Engineering & Science

Total Page:16

File Type:pdf, Size:1020Kb

Engineering & Science California Insriture of Technology Engineering & Science Spring 1994 In this issue Plastics that Bend Light A Brie/History o/OVRO India's Forgotten Army Caltech's first radio observatory begins to take shape in the Owens Valley in the late 1950s. One of the 90·foot antennas of the interferometer stands virtually complete in the bakground, while the pedestal of the second waits to grasp in its thumb·and· forefinger-like mount the other dish, whose frame is just getting started in the fore· ground. California Institute~ of Technology Engineering & Science Spring 1994 Volume LVII, Number 3 2 1\ny Color You Like - by Douglas L. Smith Some crystals change color or bend light in response to an electric field. A Caltech-JPL-industry collaboration uses basic chemistry to design plastics that do the same thing, only faster. 8 The Owens Valley Radio Observatory: Early Years - by Marshall H. Cohen The U.S. lagged behind Europe and Australia in radio astronomy until the late 1950s, when Caltech erected two giant dishes at the foot of the Sierra Nevada. 24 Farrer Park - by Peter Ward Fay Backed by the Japanese, an Indian army, now largely forgotten, fought the British during World WarH. Though it was crushed on the battlefield, it hastened the coming of independence. Departments 32 Lab Notes: But Only Dogs Can Hear It; The Gamma Gambit 39 Books: The Strands ofa Life by Robert 1. Sinsheimer 40 Letters On the cover: These brightly colored vials are filled with solu· 42 Random Walk tions of synthetic organic dyes. These molecules' elecfronic Engineering & Science (ISSN 0013-7812) is published quarterly, William M. Whitney structures allow them Fall; Winter, Spring, and Summer, at the California Institute of President of the Alumni Association to absorb certain Technology, 1201 East California Boulevard,Pasadena, California 91125. Annual subscription $8.00 domestic; $20.00 foreign air Thomas W. Anderson wavelengths of light Vice President for Institute Relations very strongly, giving mail; single copies $2.00. Third class postage paid at Pasadena, California. All rights reserved. Reproduction of material contained Robert 1. O'Rourke them their intense herein forbidden without authorization. © 1994 Alumni Associa­ Assistant Vice President for Public Relations colors. Sometimes tion, California Institute Of Technology. Published by the these structures also California Institute of Technology and the Alumni Association. make the molecules Telephone: 818-395-3630. Postmaster: Send change of address to interact with light in Caltech 1-71, Pasadena, CA 91125. considerably more PICTURE CREDITS: Cover, 2 - Bob Paz; inside front STAFF: Editor-Jane Dietrich unusual ways that. cover, 15, 16, 18 - John Bolton; 4 - Doug Smith; 5-7 - Managing Editor - Douglas Smith may be vital to the Seth Marder; 10 - R. W. Porter; 12 - Tom Harvey/Caltech Copy Editors - Michael Farquhar, fiber·optic information superhighway of the Archives; 13 - Caltech Archives; 13, 16 - Dick Read; 17- Danielle Gladding, Julie Hakewill future. Story on U.S. Navy; 26-28,31- Prem Sahgal; 32 - Linda Weavers; Production Artist - Barbara Wirick page 2. 33, 34, 38 - Michelle Owen; 36 - Sky & Telescope, Eric Business Manager - Debbie Bradbury Wemhoff and Al Ratner; 37, 44-NASA; 43 - White Circulation Manager - Susan Lee House; inside back cover - Paul Chodas and Don Yeomans Photographer - Robert Paz At!y~olor You Like On the fiber- optic lanes of the information superhighway, nonlinear-optic materials may by Douglas L. Smith one day provide the off ramps and cloverleaf inter­ changes. If you shine a red light through a pane of But if the molecule is already polarized, glass, it comes out red. But shine that same applying an electric field in the direction of light through a nonlinear-optic material, and it polarization can shove the electrons a considerable might come out blue. Or it might come out red, distance. Applying the same field in the opposite but at a funny angle. A nonlinear-optic material direction pushes the electrons against the tide, modifies light passing through it in a way that and they won't move nearly as far. Now the plot depends on the light itself, among other things. of net polarization versus the applied field is steep On the fiber-optic lanes of the'information super­ in one direction and flat in the other-a nonlin­ highway, nonlinear-optic materials may one day ear, asymmetric response. This effect, called provide the off ramps and cloverleaf interchanges, "hyperpolarization," is relatively weak, becoming routing data-laden pulses of light to their proper noticeable only in the presence of strong fields. destinations. Seth Marder, a member of the tech­ There, however, the effect becomes quite power­ In Marder's lab, nical staff at Caltech's Jet Propulsion Laboratory ful, since it varies with the square of the field's nonlinea.... optical compounds are and a member of the Beckman Institute on strength. Only molecules lacking a center of purified by running campus, and Joseph Perry (PhD '84), leader of symmetry are hyperpolarizable in this manner­ them through silica· the optoelectronic materials group at JPL and a a symmetrical molecule would have an equal gel·filled columns like this one. visiting associate at the BI, lead a group that has desire to polarize in either direction. (This kind created a whole new class of substances with the of hyperpolarization is what's called a second­ highest nonlinear-optic properties yet found. order effect-there are other, higher-order Light is an electromagnetic wave, so it's no hyperpolarizations beyond our scope here.) surprise that it interacts with electrically charged The interplay of polarization and hyperpolar­ things, including the electrons in a molecule. As ization has several useful consequences. You can light passes through a molecule, the molecule's bend light by manipulating the material's refrac­ electrons ride the waves like boats at anchor. As tive index. When a beam of light hits a molecule the electrons surge against their moorings, the at the edge of a chunk of matter and sets its elec- molecule becomes polarized-it acquires a slight . trons bobbing, the oscillating electrons them­ negative charge in the direction the electrons are selves generate an electromagnetic field at the moving, and a slight positive charge in the region same frequency as the original wave. The new they've vacated. In materials such as glass, the field travels to the next molecule, and the light electrons move back and forth with equal facility, propagates through the material. Each molecule and the distance an electron moves in either imposes a tiny time lag as its electrons respond­ direction is proportional to the wave's amplitude, in essence, the light slows down. This time lag, at least to a first approximation. Thus a plot of relative to that for light through air, is the mate­ polarization versus the applied field is a straight rial's refractive index. (This is why a straw stick­ line-a linear, symmetric response. ing out of a glass of water appears bent: light Engineering & Science/Spring 1994 3 fundamental frequ~l:lcYWith other frequencies, Water an effect that comes in v~ryhandy when working with lasers. A laser en:tifs light at one specific frequency that depeqds on what the laser is made of. But this frequehcy generall¥ isn't the one that a researcher needs, so nonlinear-optic crystals are An overhead view widely used to "tune" lasers to the right frequen­ Straw's Straw's of a glass of water. apparent real cy-say, a particular spectroscopic resonance of Light travels by the position position quickest path (solid some molecule. Outside the lab, surgeons need arrows), and since short-wavelength lasers to cut tissue, while light travels more longer wavelengths work better to cauterize slowly in water than in air, the quickest the incision. path is not the short· To date, all commercial nonlinear-optic mate­ est path (shaded rials have been inorganic compounds such as arrow). But we know Air that light travels in potassium dihydrogen phosphate and lithium straight lines, so we niobate. But their nonlinear effects aren't that see the straw in a I Il' ;Z large, whereas some organic molecules are highly different location from where it actually is. Observer polarizable and thus should show strong effeq:s. And while lithium niobate and its kin polariz~----' ~ in part by schlepping heavy ions back and forth, organic molecules polarize by whisking feather­ weight electrons around. Electrons are nimble travels one-third slower in water than in air. enough to keep up with the highest frequen­ Light reaches your eye by the fastest possible cies-a very big advantage, says Marder, when route rather than the shortest possible route, and you consider that the information superhighway's as a consequence takes the path that minimizes structural engineers want electro-optic switches the time spent traveling through the slower capable of operating 10 billion times a second. medium.) Applying a second, nonoscillating "If you tried to do that with an inorganic," says field slows the wave further-the electrons have Perry, "its efficiency drops way off. It becomes to fight harder to get back to their initial position very power-hungry." Organics have other advan­ to begin the next oscillation. As the second field tages-they can be formed into films and sheets, intensifies, the refractive index gets higher, until or molded into any shape you like; and best of all, eventually the light beam emerges from the the molecule's properties can be customized by . material in a radically different direction. Thus, altering its chemical composition. Lured by these laser signals could be shunted from one fiber­ promises, folks have been tinkering with organic optic line to another by applying a switching molecules for the past two decades.
Recommended publications
  • Jet-Induced Star Formation in 3C 285 and Minkowski's Object⋆
    A&A 574, A34 (2015) Astronomy DOI: 10.1051/0004-6361/201424932 & c ESO 2015 Astrophysics Jet-induced star formation in 3C 285 and Minkowski’s Object? Q. Salomé, P. Salomé, and F. Combes LERMA, Observatoire de Paris, CNRS UMR 8112, 61 avenue de l’Observatoire, 75014 Paris, France e-mail: [email protected] Received 5 September 2014 / Accepted 6 November 2014 ABSTRACT How efficiently star formation proceeds in galaxies is still an open question. Recent studies suggest that active galactic nucleus (AGN) can regulate the gas accretion and thus slow down star formation (negative feedback). However, evidence of AGN positive feedback has also been observed in a few radio galaxies (e.g. Centaurus A, Minkowski’s Object, 3C 285, and the higher redshift 4C 41.17). Here we present CO observations of 3C 285 and Minkowski’s Object, which are examples of jet-induced star formation. A spot (named 3C 285/09.6 in the present paper) aligned with the 3C 285 radio jet at a projected distance of ∼70 kpc from the galaxy centre shows star formation that is detected in optical emission. Minkowski’s Object is located along the jet of NGC 541 and also shows star formation. Knowing the distribution of molecular gas along the jets is a way to study the physical processes at play in the AGN interaction with the intergalactic medium. We observed CO lines in 3C 285, NGC 541, 3C 285/09.6, and Minkowski’s Object with the IRAM 30 m telescope. In the central galaxies, the spectra present a double-horn profile, typical of a rotation pattern, from which we are able to estimate the molecular gas density profile of the galaxy.
    [Show full text]
  • The Faint X-Ray Source Population Near 3C 295 V
    Outskirts of Galaxy Clusters: Intense Life in the Suburbs Proceedings IAU Colloquium No. 195, 2004 c 2004 International Astronomical Union A. Diaferio, ed. DOI: 10.1017/S1743921304000109 The faint X-ray source population near 3C 295 V. D’Elia1,F.Fiore,M.Elvis,M.Cappi,S.Mathur,P.Mazzotta, E. Falco and F. Cocchia 1INAF - Osservatorio Astronomico di Roma - Via di Frascati, 33 I-00040 Monteporzio Catone (Rome), Italy email: [email protected] Abstract. We present a statistical analysis of the Chandra observation of the source field around the 3C 295 galaxy cluster (z =0.46). Three different methods of analysis, namely a chip by chip LogN-LogS, a two-dimentional Kolmogorov-Smirnov (KS) test, and the angular correlation function (ACF) show a strong overdensity of sources in the North-East of the field, that may indicate a filament of the large scale structure of the universe towards 3C 295. 1. Introduction N-body and hydrodynamical simulations show that high redshift clusters of galaxies lie at the nexus of several filaments of galaxies (see e.g. Peacock 1999). Such filaments map out the “cosmic web” of voids and filaments of the large scale structure of the universe. Thus, rich clusters represent good indicators of regions of sky where several filaments converge. The filaments themselves could be mapped out by Active Galactic Nuclei (AGNs), assuming that AGNs trace galaxies. Cappi et al. (2001) studied the distribution of the X-ray sources around 3C 295 (z = 0.46). The cluster was observed with the ACIS-S CCD array for a short exposure time (18 ks).
    [Show full text]
  • 1949–1999 the Early Years of Stellar Evolution, Cosmology, and High-Energy Astrophysics
    P1: FHN/fkr P2: FHN/fgm QC: FHN/anil T1: FHN September 9, 1999 19:34 Annual Reviews AR088-11 Annu. Rev. Astron. Astrophys. 1999. 37:445–86 Copyright c 1999 by Annual Reviews. All rights reserved THE FIRST 50 YEARS AT PALOMAR: 1949–1999 The Early Years of Stellar Evolution, Cosmology, and High-Energy Astrophysics Allan Sandage The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 Key Words stellar evolution, observational cosmology, radio astronomy, high energy astrophysics PROLOGUE In 1999 we celebrate the 50th anniversary of the initial bringing into operation of the Palomar 200-inch Hale telescope. When this telescope was dedicated, it opened up a much larger and clearer window on the universe than any telescope that had gone before. Because the Hale telescope has played such an important role in twentieth century astrophysics, we decided to invite one or two of the astronomers most familiar with what has been achieved at Palomar to give a scientific commentary on the work that has been done there in the first fifty years. The first article of this kind which follows is by Allan Sandage, who has been an active member of the staff of what was originally the Mount Wilson and Palomar Observatories, and later the Carnegie Observatories for the whole of these fifty years. The article is devoted to the topics which covered the original goals for the Palomar telescope, namely observational cosmology and the study of galaxies, together with discoveries that were not anticipated, but were first made at Palomar and which played a leading role in the development of high energy astrophysics.
    [Show full text]
  • Observer's Handbook 1967
    THE OBSERVER’S HANDBOOK 1967 Fifty-ninth Year of Publication THE ROYAL ASTRONOMICAL SOCIETY OF CANADA Price One Dollar THE ROYAL ASTRONOMICAL SOCIETY OF CANADA Incorporated 1890 — Royal Charter 1903 The National Office of the Royal Astronomical Society of Canada is located at 252 College Street, Toronto 2B, Ontario. The business office of the Society, reading rooms and astronomical library, are housed here, as well as a large room for the accommodation of telescope making groups. Membership in the Society is open to anyone interested in astronomy. Applicants may affiliate with one of the Society’s seventeen centres across Canada, or may join the National Society direct. Centres of the Society are established in St. John’s, Halifax, Quebec, Montreal, Ottawa, Kingston, Hamilton, Niagara Falls, London, Windsor, Winnipeg, Edmonton, Calgary, Vancouver, Victoria, and Toronto. Addresses of the Centres’ secretaries may be obtained from the National Office. Publications of the Society are free to members, and include the J o u r n a l (6 issues per year) and the O b s e r v e r ’s H a n d b o o k (published annually in November). Annual fees of $7.50 are payable October 1 and include the publi­ cations for the following year. Requests for additional information regarding the Society or its publications may be sent to 252 College Street, Toronto 2B, Ontario. VISITING HOURS AT SOME CANADIAN OBSERVATORIES David Dunlap Observatory, Richmond Hill, Ont. Wednesday afternoons, 2:00-3:00 p.m. Saturday evenings, April through October (by reservation). Dominion Astrophysical Observatory, Victoria, B.C.
    [Show full text]
  • Deep Radio Observations of 3C 324 and 3C 368: Evidence for Jet–Cloud Interactions
    Mon. Not. R. Astron. Soc. 299, 357–370 (1998) Deep radio observations of 3C 324 and 3C 368: evidence for jet–cloud interactions P. N. Best,1 C. L. Carilli,2 S. T. Garrington,3 M. S. Longair4 and H. J. A. Ro¨ttgering1 1Sterrewacht Leiden, Huygens Laboratory, PO Box 9513, 2300 RA Leiden, The Netherlands 2NRAO, PO Box 0, Socorro, NM 87801-0387, USA 3The University of Manchester, NRAL, Jodrell Bank, Lower Withington, Macclesfield, Cheshire, SK11 9DL 4Cavendish Labs, Madingley Road, Cambridge, CB3 0HE Downloaded from https://academic.oup.com/mnras/article/299/2/357/1019191 by guest on 01 October 2021 Accepted 1998 March 23. Received 1998 March 16; in original form 1997 August 27 ABSTRACT High-resolution, deep radio images are presented for two distant radio galaxies, 3C 324 (z ¼ 1:206) and 3C 368 (z ¼ 1:132), which are both prime examples of the radio–optical alignment effect seen in powerful radio galaxies with redshifts z * 0:6. Radio observations were made using the Very Large Array in A-array configuration at 5 and 8 GHz, and using the MERLIN array at 1.4 and 1.65 GHz. Radio spectral index, radio polarization, and rotation measure maps are presented for both sources. Radio core candidates are detected in each source, and by aligning these with the centroid of the infrared emission the radio and the optical / infrared images can be related astrometrically with 0.1 arcsec accuracy. In each source the radio core is located at a minimum of the optical emission, probably associated with a central dust lane.
    [Show full text]
  • The Extension of the Hubble Diagram. II-New Redshifts and Photometry Of
    THE ASTROPHYSICAL JOURNAL, 221:383-394, 1978 April 15 © 1978. The American Astronomical Society. All rights reserved. Printed in U.S.A. 1978ApJ...221..383K THE EXTENSION OF THE HUBBLE DIAGRAM. IL NEW REDSHIFTS AND PHOTOMETRY OF VERY DISTANT GALAXY CLUSTERS: FIRST INDICATION OF A DEVIATION OF THE HUBBLE DIAGRAM FROM A STRAIGHT LINE JEROME KRISTIAN, ALLAN SANDAGE, AND JAMES A. WESTPHAL Hale Observatories, Carnegie Institution of Washington, California Institute of Technology Received 1977 July 22; accepted 1977 October 31 ABSTRACT Redshifts are given for 50 brightest cluster galaxies, extending as far as z = 0.75; BVR photom­ etry is given for 33 clusters. These data are combined with earlier data of a similar kind in order to investigate several effects. The measured B - V and V - R colors as a function of redshift are well represented by Whitford's standard-galaxy K corrections, as far as these are defined (to · z = 0.28 in B - V and z = 0.48 in V - R). This suggests both that the K corrections are valid over these ranges of z and that no major color change of the galaxies has occurred over the last 4-5 x 109 years. At larger redshifts, the colors, which start out being monotonically redder with z, turn over and become bluer with z. The data at large z seem to follow the prediction based upon ultraviolet photometry of NGC 4486 (M87), which is one extreme of a range of galaxies measured by Code and Welch. Other standard corrections to the measurements are discussed, and formal least-squares values of q0 are computed.
    [Show full text]
  • Evolution of Galactic Star Formation in Galaxy Clusters and Post-Starburst Galaxies
    Evolution of galactic star formation in galaxy clusters and post-starburst galaxies Marcel Lotz M¨unchen2020 Evolution of galactic star formation in galaxy clusters and post-starburst galaxies Marcel Lotz Dissertation an der Fakult¨atf¨urPhysik der Ludwig{Maximilians{Universit¨at M¨unchen vorgelegt von Marcel Lotz aus Frankfurt am Main M¨unchen, den 16. November 2020 Erstgutachter: Prof. Dr. Andreas Burkert Zweitgutachter: Prof. Dr. Til Birnstiel Tag der m¨undlichen Pr¨ufung:8. Januar 2021 Contents Zusammenfassung viii 1 Introduction 1 1.1 A brief history of astronomy . .1 1.2 Cosmology . .5 1.2.1 The Cosmological Principle and our expanding Universe . .6 1.2.2 Dark matter, dark energy and the ΛCDM cosmological model . .9 1.2.3 Chronology of the Universe . 13 1.3 Galaxy properties . 16 1.3.1 Morphology . 17 1.3.2 Colour . 20 1.4 Galaxy evolution . 22 1.4.1 Galaxy formation . 22 1.4.2 Star formation and feedback . 24 1.4.3 Mergers . 25 1.4.4 Galaxy clusters and environmental quenching . 26 1.4.5 Post-starburst galaxies . 29 2 State-of-the-art simulations 33 2.1 Brief introduction to numerical simulations . 33 2.1.1 Treatment of the gravitational force . 34 2.1.2 Varying hydrodynamic approaches . 35 2.2 Magneticum Pathfinder simulations . 39 2.2.1 Smoothed particle hydrodynamics . 39 2.2.2 Details of the Magneticum Pathfinder simulations . 40 3 Gone after one orbit: How cluster environments quench galaxies 45 3.1 Data sample . 46 3.1.1 Observational comparison with CLASH . 46 3.2 Velocity-anisotropy Profiles .
    [Show full text]
  • Csillagászati Évkönyv 1979
    CSILLAGÁSZATI ÉVKÖNYV 1979 CSILLAGASZATI ÉVKÖNYV az 1979. évre Szerkesztette a TIT Csillagászati és Űrkutatási Szakosztályainak Országos Választmánya az Eötvös Loránd Fizikai Társulat Csillagászati Csoportjának a MTESZ Központi Asztronautikai Szakosztályának közreműködésével A mmnkr wrertun .......... ............. gIihIuL'U Kllldó? Budapest 1978 Címképünk: A Szaturnusz 1974. március 10-én (A Lunar and Planetary Labo ratory felvétele) A hátsó borítón: Az űrrepülőgép (Space Shuttle) ISSN 0526-233X © Gondolat Kiadó 1978 CSILLAGÁSZATI ADATOK AZ 1979. ÉVRE Az adatokat összeállították az MTA Napfizikai Obszervatórium kutatói I. JANUÁR KÖZÉP-EURÓPAI zónaidőben (KözEI) Budapesten A NAP A HOLD napjai A HOLD fény­ hányadik hányadik változásai HÉT kel delel nyugszik kel nyugszik DÁTUM Év A hete Év napja h m h m h m h m h m h m 1 H 1 1 7 32 11 48 16 03 9 13 19 42 2 K 2 7 32 11 48 16 04 9 52 20 57 3 Sz 3 7 32 11 48 16 05 10 25 22 12 4 Cs 4 7 32 11 49 16 06 10 57 23 23 5 P 5 7 32 11 49 16 07 11 27 — D 12 16 6, Sz 6 7 32 11 50 16 08 11 56 0 33 7 V 7 7 31 11 50 16 09 12 28 1 39 8 H 2 8 7 31 11 51 16 10 13 01 2 44 9 K 9 7 31 11 51 16 12 13 38 3 45 10 Sz 10 7 30 11 52 16 13 14 20 4 43 11 Cs 11 7 30 11 52 16 14 15 06 5 37 12 P 12 7 30 11 52 16 15 15 55 6 24 13 Sz 13 7 29 11 53 16 17 16 49 7 08 O 08 09 14 V 14 7 28 11 53 16 18 17 45 7 45 15 H 3 15 7 28 11 53 16 19 18 43 8 19 16 K 16 7 27 11 54 16 21 19 43 8 50 17 Sz 17 7 27 11 54 16 22 20 42 9 17 18 Cs 18 7 26 11 54 16 23 21 43 9 43 19 P 19 7 25 11 55 16 25 22 45 10 09 20 Sz 20 7 24 11 55 16 26 23 48 10
    [Show full text]
  • Dark Matter in Galaxy Clusters: Shape, Projection, and Environment
    Dark Matter in Galaxy Clusters: Shape, Projection, and Environment A Thesis Submitted to the Faculty of Drexel University by Austen M. Groener in partial fulfillment of the requirements for the degree of Doctor of Philosophy September 2015 c Copyright 2015 Austen M. Groener. ii Dedications I dedicate this thesis to my family, and to my wife, who supported me unconditionally throughout my career as a scientist. iii Acknowledgments I have many people to thank for making this work a possibility. Firstly, I would like to thank my advisor, Dr. David Goldberg. His guidance, support, and most of all his patience provided the framework for which I was able to build my work from. I would also like to thank my dissertation committee members, Dr. Michael Vogeley, Dr. Gordon Richards, Dr. Luis Cruz, and Dr. Andrew Hicks, for their constructive criticism and support of my research. I would also like to acknowledge fellow graduate students for their assistance and support. A special thanks to Justin Bird, Markus Rexroth, Frank Jones, Crystal Moorman, and Vishal Kasliwal for allowing me to bounce ideas off of them, which was a truly important but time consuming process. iv Table of Contents List of Tables ........................................... vi List of Figures .......................................... vii Abstract .............................................. ix 1. Introduction .......................................... 1 1.1 The Radial Density Profile.................................. 2 1.2 Cluster Scaling Relations .................................. 5 1.3 Clusters and Environment.................................. 7 1.4 Outline ............................................ 11 2. Cluster Shape and Orientation .............................. 12 2.1 Introduction.......................................... 12 2.2 Triaxial Projections...................................... 14 2.3 Sample and Methods..................................... 15 2.3.1 Simulation Sample .................................... 15 2.3.2 Methods.........................................
    [Show full text]
  • Sub-Arcsecond Imaging of Arp 299-A at 150 Mhz with LOFAR: Evidence for a Starburst-Driven Outflow N
    Astronomy & Astrophysics manuscript no. Outflow_Arp299-A_with_LOFAR c ESO 2018 October 9, 2018 Letter to the Editor Sub-arcsecond imaging of Arp 299-A at 150 MHz with LOFAR: Evidence for a starburst-driven outflow N. Ramírez-Olivencia1 E. Varenius2, M. Pérez-Torres1; 3, A. Alberdi1, E. Pérez1, A. Alonso-Herrero4, A. Deller5, R. Herrero-Illana6, J. Moldón2, L. Barcos-Muñoz7; 8, I. Martí-Vidal9 1 Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, 18008 Granada, Spain 2 Jodrell Bank Centr for Astrophysics, Alan Turing Building, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom 3 Visiting Scientist: Facultad de Ciencias, Univ. de Zaragoza, Spain 4 Centro de Astrobiología (CSIC-INTA), ESAC Campus, 28692 Villanueva de Cañada, Madrid, Spain 5 Centre for Astrophysics & Supercomputing Swinburne University of Technology, John St, Hawthorn VIC 3122 Australia 6 European Southern Observatory, Alonso de Córdova 3107, Vitacura, Santiago de Chile 7 Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura, Santiago, Chile 8 National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA 9 Department of Space, Earth and Environment, Chalmers University of Technology, Onsala Space Observatory, 439 92 Onsala, Sweden Received MM/DD, YY; accepted MM/DD, YY ABSTRACT We report on the first sub-arcsecond (0.44 × 0.41 arcsec2) angular resolution image at 150 MHz of the A-nucleus in the luminous infrared galaxy Arp 299, from International Low Frequency Array (LOFAR) Telescope observations. The most remarkable finding is that of an intriguing two-sided, filamentary structure emanating from the A-nucleus, which we interpret as an outflow that extends up to at least 14 arcseconds from the A-nucleus in the N-S direction (≈ 5 kpc deprojected size) and accounts for almost 40% of the extended emission of the entire galaxy system.
    [Show full text]
  • Astrophysical Applications of Scattering in Interstellar and Intracluster Gases
    Astrophysical Applications of Scattering in Interstellar and Intracluster Gases Conrad K. Cramphorn Munchen¨ 2004 Astrophysical Applications of Scattering in Interstellar and Intracluster Gases Conrad K. Cramphorn Dissertation an der Fakult¨at fur¨ Physik der Ludwig–Maximilians–Universit¨at Munchen¨ vorgelegt von Conrad K. Cramphorn aus Dundee in Schottland Munchen,¨ den 12. Mai 2004 Erstgutachter: Prof. Dr. Rashid A. Sunyaev Zweitgutachter: Prof. Dr. Ralf Bender Tag der mundlichen¨ Prufung:¨ 24. November 2004 Fur¨ meine Eltern Inhaltsverzeichnis Zusammenfassung (Summary in German) 3 Summary 5 1 Introduction 9 1.1 Diffuse Gas in the Universe ...................... 9 1.2 Supermassive Black Holes in the Centres of Galaxies ........ 11 1.2.1 Sgr A¤ .............................. 13 1.2.2 M31 ............................... 14 1.2.3 M87 ............................... 15 1.3 Relativistic Jets ............................. 16 1.4 Clusters of Galaxies ........................... 17 1.5 The Sunyaev-Zel’dovich Effect ..................... 18 2 The X-ray luminosity of the Galactic centre in the recent past 21 2.1 Introduction ............................... 22 2.2 Method ................................. 25 2.2.1 X-ray Archaeology ....................... 25 2.2.2 GMCs in the Galactic disk ................... 28 2.2.3 Scattered flux .......................... 31 2.3 Limits on the X-ray luminosity of Sgr A¤ from Giant Molecular Clouds 35 2.3.1 Response of a single cloud ................... 36 2.3.2 Response of one field of view .................. 40 2.3.3 Response of all fields of view containing at least one GMC . 43 2.4 Limits on the X-ray luminosity of Sgr A¤ from the interstellar HI distribution ............................... 47 2.5 The Milky Way at extragalactic distances .............. 52 2.5.1 Scattered X-ray surface brightness ..............
    [Show full text]
  • Sub-Arcsecond Imaging of Arp 299-A at 150 Mhz with LOFAR: Evidence for a Starburst-Driven Outflow N
    A&A 610, L18 (2018) https://doi.org/10.1051/0004-6361/201732543 Astronomy & © ESO 2018 Astrophysics LETTER TO THE EDITOR Sub-arcsecond imaging of Arp 299-A at 150 MHz with LOFAR: Evidence for a starburst-driven outflow N. Ramírez-Olivencia1, E. Varenius2, M. Pérez-Torres1,3, A. Alberdi1, E. Pérez1, A. Alonso-Herrero4, A. Deller5, R. Herrero-Illana6, J. Moldón2, L. Barcos-Muñoz7,8, and I. Martí-Vidal9 1 Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, 18008 Granada, Spain e-mail: [email protected] 2 Jodrell Bank Centr for Astrophysics, Alan Turing Building, University of Manchester, Oxford Road, Manchester M13 9PL, UK 3 Visiting Scientist: Facultad de Ciencias, Univ. de Zaragoza, Zaragoza, Spain 4 Centro de Astrobiología (CSIC-INTA), ESAC Campus, 28692 Villanueva de Cañada, Madrid, Spain 5 Centre for Astrophysics & Supercomputing Swinburne University of Technology, John St, Hawthorn VIC 3122, Australia 6 European Southern Observatory, Alonso de Córdova 3107, Vitacura, Santiago, Chile 7 Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura, Santiago, Chile 8 National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA 9 Department of Space, Earth and Environment, Chalmers University of Technology, Onsala Space Observatory, 439 92 Onsala, Sweden Received 23 December 2017 / Accepted 2 February 2018 ABSTRACT We report on the first sub-arcsecond (0.44 × 0.41 arcsec2) angular resolution image at 150 MHz of the A-nucleus in the luminous infrared galaxy Arp 299, from International Low Frequency Array (LOFAR) Telescope observations. The most remarkable finding is that of an intriguing two-sided, filamentary structure emanating from the A-nucleus, which we interpret as an outflow that extends up to at least 14 arcsec from the A-nucleus in the N–S direction (≈5 kpc deprojected size) and accounts for almost 40% of the extended emission of the entire galaxy system.
    [Show full text]