Transgene Expression, but Not Gene Delivery, Is Improved by Adhesion-Assisted Lipofection of Hematopoietic Cells

Total Page:16

File Type:pdf, Size:1020Kb

Transgene Expression, but Not Gene Delivery, Is Improved by Adhesion-Assisted Lipofection of Hematopoietic Cells Gene Therapy (1999) 6, 931–938 1999 Stockton Press All rights reserved 0969-7128/99 $12.00 http://www.stockton-press.co.uk/gt Transgene expression, but not gene delivery, is improved by adhesion-assisted lipofection of hematopoietic cells H Keller1, C Yunxu2, G Marit2, M Pla3, J Reiffers2, J The`ze1 and P Froussard1 1Unite´ d’Immunoge´ne´tique Cellulaire, De´partement d’Immunologie, Institut Pasteur, Paris; 2Laboratoire de Greffe de Moelle, URA CNRS 5540, Universite´ Victor Segalen Bordeaux 2, Bordeaux; and 3Immunoge´ne´tique de la souris, U93 INSERM, Hoˆpital Saint- Louis, Paris France In contrast to adherent cells, cells growing in suspension in up to 30% of transfected human primary T lymphocytes. and particularly hematopoietic cells, are notoriously difficult Flow cytometry analysis performed on T lymphocyte sub- to transfect in vitro using nonviral approaches. In the sets revealed that 8 and 9%, respectively, of CD4 and CD8 present study, the effect of cell adhesion on gene transfer cells could be transfected with a plasmid carrying the green efficacy was investigated by allowing hematopoietic cells fluorescent protein gene. Other adherent cells, such as to bind to an adherent cell monolayer (ACM) before being MS5 murine stromal cells or HeLa epithelial cells, were subjected to cationic liposome-mediated DNA transfer. also a compatible matrix for AAL. Moreover, the pCMV␤ Human CD34 and T CD4 cell lines were cultivated on an plasmid was present in similar amounts in the nuclei of TF1 ACM constituted of murine fibroblast NIH3T3 cells and cells transfected in suspension or with the AAL procedure. transfected with a plasmid carrying the ␤-galactosidase These data raise the possibility that cell matrix/ gene. X-gal staining showed that up to 27% of the cells hematopoietic cell interactions might govern expression of expressed the transgene. In contrast, less than 0.1% of the transgene in hematopoietic cells growing usually in these cells were positively transfected in suspension. This suspension, but not endocytosis of liposome/DNA particles adhesion-assisted lipofection (AAL) procedure was also and plasmid migration to the cell nucleus. successfully tested on blood lymphocytes, since it resulted Keywords: liposomes; cationic liposomes; adhesion-assisted lipofection; gene transfer; hematopoietic cells Introduction obtained using adherent cells lines.5,6 However, many cell types, particularly primary cells, blood lymphocytes and At present, methods using viral vectors are the most more generally hematopoietic cells growing in suspen- promising for delivery and expression of foreign genes sion are largely resistant to this form of gene transfer,7 in vitro and in vivo. However, safety concerns and the though successful transfection has been reported in difficulty in obtaining large quantities of recombinant mouse bone marrow cells.8 viral vectors have prompted the search for efficient, non- The sequence of cellular and molecular events underly- immunogenic and easy-to-prepare nonviral vector sys- ing the complex phenomenon of DNA transfer remains tems. Among them, cationic liposome-mediated gene highly speculative,9 but it is commonly accepted that 1–3 delivery, which was pioneered by Felgner, has been endocytosis is the main mechanism of entry of demonstrated to be an effective approach presenting a liposome/DNA particles,10–13 and relatively high trans- 4 low risk of intrinsic toxicity and pathogenicity. Cationic fection efficiency is due to the intrinsic membrane-rup- liposomes, which are easy to prepare on a large scale, turing capability of cationic liposomes as a result of form complexes with DNA through charge interactions destabilizing the plasma and/or endosome membrane.14–16 in such a way that DNA is protected from degradative In contrast to adherent cells, liposome/DNA particles activities and virtually any size of plasmid molecule can have been reported to bind inefficiently to the cell surface be packaged. Liposome/DNA complexes bind to the of lymphocytes, suggesting that particles attach to mem- negatively charged cell surface due to the presence of brane components involved in cell anchoring to the extra- excess positive charges in the complex; the nature of non- cellular matrix and composed of cadherins or proteogly- specific interactions results in the ability to drive cans present on adherent cells only.6 This weak expression of a foreign gene in host cells, including non- interaction between particles and membrane lympho- dividing cells, with the greatest transfection efficiency cytes would prevent endocytosis of liposome/DNA par- ticles and release of DNA into the cytosol of nonadherent cells. Because the ability of target cultured cells to be Correspondence: P Froussard, Unite´ d’Immunoge´ne´tique Cellulaire, De´partement d’Immunologie, Institut Pasteur, 75724 Paris cedex 15, transfected with the liposome/DNA complex relies France essentially on their adhesion capacity, we investigated Received 8 May 1998; accepted 21 December 1998 the role of cell adhesion in gene delivery to hematopoietic Adhesion-assisted lipofection in hematopoietic cells H Keller et al 932 cells. We primarily observed that hematopoietic cells could be transfected when cultured on an adherent cell matrix before being subjected to liposome-mediated DNA delivery. We then studied the usefulness of this new gene transfer approach in more detail using several types of established hematopoietic cell lines and primary lymphocytes of human origin, as well as different cell matrices. The role of cell adhesion in gene transfer optim- ization was also investigated. Results Coculture with adherent cells makes TF1 cells competent for gene transfer Figure 2 Analysis of ␤-galactosidase transcripts in cells transfected with ␤ Human TF1 cells, which grow in suspension, were liposome/pCMV complexes. Cells were transfected using the AAL pro- cedure or a standard lipofection (SdL) assay. Total RNA was purified from loaded on to an NIH3T3 ACM as described in Materials 5 × 105 transfected cells, subjected to DNase I and amplified by RT-PCR. and methods. The whole mixed cell population was then PCR products encoding ␤-galactosidase DNA sequences were then elec- subjected to liposome-mediated DNA transfer using trophoresed, transferred to nitrocellulose and hybridized with a 32P-labeled lipofectamine/pCMV ␤ complexes. Two days after trans- specific DNA probe. RNAs from untransfected cells and RNAs subjected fection, adherent cells were eliminated by adhesion on to both DNase 1 and RNase A did not show any RT-PCR products. plastic flasks and expression of the bacterial ␤-galacto- sidase gene was assessed in purified TF1 cells and in pure by the anti-mouse mAb. In other respects, respectively TF1 cells transfected in suspension. Counting of dark 97.1% and 91.9% of purified transfected cells were blue-stained cells revealed that up to 26% of TF1 purified detected with anti-HLA class I and anti-CD34 mAbs, cells expressed ␤-galactosidase activity transferred with compared with 99.5% and 94.6% for pure TF1 cells. The the pCMV␤ vector. In contrast, less than 0.1% of blue same transfection study performed using MS5 stromal cells was observed when TF1 cells were transfected in cells as a matrix showed that virtually 100% of recovered suspension (Figure 1). Total RNA was purified from cells suspension cells were recognized with both anti-HLA harvested 48 h after transfection and ␤-galactosidase class I and anti-CD34 mAbs (Figure 3b). Taken together, transcripts were subjected to a non-quantitative RT-PCR. these representative experiments show that NIH3T3 and Bacterial ␤-galactosidase mRNA level in TF1 cells trans- MS5 contaminant cells are barely detectable in purified fected with AAL was 50 to 80% of what was found in suspension cells and that essentially pure TF1 cells can NIH3T3 cells; transgene transcripts were poorly detected be recovered after the three 2-h adhesion steps. in TF1 cells transfected in suspension (Figure 2). Thus, it is obvious that culture of TF1 cells on a NIH3T3 mono- AAL, but not adhesion, is optimized by prolonged layer authorizes a substantial improvement in liposome- coculture of TF1 cells with the cell matrix mediated gene transfer. In the interest of optimizing the AAL procedure, TF1 cells and NIH3T3 ACM were cocultured for increasing per- Purified TF1 cells transfected with AAL are essentially iods of time before being subjected to transfection. Pur- free of contaminating adherent cells ified TF1 cells were then assessed for bacterial ␤-galacto- The purpose of these experiments was to assess the sidase gene expression. As shown in Figure 4, the efficiency of the three 2-h adhesion steps used at the end percentage of TF1 blue cells increased linearly for the first of the AAL procedure. In practice, the purity of the cell 6 to 8 h of coculture before reaching a plateau, but acqui- suspension was evaluated by detection of specific cell sition of the full competent state by TF1 cells required surface markers. As shown in Figure 3a, less than 1.1% overnight coculture with the ACM before transfection. of the purified AAL transfected cells could be recognized The ability of TF1 cells to bind to the ACM was studied as a function of the time to link the gene transfer efficiency to the adhesion/suspension state of TF1 cells. Surprisingly, 72% of TF1 cells were already bound to the cell matrix less than 2 h after being loaded on to the ACM. This indicates that prolonged coculture with the ACM is necessary for optimized liposome-mediated gene delivery and that adhesion of TF1 cells to the ACM pre- cedes the acquisition of the features rendering TF1 cells competent. CD34 and CD4 cell lines are efficiently transfected with AAL As a step towards examining primary cells, we examined ␤ the ability of the AAL procedure to mediate gene deliv- Figure 1 Analysis of -galactosidase expression in purified TF1 cells after ery in three different CD34 cell lines (TF1, KG1a, K562 transfection with lipofectamine/pCMV␤ complexes. TF1 cells were trans- fected in suspension (a) or using the adhesion-assisted lipofection pro- cells) and in Jurkat CD4 T lymphocytes using NIH3T3, cedure on to a NIH3T3 cell matrix (b).
Recommended publications
  • Gene Use Restriction Technologies for Transgenic Plant Bioconfinement
    Plant Biotechnology Journal (2013) 11, pp. 649–658 doi: 10.1111/pbi.12084 Review article Gene use restriction technologies for transgenic plant bioconfinement Yi Sang, Reginald J. Millwood and C. Neal Stewart Jr* Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA Received 1 February 2013; Summary revised 3 April 2013; The advances of modern plant technologies, especially genetically modified crops, are considered accepted 9 April 2013. to be a substantial benefit to agriculture and society. However, so-called transgene escape *Correspondence (fax 1-865-974-6487; remains and is of environmental and regulatory concern. Genetic use restriction technologies email [email protected]) (GURTs) provide a possible solution to prevent transgene dispersal. Although GURTs were originally developed as a way for intellectual property protection (IPP), we believe their maximum benefit could be in the prevention of gene flow, that is, bioconfinement. This review describes the underlying signal transduction and components necessary to implement any GURT system. Keywords: transgenic plants, Furthermore, we review the similarities and differences between IPP- and bioconfinement- transgene escape, male sterility, oriented GURTs, discuss the GURTs’ design for impeding transgene escape and summarize embryo sterility, transgene deletion, recent advances. Lastly, we go beyond the state of the science to speculate on regulatory and gene flow. ecological effects of implementing GURTs for bioconfinement. Introduction proposed (Daniell, 2002; Gressel, 1999; Moon et al., 2011), including strategies for male sterility (Mariani et al., 1990), Transgenic crops have become an integral part of modern maternal inheritance (Daniell et al., 1998; Iamtham and Day, agriculture and have been increasingly adopted worldwide (James, 2000; Ruf et al., 2001), transgenic mitigation (Al-Ahmad et al., 2011).
    [Show full text]
  • Bt Corn Produc
    STATE OF MAINE DEPARTMENT OF AGRICULTURE, CONSERVATION AND FORESTRY BOARD OF PESTICIDES CONTROL 28 STATE HOUSE STATION UGUSTA AINE PAUL R. LEPAGE A , M 04333 WALTER E. WHITCOMB GOVERNOR COMMISSIONER To: Board of Pesticides Control Members From: Mary Tomlinson, Pesticides Registrar/Water Quality Specialist RE: Bt Corn Products with Pending Maine Registration Status Date: July 19, 2017 ****************************************************************************** Monsanto Company and Dow AgroSciences LLC have requested registration of several new Bt corn products. The new active ingredient (unique identifier 87411-9) is a dsRNA transcript comprising a DvSnf7 inverted repeat sequence which matches that from the Western corn rootworm. dsRNA transcript comprising a DvSnf7 inverted repeat sequence derived from Diabrotica virgifera virgifera, and the genetic material necessary for its production (vector PV-ZMIR10871) in MON 87411 corn (OECD Unique Identifier MON-87411-9)………………………..≤ 0.00000044%* MON 87411 also contains CP4 EPSPS protein (5-enolpyruvylshikimate-3-phosphate synthase) and the genetic material (vector PV-ZMIR10871) necessary for its production in corn event MON 87411…...≤ 0.036%*. The EPSPS protein confers tolerance to glyphosate. Products designed for the propagation of commercial seed have no spatial refuge which is typical of these types of products. SmartStax PRO Enlist requires a 5% non-Bt corn refuge, unless used for seed propagation, and SmartStax PRO Enlist Refuge Advanced contains a 5% interspersed refuge. The 2015 EPA Registration Decision (RED) and USDA Draft Environmental Assessment for Mon 87411 are attached for your review. The question posed to the Board is, are these products substantially different from currently registered Bt corn products? If so, what further review is recommended? The labels for the products under consideration are attached for your review.
    [Show full text]
  • Transgenic Animals
    IQP-43-DSA-4208 IQP-43-DSA-6270 TRANSGENIC ANIMALS An Interactive Qualifying Project Report Submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements for the Degree of Bachelor of Science By: _________________________ _________________________ William Caproni Erik Dahlinghaus August 24, 2012 APPROVED: _________________________ Prof. David S. Adams, PhD WPI Project Advisor ABSTRACT A transgenic animal contains genes not native to its species. The use of these animals in research and medicine has dramatically increased our understanding of genetics and disease modeling. This IQP aims to provide an overview of the technical development and applications of transgenic animals, as well as the ethical, legal, and societal ramifications of creating these animals. Finally, this IQP will draw conclusions from the research performed and the information gathered. 2 TABLE OF CONTENTS Signature Page …………………………………………..…………………………….. 1 Abstract …………………………………………………..……………………………. 2 Table of Contents ………………………………………..…………………………….. 3 Project Objective ……………………………………….....…………………………… 4 Chapter-1: Transgenic Animal Technology …….……….…………………………… 5 Chapter-2: Applications of Transgenics in Animals …………..…………………….. 19 Chapter-3: Transgenic Ethics ………………………………………………………... 32 Chapter-4: Transgenic Legalities ……………………..………………………………. 43 Project Conclusions...…………………………………..….…………………………… 53 3 PROJECT OBJECTIVES The objective of this project was to research and present a multifaceted view of transgenics, including the technology itself and its effects on mankind. Chapter one offers an overview of the different methods for creating and testing transgenic animals. Chapter two provides information on how the different types of transgenic animals are used, and how they affect our daily lives. Chapter three presents the many ethical issues surrounding this controversial technology, and its impact on society. Chapter four describes the legal issues regarding this emerging technology and the patenting of life.
    [Show full text]
  • The Impact of Transfection Mediated Toxicity
    The Impact of Transfection Mediated Toxicity - Gene Expression and Cytotoxicity Analysis of Transfection Reagents Chuenchanok Khodthong, Issam Ismaili and Laura Juckem Mirus Bio LLC www.TheTransfectionExperts.com Providing gene delivery expertise since 1995 ©2012 All rights reserved Mirus Bio LLC. All trademarks are the property of their respective owners. The Impact of Transfection Mediated Toxicity – Gene Expression and Cytotoxicity Analysis of Transfection Reagents Introduction While plasmid DNA delivery is a widely used method to study cellular functions of proteins of interest, studies to identify nontoxic gene delivery reagents are limited. With the advent of high‐information content technologies, especially RT‐qPCR array, it is now possible to identify the gene expression response to a particular cellular insult. This improvement, coupled with the observation that virtually all toxic responses are accompanied by changes in gene expression, suggests that gene expression analysis has the potential to refine the identification of minimal‐toxicity transfection reagent where phenotypic responses such as altered morphology is not immediately evident. Consequently, we conducted an integrative study to explore the conventional toxicological endpoints and to identify the minimal‐ transcriptomic effects of TransIT®‐LT1, TransIT®‐2020 and Lipofectamine® 2000 Transfection Reagents using quantitative reverse transcriptase PCR (RT‐qPCR) array and pathway analysis software. Results Effect of Transfection on Cell Morphology and Viability To evaluate a role of transfection‐related toxicity, time course and dose‐dependent experiments were conducted. Hela cells were treated with various concentrations of pDNA/transfection reagent complexes for up to 24 hours. Transfection toxicity was then evaluated by morphology (Figure. 1) and by Lactate Dehydrogenase (LDH) leakage assays (Figure.
    [Show full text]
  • Lipofection of Cultured Mouse Muscle Cells: a Direct Comparison of Lipofectamine and DOSPER
    Gene Therapy (1998) 5, 542–551 1998 Stockton Press All rights reserved 0969-7128/98 $12.00 http://www.stockton-press.co.uk/gt Lipofection of cultured mouse muscle cells: a direct comparison of Lipofectamine and DOSPER E Dodds1, MG Dunckley1, K Naujoks2, U Michaelis2 and G Dickson1 1Division of Biochemistry, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK; and 2Division of Therapeutics, Boehringer Mannheim GmbH, Penzberg, Germany Cationic lipid–DNA complexes (lipoplexes) have been (GFP) were used in order to evaluate transfection widely used as gene transfer vectors which avoid the efficiency by histochemical staining or FACS analysis, adverse immunogenicity and potential for viraemia of viral respectively. Both lipid formulations were able to promote vectors. With the long-term aim of gene transfer into skel- efficient, reproducible gene transfer in C2C12 cells, and etal muscle in vivo, we describe a direct in vitro comparison to transfect primary mouse myoblast cultures successfully. of two commercially available cationic lipid formulations, However, DOSPER exhibited the important advantage of Lipofectamine and DOSPER. Optimisation of transfection being able to transfect cells in the presence of serum of was performed in the C2C12 mouse muscle cell line, both bovine and murine origin. This feature allowed before further studies in primary mouse myoblasts and increased cell survival during in vitro transfections, and C2C12 myotubes. Reporter gene constructs expressing may be advantageous for direct in vivo gene transfer either E. coli ␤-galactosidase or green fluorescent protein efficacy. Keywords: gene transfer; lipoplex; lipofection; skeletal muscle Introduction biosafety issues and adverse immune responses have led to the development of a range of alternative, nonviral Skeletal muscle provides an excellent target for the systems, where repeated administration is possible.4 expression of recombinant genes as its structure and Some of the most promising results have come from the function are well understood.
    [Show full text]
  • Genetically Engineered Animals and Public Health
    GENETICALLY ENGINEERED ANIMALS AND PUBLIC HEALTH Compelling Benefits for Health Care, Nutrition, the Environment, and Animal Welfare Revised Edition: June 2011 GENETICALLY ENGINEERED ANIMALS AND PUBLIC HEALTH: Compelling Benefits for Health Care, Nutrition, the Environment, and Animal Welfare By Scott Gottlieb, MD and Matthew B. Wheeler, PhD American Enterprise Institute Institute for Genomic Biology, University of Illinois at Urbana-Champaign TABLE OF CONTENTS Abstract . 3 Executive Summary . 3 Introduction . 5 How the Science Enables Solutions . 6 Genetically Engineered Animals and the Improved Production of Existing Human Proteins, Drugs, Vaccines, and Tissues . 8 Blood Products . 10 Protein-Based Drugs . 12 Vaccine Components . 14 Replacement Tissues . 15 Genetic Engineering Applied to the Improved Production of Animals for Agriculture: Food, Environment and Animal Welfare . 19 Enhanced Nutrition and Public Health . 19 Reduced Environmental Impact. 21 Improved Animal Welfare . 21 Enhancing Milk . 22 Enhancing Growth Rates and Carcass Composition . 24 Enhanced Animal Welfare through Improved Disease Resistance . 26 Improving Reproductive Performance and Fecundity . 28 Improving Hair and Fiber . .30 Science-Based Regulation of Genetically Engineered Animals . 31 International Progress on Regulatory Guidance . 31 U. S. Progress on Regulatory Guidance . 31 Industry Stewardship Guidance on Genetically Engineered Animals . 32 Enabling Both Agricultural and Biomedical Applications of Genetic Engineering . 33 Future Challenges and Conclusion . 34 { GENETICALLY ENGINEERED ANIMALS AND PUBLIC HEALTH } Abstract Genetically engineered animals embody an innovative technology that is transforming public health through biomedical, environmental and food applications. They are inte- gral to the development of new diagnostic techniques and drugs for human disease while delivering clinical and economic benefits that cannot be achieved with any other approach.
    [Show full text]
  • Agrobacterium-Mediated Transformation and Assessment of Factors Influencing Transgene Expression in Loblolly Pine (Pinus Taeda L.)
    Cell Research (2001); 11(3):237-243 http://www.cell-research.com Agrobacterium-mediated transformation and assessment of factors influencing transgene expression in loblolly pine (Pinus taeda L.) TANG WEI* North Carolina State University, 2900 Ligon St., Raleigh, NC 27607, USA ABSTRACT This investigation reports a protocol for transfer and expression of foreign chimeric genes in loblolly pine (Pinus taeda L.). Transformation was achieved by co-cultivation of mature zygotic embryos with Agrobacterium tumefaciens strain LBA4404 which harbored a binary vector (pBI121) including genes for b-glucuronidase (GUS) and neomycin phosphotransferase (NPTII). Factors influencing transgene expres- sion including seed sources of loblolly pine, concentration of bacteria, and the wounding procedures of target explants were investigated. The expression of foreign gene was confirmed by the ability of mature zygotic embryos to produce calli in the presence of kanamycin, by histochemical assays of GUS activity, by PCR analysis, and by Southern blot. The successful expression of the GUS gene in different families of loblolly pine suggests that this transformation system is probably useful for the production of the genetically modified conifers. Key words: Pinus taeda L., Agrobacterium tumefaciens, gene transfer, gene expression. INTRODUCTION Agrobacterium-mediated transformation has Recombinant DNA technology is a powerful tool been the favored method for introduction of foreign for the introduction of foreign genes into long-lived genes into plants. Compared to the particle bom- perennials and for fundamental studies of gene bardment protocol, Agrobacterium is a much more expression. Using such techniques, we can overcome efficient transformation tool in compatible plant the difficulties associated with the breeding of a long- species.
    [Show full text]
  • How Genetic Engineering Differs from Conventional Breeding Hybridization
    GENETIC ENGINEERING IS NOT AN EXTENSION OF CONVENTIONAL PLANT BREEDING; How genetic engineering differs from conventional breeding, hybridization, wide crosses and horizontal gene transfer by Michael K. Hansen, Ph.D. Research Associate Consumer Policy Institute/Consumers Union January, 2000 Genetic engineering is not just an extension of conventional breeding. In fact, it differs profoundly. As a general rule, conventional breeding develops new plant varieties by the process of selection, and seeks to achieve expression of genetic material which is already present within a species. (There are exceptions, which include species hybridization, wide crosses and horizontal gene transfer, but they are limited, and do not change the overall conclusion, as discussed later.) Conventional breeding employs processes that occur in nature, such as sexual and asexual reproduction. The product of conventional breeding emphasizes certain characteristics. However these characteristics are not new for the species. The characteristics have been present for millenia within the genetic potential of the species. Genetic engineering works primarily through insertion of genetic material, although gene insertion must also be followed up by selection. This insertion process does not occur in nature. A gene “gun”, a bacterial “truck” or a chemical or electrical treatment inserts the genetic material into the host plant cell and then, with the help of genetic elements in the construct, this genetic material inserts itself into the chromosomes of the host plant. Engineers must also insert a “promoter” gene from a virus as part of the package, to make the inserted gene express itself. This process alone, involving a gene gun or a comparable technique, and a promoter, is profoundly different from conventional breeding, even if the primary goal is only to insert genetic material from the same species.
    [Show full text]
  • Transgene Integration Into the Same Chromosome Location Can Produce Alleles That Express at a Predictable Level, Or Alleles That Are Differentially Silenced
    Downloaded from genesdev.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Transgene integration into the same chromosome location can produce alleles that express at a predictable level, or alleles that are differentially silenced Christopher D. Day, Elsa Lee,1 Janell Kobayashi,2 Lynn D. Holappa,3 Henrik Albert,4 and David W. Ow5 Plant Gene Expression Center, U.S. Department of Agriculture–Agricultural Research Service, Albany, California 94710, USA In an effort to control the variability of transgene expression in plants, we used Cre-lox mediated recombination to insert a gus reporter gene precisely and reproducibly into different target loci. Each integrant line chosen for analysis harbors a single copy of the transgene at the designated target site. At any given target site, nearly half of the insertions give a full spatial pattern of transgene expression. The absolute level of expression, however, showed target site dependency that varied up to 10-fold. This substantiates the view that the chromosome position can affect the level of gene expression. An unexpected finding was that nearly half of the insertions at any given target site failed to give a full spatial pattern of transgene expression. These partial patterns of expression appear to be attributable to gene silencing, as low gus expression correlates with DNA methylation and low transcription. The methylation is specific for the newly integrated DNA. Methylation changes are not found outside of the newly inserted DNA. Both the full and the partial expression states are meiotically heritable. The silencing of the introduced transgenes may be a stochastic event that occurs during transformation.
    [Show full text]
  • Biological Confinement of Genetically Engineered Organisms
    Carlson, J. 2005. Biological dimensions of the GMO issue. In, proc. of conf. on restoration of American chestnut to forest lands, Steiner, K.C. and J.E. Carlson (eds.). BIOLOGICAL DIMENSIONS OF THE GMO ISSUE John Carlson School of Forest Resources, The Pennsylvania State University, University Park, PA 16802 USA ([email protected]) Abstract: Genetic engineering is opening new opportunities in tree improvement, including access to novel genes for disease resistance. American chestnut is one of the tree species for which genetic transformation has been reported. Thus restoration of American chestnut could benefit from the genetic engineering technology, should suitable genes for blight resistance be identified. However, questions regarding the efficacy and safety of genetic engineering with trees, and other perennial plant species, have been raised including the stability of integration and expression of foreign genes, long term effects on non-target species, transgene dispersal through seed and pollen, etc. Many of these concerns could be alleviated if reliable approaches were available for the confinement of transgenes. The National Research Council assembled a committee of twelve researchers from various disciplines to evaluate the measures for biological confinement of transgenes. This paper will summarize the committee’s findings regarding the unique concerns that arise in the application of GE to trees, and the potential that exists for applying bioconfinement methods with GE trees. Keywords: National Academies; genetic engineering; trees; biological confinement; transgenes INTRODUCTION The ability to apply GE to plant improvement extends beyond annual crops to woody perennial plants including forest trees (reviewed by Pena and Seguin 2001) and fruit and nut trees (reviewed by Trifonova and Atanassov 1996) such as American chestnut (Conners et al, 2002a,b).
    [Show full text]
  • Efficient Generation of Transgenic Buffalos (Bubalus Bubalis)
    www.nature.com/scientificreports OPEN Efcient Generation of Transgenic Bufalos (Bubalus bubalis) by Nuclear Transfer of Fetal Received: 13 February 2017 Accepted: 11 April 2018 Fibroblasts Expressing Enhanced Published: xx xx xxxx Green Fluorescent Protein Fenghua Lu1, Chan Luo1, Nan Li1,2, Qingyou Liu1, Yingming Wei1, Haiying Deng1, Xiaoli Wang1, Xiangping Li1, Jianrong Jiang1, Yanfei Deng1 & Deshun Shi1 The possibility of producing transgenic cloned bufalos by nuclear transfer of fetal fbroblasts expressing enhanced green fuorescent protein (EGFP) was explored in this study. When bufalo fetal fbroblasts (BFFs) isolated from a male bufalo fetus were transfected with pEGFP-N1 (EGFP is driven by CMV and Neo is driven by SV-40) by means of electroporation, Lipofectamine-LTX and X-tremeGENE, the transfection efciency of electroporation (35.5%) was higher than Lipofectamine-LTX (11.7%) and X-tremeGENE (25.4%, P < 0.05). When BFFs were transfected by means of electroporation, more embryos from BFFs transfected with pEGFP-IRES-Neo (EGFP and Neo are driven by promoter of human elongation factor) cleaved and developed to blastocysts (21.6%) compared to BFFs transfected with pEGFP-N1 (16.4%, P < 0.05). A total of 72 blastocysts were transferred into 36 recipients and six recipients became pregnant. In the end of gestation, the pregnant recipients delivered six healthy calves and one stillborn calf. These calves were confrmed to be derived from the transgenic cells by Southern blot and microsatellite analysis. These results indicate that electroporation is more efcient than lipofection in transfecting exogenous DNA into BFFs and transgenic bufalos can be produced efectively by nuclear transfer of BFFs transfected with pEGFP-IRES-Neo.
    [Show full text]
  • Polycation Liposomes, a Novel Nonviral Gene Transfer System, Constructed from Cetylated Polyethylenimine
    Gene Therapy (2000) 7, 1148–1155 2000 Macmillan Publishers Ltd All rights reserved 0969-7128/00 $15.00 www.nature.com/gt NONVIRAL TRANSFER TECHNOLOGY RESEARCH ARTICLE Polycation liposomes, a novel nonviral gene transfer system, constructed from cetylated polyethylenimine Y Yamazaki1, M Nango2, M Matsuura1, Y Hasegawa1, M Hasegawa3 and N Oku1 1Department of Radiobiochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka; 2Department of Applied Chemistry, Nagoya Institute of Technology, Nagoya; and 3DNAVEC Research Inc, Kannondai, Tsukuba, Ibaraki, Japan A novel gene transfer system was developed by using lipo- thermore, the transfection efficacy of PCLs was enhanced, somes modified with cetylated polyethylenimine (PEI, MW instead of being diminished, in the presence of serum. Effec- 600). This polycation liposome, PCL, showed remarkable tive gene transfer was observed in all eight malignant and transfection efficiency as monitored by the expression of the two normal cells line tested, as well as in COS-1 cells. We GFP reporter gene. Most conventional cationic liposomes also examined the effect of the molecular weight of PEI on require phosphatidylethanolamine or cholesterol as a PCL-mediated gene transfer, and observed that PEI with a component, although PCLs did not. Egg yolk phosphatidyl- MW of 1800 Da was as effective as that with one of 600, but choline- and dipalmitoylphosphatidylcholine-based PCL that PEI of 25 000 was far less effective. Finally, an in vivo were as effective as dioleoylphosphatidylethanolamine- study was done in which GFP was effectively expressed in based PCLs for gene transfer. Concerning the cytotoxicity mouse liver after injection of PCL via the portal vein.
    [Show full text]