Inflation ALAN H

Total Page:16

File Type:pdf, Size:1020Kb

Inflation ALAN H Proc. Natl. Acad. Sci. USA Vol. 90, pp. 4871-4877, June 1993 Colloquium Paper This paper was presented at a coUoquium entitled "Physical Cosmology," organized by a committee chaired by David N. Schramm, held March 27 and 28, 1992, at the National Academy of Sciences, Irvine, CA. Inflation ALAN H. GUTH Center for Theoretical Physics, Laboratory for Nuclear Science, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 ABSTRACT A short review of inflation is given, starting a box, letting the size of the box approach infinity at the end with a description of the underlying mechanism and the of the calculation. One can then think of the electromagnetic scenario of events. Four variations-old inflation, new infla- fields inside the box as a mechanical system. The field can be tion, chaotic inflation, and extended inflation-are discussed. expanded as a sum of normal modes, and the coefficients of It is claimed that the inflationary model provides a plausible the normal mode functions can be taken as the dynamical explanation for (i) the large number ofparticles in the universe, degrees of freedom of the system. It turns out that each of (ii) the Hubble expansion, (iii) the large-scale uniformity ofthe these coefficients obeys the equations of a harmonic oscil- universe, (iv) the nearness of the universe to a critical density, lator, and there is no interaction between the coefficients. (v) the absence of magnetic monopoles, and (vi) the scale- The system is quantized by the same rules that one uses to invariant spectrum of microwave background fluctuations quantize the harmonic oscillator, and the result is that each observed by COBE (Cosmic Background Explorer). Finally, it normal mode has evenly spaced energy levels. In this case, is argued that the plausibility ofinflation is enhanced by the fact we interpret the nth excited state as the state that contains n that inflation is eternal. photons in the specified mode. Thus, the photon is inter- preted as the quantized excitation of a field. The inflationary model is a modification of the standard big In contemporary particle theory, all elementary particles are bang model that provides answers to a number of questions described in this way. There is an electron field to correspond that the standard model fails to address. The inflationary to an electron, a quark field to correspond to a quark, a period lasts for only a small fraction ofa second, and then the neutrino field to correspond to a neutrino, etc. Among the inflationary model joins smoothly onto the standard model. different types offields, the simplest is the scalar field-a field The role of inflation is to set up the initial conditions for the that has the same value to any Lorentz observer. The quan- standard model, conditions which otherwise would have to tized excitation ofa scalar field is a spinless particle. Although be assumed without explanation. Before inflation the total spinless particles that are regarded as elementary have yet to mass contained in the universe could have been as small as be observed, they are nonetheless akey ingredienttoa number 10 kg. If inflation is right, then the inflationary mechanism is of important theories. In particular, the Glashow-Weinberg- responsible for producing essentially all of the matter, en- Salam model of the electroweak interactions makes use of a ergy, and entropy that exists in the universe today. scalar field, the Higgs field, to cause a symmetry in the theory In this lecture I will give a brief review of inflation, to be spontaneously broken. (If this symmetry were not describing the mechanism of inflation, the outline of the broken, then electrons and neutrinos would both be massless scenario, the different types of inflationary models, and the and would be indistinguishable.) This Higgs field corresponds evidence for inflation. Finally I will briefly discuss the eternal to a neutral spinless Higgs particle, which will hopefully be nature of inflation: once inflation begins, calculations indi- observed at the SSC (Superconducting Supercoilider), if not cate that it ends locally but not globally. Although this before. Grand unified theories make use of similar Higgs property does not appear to lead to any observable predic- fields, but at a much higher mass scale, to spontaneously break tions, it certainly affects the way we think about the universe the grand unified symmetry that relates electrons, neutrinos, as a whole. and quarks. There is much current interest in superstring theories, I. The Mechanism of Inflation which actually go beyond the pattern ofthe field theories that were described above. In these theories the fundamental Before explaining the arguments for inflation, I will first object is not a field but is really a string-like object, which has explain how the inflationary model works. length but no width. These theories are believed to behave as The mechanism of inflation depends on scalar fields, so I field theories, however, at energy scales well below the will begin by briefly summarizing the role of scalar fields in Planck scale (Mp 1/'G' = 1.02 x 1019 GeV, where G is particle physics. To begin with, the reader should recognize Newton's constant, and I use units for which A c 1; 1 that in the context of modern particle physics, all fundamen- GeV = 1.602 x 10-10 J). In fact, these field theories contain tal particles are described by fields. The best known example a large number of scalar fields. Thus, the particle physics is the photon. The classical equations describing the electro- motivation for believing that scalar fields exist is quite strong. magnetic field were written down in the 1860s, but then in the The electromagnetic field has a potential energy density early 20th century physicists learned that the underlying laws given by V = (2 + A2)/81r, but the potential energy density of nature are quantum and not classical. The quantization of of the scalar field has a wider range of possibilities. It is the electromagnetic field can be carried out in a very straight- restricted by the criterion that the field theory be renormal- forward way. For simplicity one can consider the fields inside izable (i.e., the requirement that the field theory leads ultimately to finite answers), but there are still several free The publication costs of this article were defrayed in part by page charge parameters involved in specifying the potential. The form of payment. This article must therefore be hereby marked "advertisement" the scalar field potential appropriate for the new inflationary in accordance with 18 U.S.C. §1734 solely to indicate this fact. universe model is shown in Fig. 1. The potential has a 4871 Downloaded by guest on October 1, 2021 4872 Colloquium Paper: Guth Proc. Natl. Acad. Sci. USA 90 (1993) Before: False Vacuum &,- FaLse Vacuum P=Pf , p=? (metastable) {True Vacuum lP=o, p=O \True After: Vacuum _ -- ~dV 0 -OF 0 101 dW -pdV =pf dV FIG. 1. The potential energy function for the scalar field 4, appropriate for the new inflationary universe model. FIG. 2. A thought experiment to calculate the pressure of the false vacuum. As the piston chamber filled with false vacuum is minimum at a value of the scalar field that is nonzero, a enlarged, the energy density remains constant and the energy in- property that is generic for Higgs fields. The potential also creases. The extra energy is supplied by the agent puffing on the has a plateau centered at = 0, a feature that Higgs fields do piston, which must pull against the negative pressure of the false not necessarily have. This property is necessary, however, in vacuum. order for the new inflationary scenario to be possible. T.. -pf :.3, , [2] A particle physicist defines the word "vacuum" to mean the state of lowest possible energy density, so it is the state where gAl = diag[--1, 1, 1, 1] is the Lorentz metric. Thus, the in which lies at the minimum of the potential, labeled 4t on tensor of the false vacuum is Lorentz- the diagram. For emphasis, I will call this state the "true energy-momentum invariant, as one would expect, since the state is Lorentz- vacuum." Notice that the energy density of the true vacuum invariant. That is, if a region of space has a scalar field with is shown as zero, which is equivalent to the statement that the a constant value = 0, to another Lorentz observer it will constant is either zero or small. cosmological immeasurably also look like a region of space with a scalar field of value Even if the constant has a value that is cosmo- cosmological = 0. One could in fact have used this Lorentz-invariance as logically significant, the effect on this diagram would be an alternative derivation of Eq. 1. energy completely imperceptible, since the scales of particle Finally, we are ready to discuss the gravitational effects of physics are so much higher. The explanation for the small- this very peculiar energy-momentum tensor. Starting with ness of the cosmological constant has been a long-standing the Einstein field equations mystery to particle physicists, although we now have at least a possible solution (1) in the context of a crude understanding 1 of quantum gravity. RILV g"vR = 87rGT1"' A~' [3] 2 The state in which the scalar field, in some region of space, is perched at the top of the plateau of the potential energy one sees that the effect of the energy-momentum tensor of diagram is called the "false vacuum." Note that the energy Eq. 2 is precisely the same as having a temporarily nonzero density of this state is pf and therefore is fixed by the laws of value of the cosmological constant A, related by physics.
Recommended publications
  • Topic 3 Evidence for the Big Bang
    Topic 3 Primordial nucleosynthesis Evidence for the Big Bang ! Back in the 1920s it was generally thought that the Universe was infinite ! However a number of experimental observations started to question this, namely: • Red shift and Hubble’s Law • Olber’s Paradox • Radio sources • Existence of CMBR Red shift and Hubble’s Law ! We have already discussed red shift in the context of spectral lines (Topic 2) ! Crucially Hubble discovered that the recessional velocity (and hence red shift) of galaxies increases linearly with their distance from us according to the famous Hubble Law V = H0d where H0 = 69.3 ±0.8 (km/s)/Mpc and 1/H0 = Age of Universe Olbers’ paradox ! Steady state Universe is: infinite, isotropic or uniform (sky looks the same in all directions), homogeneous (our location in the Universe isn’t special) and is not expanding ! Therefore an observer choosing to look in any direction should eventually see a star ! This would lead to a night sky that is uniformly bright (as a star’s surface) ! This is not the case and so the assumption that the Universe is infinite must be flawed Radio sources ! Based on observations of radio sources of different strengths (so-called 2C and 3C surveys) ! The number of radio sources versus source strength concludes that the Universe has evolved from a denser place in the past ! This again appears to rule out the so-called Steady State Universe and gives support for the Big Bang Theory Cosmic Microwave Background ! CMBR was predicted as early as 1949 by Alpher and Herman (Gamow group) as a “remnant
    [Show full text]
  • Baryogenesis in a CP Invariant Theory That Utilizes the Stochastic Movement of Light fields During Inflation
    Baryogenesis in a CP invariant theory Anson Hook School of Natural Sciences Institute for Advanced Study Princeton, NJ 08540 June 12, 2018 Abstract We consider baryogenesis in a model which has a CP invariant Lagrangian, CP invariant initial conditions and does not spontaneously break CP at any of the minima. We utilize the fact that tunneling processes between CP invariant minima can break CP to implement baryogenesis. CP invariance requires the presence of two tunneling processes with opposite CP breaking phases and equal probability of occurring. In order for the entire visible universe to see the same CP violating phase, we consider a model where the field doing the tunneling is the inflaton. arXiv:1508.05094v1 [hep-ph] 20 Aug 2015 1 1 Introduction The visible universe contains more matter than anti-matter [1]. The guiding principles for gener- ating this asymmetry have been Sakharov’s three conditions [2]. These three conditions are C/CP violation • Baryon number violation • Out of thermal equilibrium • Over the years, counter examples have been found for Sakharov’s conditions. One can avoid the need for number violating interactions in theories where the negative B L number is stored − in a sector decoupled from the standard model, e.g. in right handed neutrinos as in Dirac lep- togenesis [3, 4] or in dark matter [5]. The out of equilibrium condition can be avoided if one uses spontaneous baryogenesis [6], where a chemical potential is used to create a non-zero baryon number in thermal equilibrium. However, these models still require a C/CP violating phase or coupling in the Lagrangian.
    [Show full text]
  • Quantifying the Sensitivity of Big Bang Nucleosynthesis to Isospin Breaking
    W&M ScholarWorks Undergraduate Honors Theses Theses, Dissertations, & Master Projects 5-2016 Quantifying the Sensitivity of Big Bang Nucleosynthesis to Isospin Breaking Matthew Ramin Hamedani Heffernan College of William and Mary Follow this and additional works at: https://scholarworks.wm.edu/honorstheses Part of the Nuclear Commons Recommended Citation Heffernan, Matthew Ramin Hamedani, "Quantifying the Sensitivity of Big Bang Nucleosynthesis to Isospin Breaking" (2016). Undergraduate Honors Theses. Paper 974. https://scholarworks.wm.edu/honorstheses/974 This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Quantifying the Sensitivity of Big Bang Nucleosynthesis to Isospin Breaking Matthew Heffernan Advisor: Andr´eWalker-Loud Abstract We perform a quantitative study of the sensitivity of Big Bang Nucleosynthesis (BBN) to the two sources of isospin breaking in the Standard Model (SM), the split- 1 ting between the down and up quark masses, δq (md mu) and the electromagnetic ≡ 2 − coupling constant, αf:s:. To very good approximation, the neutron-proton mass split- ting, ∆m mn mp, depends linearly upon these two quantities. In turn, BBN is very ≡ − sensitive to ∆m. A simultaneous study of both of these sources of isospin violation had not yet been performed. Quantifying the simultaneous sensitivity of BBN to δq and αf:s: is interesting as ∆m increases with increasing δq but decreases with increasing αf:s:. A combined analysis may reveal weaker constraints upon possible variations of these fundamental constants of the SM.
    [Show full text]
  • Arxiv:1707.01004V1 [Astro-Ph.CO] 4 Jul 2017
    July 5, 2017 0:15 WSPC/INSTRUCTION FILE coc2ijmpe International Journal of Modern Physics E c World Scientific Publishing Company Primordial Nucleosynthesis Alain Coc Centre de Sciences Nucl´eaires et de Sciences de la Mati`ere (CSNSM), CNRS/IN2P3, Univ. Paris-Sud, Universit´eParis–Saclay, Bˆatiment 104, F–91405 Orsay Campus, France [email protected] Elisabeth Vangioni Institut d’Astrophysique de Paris, UMR-7095 du CNRS, Universit´ePierre et Marie Curie, 98 bis bd Arago, 75014 Paris (France), Sorbonne Universit´es, Institut Lagrange de Paris, 98 bis bd Arago, 75014 Paris (France) [email protected] Received July 5, 2017 Revised Day Month Year Primordial nucleosynthesis, or big bang nucleosynthesis (BBN), is one of the three evi- dences for the big bang model, together with the expansion of the universe and the Cos- mic Microwave Background. There is a good global agreement over a range of nine orders of magnitude between abundances of 4He, D, 3He and 7Li deduced from observations, and calculated in primordial nucleosynthesis. However, there remains a yet–unexplained discrepancy of a factor ≈3, between the calculated and observed lithium primordial abundances, that has not been reduced, neither by recent nuclear physics experiments, nor by new observations. The precision in deuterium observations in cosmological clouds has recently improved dramatically, so that nuclear cross sections involved in deuterium BBN need to be known with similar precision. We will shortly discuss nuclear aspects re- lated to BBN of Li and D, BBN with non-standard neutron sources, and finally, improved sensitivity studies using Monte Carlo that can be used in other sites of nucleosynthesis.
    [Show full text]
  • Origin and Evolution of the Universe Baryogenesis
    Physics 224 Spring 2008 Origin and Evolution of the Universe Baryogenesis Lecture 18 - Monday Mar 17 Joel Primack University of California, Santa Cruz Post-Inflation Baryogenesis: generation of excess of baryon (and lepton) number compared to anti-baryon (and anti-lepton) number. in order to create the observed baryon number today it is only necessary to create an excess of about 1 quark and lepton for every ~109 quarks+antiquarks and leptons +antileptons. Other things that might happen Post-Inflation: Breaking of Pecci-Quinn symmetry so that the observable universe is composed of many PQ domains. Formation of cosmic topological defects if their amplitude is small enough not to violate cosmological bounds. There is good evidence that there are no large regions of antimatter (Cohen, De Rujula, and Glashow, 1998). It was Andrei Sakharov (1967) who first suggested that the baryon density might not represent some sort of initial condition, but might be understandable in terms of microphysical laws. He listed three ingredients to such an understanding: 1. Baryon number violation must occur in the fundamental laws. At very early times, if baryon number violating interactions were in equilibrium, then the universe can be said to have “started” with zero baryon number. Starting with zero baryon number, baryon number violating interactions are obviously necessary if the universe is to end up with a non-zero asymmetry. As we will see, apart from the philosophical appeal of these ideas, the success of inflationary theory suggests that, shortly after the big bang, the baryon number was essentially zero. 2. CP-violation: If CP (the product of charge conjugation and parity) is conserved, every reaction which produces a particle will be accompanied by a reaction which produces its antiparticle at precisely the same rate, so no baryon number can be generated.
    [Show full text]
  • The Ups and Downs of Baryon Oscillations
    The Ups and Downs of Baryon Oscillations Eric V. Linder Physics Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720 ABSTRACT Baryon acoustic oscillations, measured through the patterned distribution of galaxies or other baryon tracing objects on very large (∼> 100 Mpc) scales, offer a possible geometric probe of cosmological distances. Pluses and minuses in this approach’s leverage for understanding dark energy are discussed, as are systematic uncertainties requiring further investigation. Conclusions are that 1) BAO offer promise of a new avenue to distance measurements and further study is warranted, 2) the measurements will need to attain ∼ 1% accuracy (requiring a 10000 square degree spectroscopic survey) for their dark energy leverage to match that from supernovae, but do give complementary information at 2% accuracy. Because of the ties to the matter dominated era, BAO is not a replacement probe of dark energy, but a valuable complement. 1. Introduction This paper provides a pedagogical introduction to baryon acoustic oscillations (BAO), accessible to readers not necessarily familiar with details of large scale structure in the universe. In addition, it summarizes some of the current issues – plus and minus – with the use of BAO as a cosmological probe of the nature of dark energy. For more quantitative, arXiv:astro-ph/0507308v2 17 Jan 2006 technical discussions of these issues, see White (2005). The same year as the detection of the cosmic microwave background, the photon bath remnant from the hot, early universe, Sakharov (1965) predicted the presence of acoustic oscillations in a coupled baryonic matter distribution. In his case, baryons were coupled to cold electrons rather than hot photons; Peebles & Yu (1970) and Sunyaev & Zel’dovich (1970) pioneered the correct, hot case.
    [Show full text]
  • Inflation in a General Reionization Scenario
    Cosmology on the beach, Puerto Vallarta , Mexico 13/01/2011 InflationInflation inin aa generalgeneral reionizationreionization scenarioscenario Stefania Pandolfi, University of Rome “La Sapienza” “Harrison-Zel’dovich primordial spectrum is consistent with observations” S.Pandolfi, A. Cooray, E. Giusarma, E. W. Kolb, A. Melchiorri, O. Mena, P.Serra Phys.Rev.D82:123527,2010 , arXiv:1003.4763v1[astro-ph.CO] “Impact of general reionization scenario on reconstruction of inflationary parameters” S. Pandolfi, E.Giusarma, E.W.Kolb, M. Lattanzi, A.Melchiorri, O.Mena, M.Pena, P.Serra, A.Cooray, Phys.Rev.D82:087302,2010 ,arXiv:1009.5433 [astro-ph.CO] Outline Inflation Harrison-Zel’dovich model CMB Observables and present status Parametrizations of Reionization History Sudden Reionization Mortonson & Hu PC’s Analysis and Results I and II Forecast future constraints: the Planck mission Conclusions InflationInflation 11 • Period of accelerating expansion in the very early Universe • It explains why the Universe is approximately homogeneous and spatially flat • Dominant paradigm for explaining the initial conditions for structure formation and CMB anisotropies • Two types of metric perturbation created during inflation : scalar and tensor (or GW perturbation ) TheThe simplestsimplest way:way: thethe InflatonInflaton φφφφφφ 1 φ + φ + φ = ρ = V (φ) + φ&2 && 3H & V (' ) 0 2 1 p = −V (φ) + φ&2 2 InflationInflation 22 The slope of the inflaton ’’s potential must be sufficiently shallow to drive exponential expansion The amplitude of the potential must be sufficiently large to dominate the energy density of the Universe Slow -roll condition Having inflation requires that the “slow -roll ” parameters ε << 1 ; η << 1 Zoology of models Within these condition the number of models available to choose from is large depending of the relation between the two slow -roll parameters .
    [Show full text]
  • The Cosmological Higgstory of the Vacuum Instability
    SLAC-PUB-16698 CERN-PH-TH-2015/119 IFUP-TH/2015 The cosmological Higgstory of the vacuum instability Jos´eR. Espinosaa;b, Gian F. Giudicec, Enrico Morganted, Antonio Riottod, Leonardo Senatoree, Alessandro Strumiaf;g, Nikolaos Tetradish a IFAE, Universitat Aut´onomade Barcelona, 08193 Bellaterra, Barcelona b ICREA, Instituci´oCatalana de Recerca i Estudis Avan¸cats,Barcelona, Spain c CERN, Theory Division, Geneva, Switzerland d D´epartement de Physique Th´eoriqueand Centre for Astroparticle Physics (CAP), Universit´ede Gen`eve,Geneva, Switzerland e Stanford Institute for Theoretical Physics and Kavli Institute for Particle Astrophysics and Cosmology, Physics Department and SLAC, Stanford, CA 94025, USA f Dipartimento di Fisica dell’Universit`adi Pisa and INFN, Italy g National Institute of Chemical Physics and Biophysics, Tallinn, Estonia h Department of Physics, University of Athens, Zographou 157 84, Greece Abstract The Standard Model Higgs potential becomes unstable at large field values. After clarifying the issue of gauge dependence of the effective potential, we study the cosmological evolution of the Higgs field in presence of this instability throughout inflation, reheating and the present epoch. We conclude that anti-de Sitter patches in which the Higgs field lies at its true vacuum are lethal for our universe. From this result, we derive upper bounds on the arXiv:1505.04825v2 [hep-ph] 4 Sep 2015 Hubble constant during inflation, which depend on the reheating temperature and on the Higgs coupling to the scalar curvature or to the inflaton. Finally we study how a speculative link between Higgs meta-stability and consistence of quantum gravity leads to a sharp prediction for the Higgs and top masses, which is consistent with measured values.
    [Show full text]
  • Cosmic Microwave Background
    1 29. Cosmic Microwave Background 29. Cosmic Microwave Background Revised August 2019 by D. Scott (U. of British Columbia) and G.F. Smoot (HKUST; Paris U.; UC Berkeley; LBNL). 29.1 Introduction The energy content in electromagnetic radiation from beyond our Galaxy is dominated by the cosmic microwave background (CMB), discovered in 1965 [1]. The spectrum of the CMB is well described by a blackbody function with T = 2.7255 K. This spectral form is a main supporting pillar of the hot Big Bang model for the Universe. The lack of any observed deviations from a 7 blackbody spectrum constrains physical processes over cosmic history at redshifts z ∼< 10 (see earlier versions of this review). Currently the key CMB observable is the angular variation in temperature (or intensity) corre- lations, and to a growing extent polarization [2–4]. Since the first detection of these anisotropies by the Cosmic Background Explorer (COBE) satellite [5], there has been intense activity to map the sky at increasing levels of sensitivity and angular resolution by ground-based and balloon-borne measurements. These were joined in 2003 by the first results from NASA’s Wilkinson Microwave Anisotropy Probe (WMAP)[6], which were improved upon by analyses of data added every 2 years, culminating in the 9-year results [7]. In 2013 we had the first results [8] from the third generation CMB satellite, ESA’s Planck mission [9,10], which were enhanced by results from the 2015 Planck data release [11, 12], and then the final 2018 Planck data release [13, 14]. Additionally, CMB an- isotropies have been extended to smaller angular scales by ground-based experiments, particularly the Atacama Cosmology Telescope (ACT) [15] and the South Pole Telescope (SPT) [16].
    [Show full text]
  • Axion Dark Matter from Higgs Inflation with an Intermediate H∗
    Axion dark matter from Higgs inflation with an intermediate H∗ Tommi Tenkanena and Luca Visinellib;c;d aDepartment of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA bDepartment of Physics and Astronomy, Uppsala University, L¨agerhyddsv¨agen1, 75120 Uppsala, Sweden cNordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, 10691 Stockholm, Sweden dGravitation Astroparticle Physics Amsterdam (GRAPPA), Institute for Theoretical Physics Amsterdam and Delta Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands E-mail: [email protected], [email protected], [email protected] Abstract. In order to accommodate the QCD axion as the dark matter (DM) in a model in which the Peccei-Quinn (PQ) symmetry is broken before the end of inflation, a relatively low scale of inflation has to be invoked in order to avoid bounds from DM isocurvature 9 fluctuations, H∗ . O(10 ) GeV. We construct a simple model in which the Standard Model Higgs field is non-minimally coupled to Palatini gravity and acts as the inflaton, leading to a 8 scale of inflation H∗ ∼ 10 GeV. When the energy scale at which the PQ symmetry breaks is much larger than the scale of inflation, we find that in this scenario the required axion mass for which the axion constitutes all DM is m0 . 0:05 µeV for a quartic Higgs self-coupling 14 λφ = 0:1, which correspond to the PQ breaking scale vσ & 10 GeV and tensor-to-scalar ratio r ∼ 10−12. Future experiments sensitive to the relevant QCD axion mass scale can therefore shed light on the physics of the Universe before the end of inflation.
    [Show full text]
  • Banks-Zaks Cosmology, Inflation, and the Big Bang Singularity
    Prepared for submission to JCAP Banks-Zaks Cosmology, Inflation, and the Big Bang Singularity Michal Artymowski, Ido Ben-Dayan, Utkarsh Kumar Physics Department, Ariel University, Ariel 40700, Israel E-mail: [email protected], [email protected], [email protected] Abstract. We consider the thermodynamical behavior of Banks-Zaks theory close to the conformal point in a cosmological setting. Due to the anomalous dimension, the resulting pressure and energy density deviate from that of radiation and result in various interesting cosmological scenarios. Specifically, for a given range of parameters one avoids the cosmological singularity. We provide a full "phase diagram" of possible Universe evolution for the given parameters. For a certain range of parameters, the thermal averaged Banks-Zaks theory alone results in an exponentially contracting uni- verse followed by a non-singular bounce and an exponentially expanding universe, i.e. Inflation without a Big Bang singularity, or shortly termed "dS Bounce". The tem- perature of such a universe is bounded from above and below. The result is a theory violating the classical Null Energy Condition (NEC). Considering the Banks-Zaks the- ory with an additional perfect fluid, yields an even richer phase diagram that includes the standard Big Bang model, stable single "normal" bounce, dS Bounce and stable cyclic solutions. The bouncing and cyclic solutions are with no singularities, and the violation of the NEC happens only near the bounce. We also provide simple analytical conditions for the existence of these non-singular solutions. Hence, within effective field theory, we have a new alternative non-singular cosmology based on the anoma- arXiv:1912.10532v2 [hep-th] 13 May 2020 lous dimension of Bank-Zaks theory that may include inflation and without resorting to scalar fields.
    [Show full text]
  • Aspects of False Vacuum Decay
    Technische Universität München Physik Department T70 Aspects of False Vacuum Decay Wenyuan Ai Vollständiger Abdruck der von der Fakultät für Physik der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Prof. Dr. Wilhelm Auwärter Prüfer der Dissertation: 1. Prof. Dr. Björn Garbrecht 2. Prof. Dr. Andreas Weiler Die Dissertation wurde am 22.03.2019 bei der Technischen Universität München ein- gereicht und durch die Fakultät für Physik am 02.04.2019 angenommen. Abstract False vacuum decay is the first-order phase transition of fundamental fields. Vacuum instability plays a very important role in particle physics and cosmology. Theoretically, any consistent theory beyond the Standard Model must have a lifetime of the electroweak vacuum longer than the age of the Universe. Phenomenologically, first-order cosmological phase transitions can be relevant for baryogenesis and gravitational wave production. In this thesis, we give a detailed study on several aspects of false vacuum decay, including correspondence between thermal and quantum transitions of vacuum in flat or curved spacetime, radiative corrections to false vacuum decay and, the real-time formalism of vacuum transitions. Zusammenfassung Falscher Vakuumzerfall ist ein Phasenübergang erster Ordnung fundamentaler Felder. Vakuuminstabilität spielt in der Teilchenphysik und Kosmologie eine sehr wichtige Rolle. Theoretisch muss für jede konsistente Theorie, die über das Standardmodell
    [Show full text]