Ecography ECOG-03137 Pinkert, S., Dijkstr, K.-D
Total Page:16
File Type:pdf, Size:1020Kb
Ecography ECOG-03137 Pinkert, S., Dijkstr, K.-D. B., Zeuss, D., Reudenbach, C., Brandl, R. and Hof, C. 2017. Evolutionary processes, dispersal limitation and climatic history shape current diversity patterns of European dragonflies. – Ecography doi: 10.1111/ecog.03137 Supplementary material 19 Appendix 1: Phylogenetic analysis 20 The backbone-topology was constructed according to the most comprehensive and recent phylogeny of European 21 dragonflies (Dijkstra and Kalkman 2012). Additional studies enabled resolving some of the remaining multifurcations 22 within the genera Cordulegaster (Froufe et al. 2014), Chalcolestes (i.e. Lestes parvidens and Lestes viridis), Coenagrion, 23 Erythromma (Dumont et al. 2010) and Trithemis (Damm et al. 2010). For the final version of the topology see Fig. A2. 24 In addition, sequences for up to nine different loci (COI, COII, ITS1, ITS2, 5.8S, 12S, 16S, 18S, 28S) and 121 species 25 were automatically compiled from GenBank repository with PYLOGENERATOR (Pearse and Purvis 2013, accessed 26 December 17th, 2015). Taxon sampling and GenBank accession numbers are given in Table A2. The data was aligned by 27 hand and with MUSCLE algorithm in MEGA (Tamura et al. 2013). For each alignment, we ran separate model-tests in 28 MEGA. Five different models of nucleotide substitution were selected according to highest Bayesian Information 29 Criterion scores (BIC; Table A3). After adjusting taxon similarity among alignments by replacing missing sequences with 30 blanks, we used BEAUTI (Drummond et al. 2012) to link the alignments and to integrate taxonomic information by 31 enforcing monophyly at 90 internal knots (see tree in Fig. A3). Branch-lengths were inferred with an estimated lognormal 32 relaxed molecular clock for 50 million MCMC simulations (Yule birth) with a Bayesian approach in BEAST (Drummond 33 et al. 2012). Statistics were sampled every 5,000th iteration. We used diagnostics in TRACER to determine the burn-in 34 based on the point of stationarity on the log-likelihood curves as well as split-frequencies and to evaluate the choice of 35 the right molecular clock according to the coefficient of variation. We used ANNOTATOR (Drummond et al. 2012) to 36 exclude an appropriate burn-in of 10% from the posterior sample, to summarize the statistics of the remaining trees and 37 to annotate this information to the tree with the highest clade credibility. Trees were visualized and formatted in FIGTREE 38 (Drummond et al. 2012). 39 40 Figure A1. Geographical distribution of (a) Aeshna subarctica, (b) Cordulegaster helladica and (d) 41 Onychogomphus forcipatus, which were redrawn from maps provided in Dijkstra and Lewington (2006) and in 42 Boudot and Kalkman (2016) (EPSG: 4326; equal-area grid CGRS). The distribution of Onychogomphus 43 forcipatus needed to be redrawn because (c) the maps provided by the IUCN (Riservato et al. 2009, Kalkman 44 et al. 2010) only represent the occurrences of its eastern subspecies – O. f. albotibialis. Somatochlora arctica Somatochlora alpestris Somatochlora sahlbergi Somatochlora metallica Somatochlora flavomaculata Somatochlora graeseri Somatochlora borisi Cordulia aenea Epitheca bimaculata Libellula depressa Libellula fulva Libellula quadrimaculata Orthetrum cancellatum Orthetrum albistylum Orthetrum brunneum Orthetrum coerulescens Orthetrum chrysostigma Orthetrum sabina Orthetrum trinacria Pantala flavescens Zygonyx torridus Trithemis kirbyi Trithemis festiva Trithemis arteriosa Trithemis annulata Sympetrum fonscolombii Sympetrum sanguineum Sympetrum meridionale Sympetrum vulgatum Sympetrum striolatum Sympetrum pedemontanum Sympetrum flaveolum Sympetrum danae Sympetrum depressiusculum Leucorrhinia albifrons Leucorrhinia caudalis Leucorrhinia pectoralis Leucorrhinia rubicunda Leucorrhinia dubia Brachythemis leucosticta Diplacodes lefebvrii Crocothemis erythraea Selysiothemis nigra Macromia splendens Oxygastra curtisii Cordulegaster boltonii Cordulegaster trinacriae Cordulegaster picta Cordulegaster heros Cordulegaster bidentata Cordulegaster insignis Cordulegaster helladica Onychogomphus forcipatus Onychogomphus uncatus Onychogomphus costae Ophiogomphus cecilia Paragomphus genei Gomphus simillimus Gomphus pulchellus Gomphus graslinii Gomphus vulgatissimus Lindenia tetraphylla Aeshna affinis Aeshna mixta Aeshna crenata Aeshna juncea Aeshna serrata Aeshna subarctica Aeshna viridis Aeshna grandis Aeshna cyanea Aeshna isoceles Anax junius Anax imperator Anax parthenope Anax ephippiger Brachytron pratense Caliaeschna microstigma Boyeria irene Boyeria cretensis Lestes parvidens Lestes viridis Sympecma fusca Sympecma paedisca Lestes barbarus Lestes virens Lestes macrostigma Lestes sponsa Lestes dryas Calopteryx splendens Calopteryx xanthostoma Calopteryx virgo Calopteryx haemorrhoidalis Platycnemis pennipes Platycnemis acutipennis Platycnemis latipes Pyrrhosoma nymphula Ceriagrion tenellum Nehalennia speciosa Erythromma lindenii Erythromma viridulum Erythromma najas Ischnura graellsii Ischnura genei Ischnura saharensis Ischnura elegans Ischnura fountaineae Ischnura aralensis Ischnura pumilio Ischnura hastata Enallagma cyathigerum Coenagrion hylas Coenagrion mercuriale Coenagrion johanssoni Coenagrion armatum Coenagrion hastulatum Coenagrion lunulatum Coenagrion ornatum Coenagrion puella Coenagrion pulchellum Coenagrion scitulum Coenagrion caerulescens 45 2.0 46 Figure A2. Unresolved backbone-topology representing available taxonomic information on 122 of in total 138 47 European dragonfly species. Note that this tree is the consensus of several literature-sources, cited in the 48 Appendix A1. Somatochlora arctica Somatochlora alpestris Somatochlora sahlbergi Somatochlora metallica Somatochlora flavomaculata Somatochlora graeseri Somatochlora borisi Cordulia aenea Epitheca bimaculata Libellula depressa Libellula fulva Libellula quadrimaculata Orthetrum cancellatum Orthetrum albistylum Orthetrum brunneum Orthetrum coerulescens Orthetrum chrysostigma Orthetrum sabina Orthetrum trinacria Pantala flavescens Zygonyx torridus Trithemis kirbyi Trithemis festiva Trithemis arteriosa Trithemis annulata Sympetrum fonscolombii Sympetrum sanguineum Sympetrum meridionale Sympetrum vulgatum Sympetrum striolatum Sympetrum pedemontanum Sympetrum flaveolum Sympetrum danae Sympetrum depressiusculum Leucorrhinia albifrons Leucorrhinia caudalis Leucorrhinia pectoralis Leucorrhinia rubicunda Leucorrhinia dubia Diplacodes lefebvrii Crocothemis erythraea Selysiothemis nigra Brachythemis leucosticta Oxygastra curtisii Macromia splendens Cordulegaster boltonii Cordulegaster trinacriae Cordulegaster picta Cordulegaster heros Cordulegaster bidentata Cordulegaster insignis Cordulegaster helladica Onychogomphus forcipatus Onychogomphus uncatus Onychogomphus costae Ophiogomphus cecilia Paragomphus genei Gomphus simillimus Gomphus pulchellus Gomphus graslinii Gomphus vulgatissimus Lindenia tetraphylla Aeshna crenata Aeshna serrata Aeshna juncea Aeshna subarctica Aeshna mixta Aeshna affinis Aeshna grandis Aeshna viridis Aeshna cyanea Aeshna isoceles Anax junius Anax imperator Anax parthenope Anax ephippiger Brachytron pratense Caliaeschna microstigma Boyeria irene Boyeria cretensis Lestes viridis Lestes parvidens Sympecma fusca Sympecma paedisca Lestes barbarus Lestes virens Lestes macrostigma Lestes sponsa Lestes dryas Calopteryx splendens Calopteryx xanthostoma Calopteryx virgo Calopteryx haemorrhoidalis Platycnemis pennipes Platycnemis acutipennis Platycnemis latipes Pyrrhosoma nymphula Ceriagrion tenellum Nehalennia speciosa Erythromma lindenii Erythromma viridulum Erythromma najas Ischnura graellsii Ischnura genei Ischnura saharensis Ischnura elegans Ischnura fountaineae Ischnura aralensis Ischnura pumilio Ischnura hastata Enallagma cyathigerum Coenagrion hylas Coenagrion mercuriale Coenagrion johanssoni Coenagrion armatum Coenagrion hastulatum Coenagrion lunulatum Coenagrion ornatum Coenagrion puella Coenagrion pulchellum Coenagrion scitulum Coenagrion caerulescens 49 0.07 50 Figure A3. Phylogeny of 122 European dragonflies, representing the combination of available taxonomic 51 information and molecular data for up to nine different loci. Branch-lengths were inferred with an estimated 52 lognormal relaxed molecular clock for 50 million independent runs using a Bayesian approach. For details on 53 the construction see the Appendix A1. 54 55 Figure A4. Correlations of Faith’s phylogenetic diversity (FPD, i.e. the minimum spanning tree) and total 56 taxonomic distinctiveness (TTD, i.e. sum of pairwise distances) against species richness and Quantile- 57 Quantile-plot of the residuals from spline-based smoothed regressions of these relationships across 4,192 58 assemblages of European dragonflies. Black lines were fitted with spline-based smoothed regressions. 59 Coloured contour lines indicate data density. Note that only the variance of TTD is independent from the 60 respective species richness value, i.e. satisfies homoscedasticity, whereas the variance of FPD shows strong 61 outliers at higher fitted values. 62 63 Figure A5. Spatial autocorrelation (Moran’s I coefficient) in the residuals of multiple regressions of species 64 richness (Richness), corrected weighted endemism (i.e. geometric mean of the inverse occupancy of co- 65 occurring species, CWE), the residuals of spline-based smoothed regressions of total taxonomic 66 distinctiveness (i.e. sum of pairwise distances) and species richness (Res. TTD) and effect-sizes of mean 67 pairwise distances (SES MPD) against seven predictor variables.