First-Order Logic Prenex Normal Form
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 1. Cutting out Fragments
UvA-DARE (Digital Academic Repository) Logic Engineering. The Case of Description and Hybrid Logics Areces, C.E. Publication date 2000 Link to publication Citation for published version (APA): Areces, C. E. (2000). Logic Engineering. The Case of Description and Hybrid Logics. ILLC dissertation series 2000-05. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:07 Oct 2021 Chapter 1 Cutting Out Fragments The logic is invariant, ... but the data are different. So the results are different. from "Stranger in a Strange Land," Robert Heinlein 1.1 Looking for the Right Language The rules of the game are set: we are searching for good formal languages for specific tasks, where by "formal languages" we mean languages with a precise syntax and se mantics, and by "specific tasks" we mean reasoning tasks. -
A Concise Introduction to Mathematical Logic
Wolfgang Rautenberg A Concise Introduction to Mathematical Logic Textbook Third Edition Typeset and layout: The author Version from June 2009 corrections included Foreword by Lev Beklemishev, Moscow The field of mathematical logic—evolving around the notions of logical validity, provability, and computation—was created in the first half of the previous century by a cohort of brilliant mathematicians and philosophers such as Frege, Hilbert, Gödel, Turing, Tarski, Malcev, Gentzen, and some others. The development of this discipline is arguably among the highest achievements of science in the twentieth century: it expanded mathe- matics into a novel area of applications, subjected logical reasoning and computability to rigorous analysis, and eventually led to the creation of computers. The textbook by Professor Wolfgang Rautenberg is a well-written in- troduction to this beautiful and coherent subject. It contains classical material such as logical calculi, beginnings of model theory, and Gödel’s incompleteness theorems, as well as some topics motivated by applica- tions, such as a chapter on logic programming. The author has taken great care to make the exposition readable and concise; each section is accompanied by a good selection of exercises. A special word of praise is due for the author’s presentation of Gödel’s second incompleteness theorem, in which the author has succeeded in giving an accurate and simple proof of the derivability conditions and the provable Σ1-completeness, a technically difficult point that is usually omitted in textbooks of comparable level. This work can be recommended to all students who want to learn the foundations of mathematical logic. v Preface The third edition differs from the second mainly in that parts of the text have been elaborated upon in more detail. -
Elements of Finite Model Theory
Leonid Libkin Elements of Finite Model Theory With 24 Figures February 7, 2012 Springer Berlin Heidelberg NewYork Hong Kong London Milan Paris Tokyo To Helen, Daniel, and Victoria Preface Finite model theory is an area of mathematical logic that grew out of computer science applications. The main sources of motivational examples for finite model theory are found in database theory, computational complexity, and formal languages, although in recent years connections with other areas, such as formal methods and verification, and artificial intelligence, have been discovered. The birth of finite model theory is often identified with Trakhtenbrot’s result from 1950 stating that validity over finite models is not recursively enumerable; in other words, completeness fails over finite models. The tech- nique of the proof, based on encoding Turing machine computations as finite structures, was reused by Fagin almost a quarter century later to prove his cel- ebrated result that put the equality sign between the class NP and existential second-order logic, thereby providing a machine-independent characterization of an important complexity class. In 1982, Immerman and Vardi showed that over ordered structures, a fixed point extension of first-order logic captures the complexity class Ptime of polynomial time computable properties. Shortly thereafter, logical characterizations of other important complexity classes were obtained. This line of work is often referred to as descriptive complexity. A different line of finite model theory research is associated with the de- velopment of relational databases. By the late 1970s, the relational database model had replaced others, and all the basic query languages for it were es- sentially first-order predicate calculus or its minor extensions.