................ 2 Telescope and Observing Essentials ........................................................... 3 Binoculars or Telescopes? ....................................................................... 3 Magnification .......................................................................................... 5 Resolution ............................................................................................... 8 Limiting Magnitude ................................................................................ 10 Field of View ........................................................................................... 11 Atmospheric Effects ................................................................................ 12 Dark Adaption and Averted Vision ......................................................... 14 Clothing................................................................................................... 16 Recording Observations .......................................................................... 17 The Science of Astronomy .......................................................................... 17 Angular Measurements ........................................................................... 18 Date and Time ......................................................................................... 18 -
On the Nature of Filaments of the Large-Scale Structure of the Universe Irina Rozgacheva, I Kuvshinova
On the nature of filaments of the large-scale structure of the Universe Irina Rozgacheva, I Kuvshinova To cite this version: Irina Rozgacheva, I Kuvshinova. On the nature of filaments of the large-scale structure of the Universe. 2018. hal-01962100 HAL Id: hal-01962100 https://hal.archives-ouvertes.fr/hal-01962100 Preprint submitted on 20 Dec 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. On the nature of filaments of the large-scale structure of the Universe I. K. Rozgachevaa, I. B. Kuvshinovab All-Russian Institute for Scientific and Technical Information of Russian Academy of Sciences (VINITI RAS), Moscow, Russia e-mail: [email protected], [email protected] Abstract Observed properties of filaments which dominate in large-scale structure of the Universe are considered. A part from these properties isn’t described within the standard ΛCDM cosmological model. The “toy” model of forma- tion of primary filaments owing to the primary scalar and vector gravitational perturbations in the uniform and isotropic cosmological model which is filled with matter with negligible pressure, without use of a hypothesis of tidal interaction of dark matter halos is offered. -
Interstellarum 45 1 Zeitschrift Für Praktische Astronomie
fokussiert Liebe Leserinnen, liebe Leser, die Sonnenfi nsternis am 29. März steht ganz im Fokus dieser Ausgabe. Während wir Daten, Karten und Beobachtungshinweise bereits im letzten Heft vorgestellt hatten (nachzubestellen über www.interstellarum.de), gehen wir in dieser Ausgabe auf einzelne As- pekte der Finsternisbeobachtung näher ein. Astro-Neulinge erhalten in unserer Einsteiger-Serie Grundwissen über die Sonne und ihre gefahrlose Beobachtung (Seite 28). Für Astro-Experten gibt Wolf- gang Strickling ausführliche Tipps zur Beobachtung der fl üchtigen Fliegenden Schatten, die kurz vor und nach der totalen Phase einer Sonnenfi nsternis auftreten (Seite 36). Über interessante Beobach- tungen am Rand der Finsterniszone vom 3. Oktober des vergangenen Jahres berichtet außerdem Dirk Ewers (Seite 32). Das Titelbild dieser Ausgabe gelang Stefan Binnewies am 26.2.1998 auf Aruba mit einem 93/840mm-Refraktor mit 1,4fach-Konverter; das Bild ist ein digitales Komposit aus einer 1/2s und einer 2s belichteten Aufnahme auf Fuji Velvia 50 ASA (Rollfi lm). Leider abgesagt werden musste die interstellarum-Leserreise zur Finsternis nach Ägypten. Der Bonner Firma Eclipse-Reisen.de gelang es nicht, die Reise wie vereinbart in ihr Online-Angebot aufzuneh- men. Dadurch war es Interessenten nicht möglich, sich wie geplant im Internet für die Leserreise anzumelden, sodass nach Auskunft des Anbieters die Mindestteilnehmerzahl nicht erreicht wurde – wäh- renddessen die Aufmerksamkeit auf eine nahezu identische Reise ohne Beteiligung durch interstellarum gelenkt wurde. Auch nach mehrfacher Bitte um Einhaltung der Vereinbarung änderte sich dar- an nichts. Stefan Binnewies Wie sicher sind Sonnenfi lter? Augenschäden werden nach Finsternis- Beobachtungen immer wieder gemeldet. Mit einer aufwändigen Messung ist Peter Höbel der Frage nachgegangen, ob die im Ama- teurbereich verbreiteten Objektivsonnenfi lter aus Glas und Folie die geltenden Sicherheitsnormen einhalten (Seite 63). -
Fall 2005 ASTR 1120-001 General Astronomy: Stars & Galaxies
Fall 2005 ASTR 1120-001 General Astronomy: Stars & Galaxies. Problem Set 5. Due Th 17 Nov Your name: Your ID: Except for the tutorial, for which you should submit answers on line, please write your answers on this sheet, and make sure to show your working. Attach extra sheets if you need them. If you mess up, you can get another copy of the problem set at http://casa. colorado.edu/~ajsh/astr1120_05/prob.html. 1. Tutorial on Detecting Dark Matter in Spiral Galaxies Go to http://www.astronomyplace.com, press on the Cosmic Perspective 3rd Edition icon, log in. You should already have joined our class `cm651430', so that you can record your work and submit it for grade on line. Click on Tutorials, and do the tutorial on Detecting Dark Matter in Spiral Galaxies. You can redo the tutorial as often as you like, to improve your grade. Your score should be recorded automatically, but as a double check against your score disappearing into a black hole: My score was . If you like, you can comment here on the tutorial: 1 2. Recession velocity of Per A This is the observed spectrum (Kennicutt 1992) of NGC 1275, also known as Per A, the central galaxy in the Perseus cluster of galaxies. The name Per A is because it's the brightest radio source in the Perseus constellation. (a) Wavelength of Hα Measure, as accurately as you can, the wavelength of the Hα line (Hα is the leftmost of the two close prominent emission lines at the right of the graph). -
A Review on Substellar Objects Below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs Or What?
geosciences Review A Review on Substellar Objects below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs or What? José A. Caballero Centro de Astrobiología (CSIC-INTA), ESAC, Camino Bajo del Castillo s/n, E-28692 Villanueva de la Cañada, Madrid, Spain; [email protected] Received: 23 August 2018; Accepted: 10 September 2018; Published: 28 September 2018 Abstract: “Free-floating, non-deuterium-burning, substellar objects” are isolated bodies of a few Jupiter masses found in very young open clusters and associations, nearby young moving groups, and in the immediate vicinity of the Sun. They are neither brown dwarfs nor planets. In this paper, their nomenclature, history of discovery, sites of detection, formation mechanisms, and future directions of research are reviewed. Most free-floating, non-deuterium-burning, substellar objects share the same formation mechanism as low-mass stars and brown dwarfs, but there are still a few caveats, such as the value of the opacity mass limit, the minimum mass at which an isolated body can form via turbulent fragmentation from a cloud. The least massive free-floating substellar objects found to date have masses of about 0.004 Msol, but current and future surveys should aim at breaking this record. For that, we may need LSST, Euclid and WFIRST. Keywords: planetary systems; stars: brown dwarfs; stars: low mass; galaxy: solar neighborhood; galaxy: open clusters and associations 1. Introduction I can’t answer why (I’m not a gangstar) But I can tell you how (I’m not a flam star) We were born upside-down (I’m a star’s star) Born the wrong way ’round (I’m not a white star) I’m a blackstar, I’m not a gangstar I’m a blackstar, I’m a blackstar I’m not a pornstar, I’m not a wandering star I’m a blackstar, I’m a blackstar Blackstar, F (2016), David Bowie The tenth star of George van Biesbroeck’s catalogue of high, common, proper motion companions, vB 10, was from the end of the Second World War to the early 1980s, and had an entry on the least massive star known [1–3]. -
Gas Density Fluctuations in the Perseus Cluster: Clumping Factor and Velocity Power Spectrum
SLAC-PUB-16739 Mon. Not. R. Astron. Soc. 000, 1{16 (2015) Printed 30 January 2015 (MN LATEX style file v2.2) Gas Density Fluctuations in the Perseus Cluster: Clumping Factor and Velocity Power Spectrum I. Zhuravleva1;2?, E. Churazov3;4, P. Ar´evalo5, A. A. Schekochihin6;7, S. W. Allen1;2;8, A. C. Fabian9, W. R. Forman10, J. S. Sanders11, A. Simionescu12, R. Sunyaev3;4, A. Vikhlinin10, N. Werner1;2 1Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, California 94305-4085, USA 2Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, California 94305-4060, USA 3Max Planck Institute for Astrophysics, Karl-Schwarzschild-Strasse 1, D-85741 Garching, Germany 4Space Research Institute (IKI), Profsoyuznaya 84/32, Moscow 117997, Russia 5Instituto de F´ısica y Astronom´ıa,Facultad de Ciencias, Universidad de Valpara´ıso,Gran Bretana N 1111, Playa Ancha, Valpara´ıso,Chile 6Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Rd, Oxford OX1 3NP, UK 7Merton College, University of Oxford, Merton St, Oxford OX1 4JD, UK 8SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA 9Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 10Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, USA 11Max-Planck-Institut f¨urExtraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching, Germany 12Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 252-5210, Japan Accepted .... Received ... ABSTRACT X-ray surface brightness fluctuations in the core of the Perseus Cluster are analyzed, using deep observations with the Chandra observatory. -
A Catalogue of Zeldovich Pancakes
A Catalogue of Zeldovich Pancakes Mikkel O. Lindholmer Supervisor: Steen H. Hansen Master’s thesis, submitted on October 18, 2015 Dark Cosmology Centre, Niels Bohr Institute, Juliane Maries Vej 30, 2100 Copenhagen, Denmark Abstract Using the standard cold dark matter model ΛCDM, it is predicted that there will be small fluctuations in the primordial energy density. These fluctuations are expected to lead to a cosmic web [1] under the influence of gravity and time. This web will consist of dense galaxy clusters interlinked by less dense two-dimensional walls, so called Zeldovich pancakes [2], and one-dimensional filaments. Galaxy clusters and filaments have been observed for a long time, but only recently have Zeldovich pancakes been observed outside of simulations [6]. The reason these have only recently been observed is because they are much less dense than filaments and clusters, to the point of being hard to differentiate from the average density of their environs [4,5]. Using the method we invented in Falco et. al [6] to find 2 pancakes as a basis, I create a fully automatic program capable of finding pancakes without human input, in galaxy cluster widely different from each other. I apply this program to the Abell galaxy clusters and using the SDSS catalogue I check for potential pancakes in the galaxy clusters. While most of the cluster are contained in the SDSS many of the clusters are only partially covered. I try to make the program compensate for this and manage to create the first catalogue of Zeldovich pancakes by finding 197 of them in 113 different clusters. -
December 2019 BRAS Newsletter
A Monthly Meeting December 11th at 7PM at HRPO (Monthly meetings are on 2nd Mondays, Highland Road Park Observatory). Annual Christmas Potluck, and election of officers. What's In This Issue? President’s Message Secretary's Summary Outreach Report Asteroid and Comet News Light Pollution Committee Report Globe at Night Member’s Corner – The Green Odyssey Messages from the HRPO Friday Night Lecture Series Science Academy Solar Viewing Stem Expansion Transit of Murcury Edge of Night Natural Sky Conference Observing Notes: Perseus – Rescuer Of Andromeda, or the Hero & Mythology Like this newsletter? See PAST ISSUES online back to 2009 Visit us on Facebook – Baton Rouge Astronomical Society Baton Rouge Astronomical Society Newsletter, Night Visions Page 2 of 25 December 2019 President’s Message I would like to thank everyone for having me as your president for the last two years . I hope you have enjoyed the past two year as much as I did. We had our first Members Only Observing Night (MOON) at HRPO on Sunday, 29 November,. New officers nominated for next year: Scott Cadwallader for President, Coy Wagoner for Vice- President, Thomas Halligan for Secretary, and Trey Anding for Treasurer. Of course, the nominations are still open. If you wish to be an officer or know of a fellow member who would make a good officer contact John Nagle, Merrill Hess, or Craig Brenden. We will hold our annual Baton Rouge “Gastronomical” Society Christmas holiday feast potluck and officer elections on Monday, December 9th at 7PM at HRPO. I look forward to seeing you all there. ALCon 2022 Bid Preparation and Planning Committee: We’ll meet again on December 14 at 3:00.pm at Coffee Call, 3132 College Dr F, Baton Rouge, LA 70808, UPCOMING BRAS MEETINGS: Light Pollution Committee - HRPO, Wednesday December 4th, 6:15 P.M. -
Unveiling the Composition of Radio Plasma Bubbles in Galaxy Clusters with the Sunyaev-Zel’Dovich Effect
A&A 430, 799–810 (2005) Astronomy DOI: 10.1051/0004-6361:20041576 & c ESO 2005 Astrophysics Unveiling the composition of radio plasma bubbles in galaxy clusters with the Sunyaev-Zel’dovich effect C. Pfrommer1,T.A.Enßlin1, and C. L. Sarazin2 1 Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str.1, PO Box 1317, 85741 Garching, Germany e-mail: [email protected] 2 Department of Astronomy, University of Virginia, PO Box 3818, Charlottesville, VA 22903-0818, USA Received 2 July 2004 / Accepted 23 August 2004 Abstract. The Chandra X-ray Observatory is finding a large number of cavities in the X-ray emitting intra-cluster medium which often coincide with the lobes of the central radio galaxy. We propose high-resolution Sunyaev-Zel’dovich (SZ) observa- tions to infer the still unknown dynamically dominant component of the radio plasma bubbles. This work calculates the thermal and relativistic SZ emission of different compositions of these plasma bubbles while simultaneously allowing for the cluster’s kinetic SZ effect. As examples, we present simulations of an Atacama Large Millimeter Array (ALMA) observation and of a Green Bank Telescope (GBT) observation of the cores of the Perseus cluster and Abell 2052. We predict a 5σ detection of the southern radio bubble of Perseus in a few hours with the GBT and ALMA while assuming a relativistic electron population within the bubble. In Abell 2052, a similar detection would require a few tens of hours with either telescope, the longer ex- posures mainly being the result of the higher redshift and the lower central temperature of this cluster.