' $

Stochastic Methods in Electrostatics: Applications to Biological and Physical Science

Michael Mascagni a

Department of Computer Science and School of Computational Science Florida State University, Tallahassee, FL 32306 USA E-mail: [email protected] URL: http://www.cs.fsu.edu/∼mascagni

Research supported by ARO, DoD, DOE, NATO, and NSF

aWith help from Drs. James Given, Chi-Ok Hwang, and Nikolai Simonov

& % ' $ Outline of the Talk

First-Passage Algorithms • Walk on Spheres (WOS) • Greens First Passage (GFFP) • Simulation-Tabulation (S-T) • Walk on Subdomains (biochemistry) • Walk on the Boundary Applications • Materials Science • Biochemistry Last-Passage Algorithms Conclusions and Future Work & % Prof. Michael Mascagni: Stochastic Electrostatics Slide 1 of 56 ' $ Stochastic Methods for Partial Differential Equations (PDEs)

Examples for Solving Elliptic PDEs (Path Integrals) • Exterior Laplace problems and electrostatics • Electrical capacitance • Charge density Advantages of Stochastic Algorithms (Curse of Dimensionality) • Can avoid complex discrete objects • Can deal with complicated geometries/interfaces • Can often cope with singular solutions

& % Prof. Michael Mascagni: Stochastic Electrostatics Slide 2 of 56 ' $

Brownian Motion and the Diffusion/Laplace Equations

Cauchy problem for the diffusion equation:

1 u = ∆u (1) t 2 u(x, 0) = f(x) (2) in 1-D: Z ∞ u(x, t) = ω(x − y, t)f(y)dy (3) −∞ where 2 1 − (x−y) ω(x − y, t) = √ e 2t (4) 2πt

& % Prof. Michael Mascagni: Stochastic Electrostatics Slide 3 of 56 ' $

Brownian Motion and the Diffusion/Laplace Equations

x u(x, t) = Ex[f(X (t))] (5) • Xx(t): a Brownian motion which has ω(x − y, t) as the transition probability of going from x to y in time t

• Ex[.]: an expectation w.r.t. Brownian motion

Z ∞ x Ex[f(X (t))] = ω(x − y, t)f(y)dy (6) −∞

& % Prof. Michael Mascagni: Stochastic Electrostatics Slide 4 of 56 ' $ The First Passage (FP) Probability is the Green’s Function

A related elliptic (Dirichlet problem):

∆u(x) = 0, x ∈ Ω u(x) = f(x), x ∈ ∂Ω (7)

• Distribution of z is uniform on the sphere • Mean of the values of u(z) over the sphere is u(x) • u(x) has mean-value property and harmonic • Also, u(x) satisfies the boundary condition

x u(x) = Ex[f(X (t∂Ω))] (8) & % Prof. Michael Mascagni: Stochastic Electrostatics Slide 5 of 56 ' $ The First Passage (FP) Probability is the Green’s Function

@ ª

Ü

Ü

X ´Øµ

X ´Ø µ ª z @ first−passage location x; starting point

& % Prof. Michael Mascagni: Stochastic Electrostatics Slide 6 of 56 ' $ The First Passage (FP) Probability is the Green’s Function (Cont.)

Reinterpreting as an average of the boundary values Z u(x) = p(x, y)f(y)dy (9) ∂Ω

Another representation in terms of an integral over the boundary Z ∂g(x, y) u(x) = f(y)dy (10) ∂Ω ∂n

g(x, y) – Green’s function of the Dirichlet problem in Ω

∂g(x, y) =⇒ p(x, y) = (11) ∂n & % Prof. Michael Mascagni: Stochastic Electrostatics Slide 7 of 56 ' $ ‘Walk on Spheres’ (WOS) and Green’s Function First Passage (GFFP) Algorithms

• Green’s function is known =⇒ direct simulation of exit points and computation of the solution through averaging boundary values • Green’s function is unknown =⇒ simulation of exit points from standard subdomains of Ω, e.g. spheres =⇒ Markov chain of ‘Walk on Spheres’ (or GFFP algorithm)

{x0 = x, x1,...}

xi → ∂Ω and hits ε-shell is N = O(ln(ε)) steps

xN simulates exit point from Ω with O(ε) accuracy & % Prof. Michael Mascagni: Stochastic Electrostatics Slide 8 of 56 ' $ ‘Walk on Spheres’ (WOS) and Green’s Function First Passage (GFFP) Algorithms

WOS:

O Shell thickness ε

& % Prof. Michael Mascagni: Stochastic Electrostatics Slide 9 of 56 ' $ Timing of the ’Walk on Spheres’ Algorithm

3500

3000

2500

2000

running time (secs) 1500

1000 logarithmic regression

500 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100 ε

& % Prof. Michael Mascagni: Stochastic Electrostatics Slide 10 of 56 ' $ Various Laplacian Green’s Functions: GFFP

O

O O

(a) Putting back (b) Void space (c)Intersecting

& % Prof. Michael Mascagni: Stochastic Electrostatics Slide 11 of 56 ' $ Geometry for Permeability Computations

& % Prof. Michael Mascagni: Stochastic Electrostatics Slide 12 of 56 ' $ The Simulation-Tabulation (S-T) Method for Generalization

• Green’s function for the non-intersected surface of a sphere located on the surface of a reflecting sphere Absorbing Sphere Ω 2

r 2 Ω 1 O2 r 1 Reflecting Sphere

O1

& % Prof. Michael Mascagni: Stochastic Electrostatics Slide 13 of 56 ' $ Example: Solc-Stockmayer Model without Potential

Reactive patch

θ

R

R0

& % Prof. Michael Mascagni: Stochastic Electrostatics Slide 14 of 56 ' $ Another S-T Application: Mean Trapping Rate

In a domain of nonoverlapping spherical traps :

δ

O

& % Prof. Michael Mascagni: Stochastic Electrostatics Slide 15 of 56 ' $ Biological Electrostatics: Motivation

Electrostatics are Extremely Important in Quantitative Biochemistry: • Ligand binding • Protein-protein interactions • Protein-nucleic acid interactions • Prediction from primary structure information In Vivo Electrostatics Must Include the Solvent • Explicit solvent model: individual water/ions computed, often with Molecular Dynamics • Implicit solvent models: continuum model of water and dissolved ions used, Poisson-Boltzmann equation & % Prof. Michael Mascagni: Stochastic Electrostatics Slide 16 of 56 ' $

Molecular Electrostatics Problem Implicit solvent model

• Poisson equation for the electrostatic potential, φ:

−∇²(x)∇φ(x) = 4πρ(x) , x ∈ R3

dielectric permittivity, ², and charge density, ρ, are position-dependent

3 • molecule Ω – a compact cavity in R with low ² = ²i

• surrounded by solvent with larger ² = ²e

• point charges, qm, at xm inside molecule • Boltzmann distribution of mobile ions in solvent

& % Prof. Michael Mascagni: Stochastic Electrostatics Slide 17 of 56 ' $

Molecular Electrostatics Problem (Cont.)

Explicit geometric models for solute molecule

• van der Waals surface: SM (m) (m) union of intersecting spheres (atoms): Ω = m=1 B(x , r ) (m) point charges – at their centers, xm = x • contact and reentrant surface, Γ: ∂Ω smoothed by the probe molecule of the solute rolling on it • ion-accessible surface ∂Ω0: 0 SM (m) (m) Ω = m=1 B(x , r + rion); ion-exclusion layer between ∂Ω0 and Γ

& % Prof. Michael Mascagni: Stochastic Electrostatics Slide 18 of 56 ' $ Molecular Electrostatics Problem (Cont.)

Mathematical model (one-surface geometry)

• Poisson equation for the electrostatic potential, φ, inside a molecule XM −²i∆φi(x) = 4πqmδ(x − xm) , x ∈ Ω m=1 • linearized Poisson-Boltzmann equation outside, x ∈ R3 \ Ω:

2 ∆φe(x) − κ φe(x) = 0 ,

• Continuity condition on the boundary ∂φ ∂φ φ = φ , ² i = ² e , y ∈ Γ ≡ ∂Ω i e i ∂n(y) e ∂n(y) & % Prof. Michael Mascagni: Stochastic Electrostatics Slide 19 of 56 ' $ Electrostatic Potential, Field and Energy (Linear Problem)

• Point values of the potential: φ(x) = φ(0)(x) + g(x) Here, singular part of φ:

XM q 1 g(x) = m ² |x − x | m=1 i m • Free electrostatic energy of a molecule = linear combination of point values of the regular part of the electrostatic potential φ(0): 1 XM E = φ(0)(x )q , 2 m m m=1 • Point values of the electrostatic field: ∇φ(x) & % Prof. Michael Mascagni: Stochastic Electrostatics Slide 20 of 56 ' $ Monte Carlo Estimates for Point Potential Values

Two different approaches to constructing Monte Carlo algorithms 1. Probabilistic representation for the solution 2. Classical

First approach Laplace equation for the regular part of the potential inside Ω

∆φ(0) = 0

Probabilistic representation

(0) (0) ∗ φ (x) = Ex[φ (x )]

x∗ – exit point from Ω of Brownian motion starting at x & % Prof. Michael Mascagni: Stochastic Electrostatics Slide 21 of 56 ' $ ‘Walk on Spheres’ Algorithm

x – center of a sphere ⇒ exit points are distributed isotropically. Ball B(x, R) lies entirely in Ω. Strong Markov property of Brownian motion ⇒ probabilistic representation holds valid for exit points. Hence follows ‘random walk on spheres’ algorithm for general domains with regular boundary:

xk = xk−1 + d(xk−1) × ωk , k = 1, 2,....

Here d(xk−1) – distance from xk−1 to the boundary {ωk} – sequence of independent unit isotropic vectors xk is exit point from the ball, B(xk−1, d(xk−1)), for Brownian motion starting at xk−1 & % Prof. Michael Mascagni: Stochastic Electrostatics Slide 22 of 56 ' $ Green’s Function First Passage Simulation

Other domains with known Green’s function (G) ⇐⇒ one-step simulation of exit points distributed on the boundary in accordance with ∂G/∂n For general domains: Efficient way to simulate x∗ – combination of ‘walk in subdomains’ approach and ‘walk on spheres’ algorithm The whole domain, Ω, is represented as a union of intersecting subdomains: [M Ω = Ωm m=1

Simulate exit point separately in every Ωm & % Prof. Michael Mascagni: Stochastic Electrostatics Slide 23 of 56 ' $ Green’s Function First Passage Simulation (cont.)

x0 = x, x1, . . . , xN – Markov chain, every xi+1 is exit point from the corresponding subdomain for Brownian motion starting at xi

i i For spherical subdomains, B(xm,Rm), exit points are distributed in accordance with the Poisson’s kernel i i i i 2 i |x − xm| |x − xm| − Rm i i 3 4πRm |x − y|

x∗ = xN is exit point of Brownian motion from Ω Schwartz lemma ⇒ Markov chain {xi} converges to x∗ geometrically & % Prof. Michael Mascagni: Stochastic Electrostatics Slide 24 of 56 ' $ ‘Walk on Spheres’ and ‘Walk in Subdomains’ Algorithms

Figure 1: Walk in subdomains example.

& % Prof. Michael Mascagni: Stochastic Electrostatics Slide 25 of 56 ' $

Monte Carlo Estimate for Point Potential Value

On every step φ(0)(xi) = E[φ(0)(xi+1)|xi] Hence φ(0)(x) = Eφ(0)(x∗) ≡ E[φ(x∗) − g(x∗)]

Values of the electrostatic potential on the boundary, φ(x∗), are not known. We can use their Monte Carlo estimates instead

& % Prof. Michael Mascagni: Stochastic Electrostatics Slide 26 of 56 ' $

Monte Carlo Estimate for Boundary Potential Values

• First approach Discretization and randomization of the boundary condition (y ∈ Γ, n = n(y) – normal vector);

2 φ(y) = piφ(y − hn) + peφ(y + hn) + O(h )

=⇒ ∗ 0 ∗ 2 φ(x1) = E(φ(x2|x1) + O(h ) 0 ∗ x2 = x1 − hn with probability pi (reenter molecule) 0 ∗ x2 = x1 + hn with probability pe = 1 − pi (exit to solvent) ²i pi = ²i + ²e

& % Prof. Michael Mascagni: Stochastic Electrostatics Slide 27 of 56 ' $ Monte Carlo Estimate for Boundary Potential Values (cont.)

• Second approach Exact treatment of boundary conditions (mean-value theorem for boundary point, y, in the ball B(y, a) with surface S(y, a)): Z ²e 1 κa φ(y) = 2 φe ²e + ²i S (y,a) 2πa sinh(κa) Z e ²i 1 κa + 2 φi (12) ²e + ²i S (y,a) 2πa sinh(κa) Zi (²e − ²i) cos ϕyx − T 2 Qκ,aφ ²e + ²i Γ B(y,a)\{y} 2π|y − x| Z ²i 2 + [−2κ Φκ]φi ²e + ²i Bi(y,a) & % Prof. Michael Mascagni: Stochastic Electrostatics Slide 28 of 56 ' $

Monte Carlo Estimate for Boundary Potential Values (cont.)

Here

ϕyx – angle between the normal n(y) and y − x 1 sinh(κ(a − |x − y|)) Φ (x − y) = − κ 4π |x − y| sinh(κa) – Green’s function for the Poisson-Boltzmann equation in B(y, a) sinh(κ(a − |x − y|)) + κ|x − y| cosh(κ(a − |x − y|)) Q (|x − y|) = κ,a sinh(κa)

& % Prof. Michael Mascagni: Stochastic Electrostatics Slide 29 of 56 ' $

Monte Carlo Estimate for Boundary Potential Values (cont.)

Next

∗ 0 Randomization of approximation to (12), y = x1, x = x2: φ(y) = Eφ(x) + O(a/2R)3 Here

• with probability pe exit to solvent: x is chosen isotropically on the surface of auxiliary sphere,

S+(y, a), that lies above tangent plane; random walk survives κa with probability sinh(κa)

& % Prof. Michael Mascagni: Stochastic Electrostatics Slide 30 of 56 ' $

Monte Carlo Estimate for Boundary Potential Values (cont.)

• with probability pi x is chosen isotropically in the solid angle below tangent plane; 2 with probability −2κ Φκ it is sampled in Bi(y, a)(reenter molecule); with the complementary probability x is sampled on the surface

of auxiliary sphere, S−(y, a), that lies below tangent plane; x reenters molecule with conditional probability 1 − a/2R and x exits to solvent with conditional probability a/2R Higher order of approximation!

& % Prof. Michael Mascagni: Stochastic Electrostatics Slide 31 of 56 ' $

Monte Carlo Algorithm (cont.)

0 • x2 inside ∗ Return to the boundary at x2, the exit point of Brownian 0 motion (Markov chain) starting at x2, set

0 ∗ ∗ 0 0 φ(x2) = E(φ(x2) − g(x2) + g(x2)|x2) (13) Repeat the randomized treatment of the boundary condition at ∗ the point x2

& % Prof. Michael Mascagni: Stochastic Electrostatics Slide 32 of 56 ' $

Monte Carlo Algorithm (cont.)

0 • x2 outside ‘Walk on spheres’ algorithm i+1 i i x2 = x2 + ω × di, di = distance from x2 to ∂Ω κd Terminates with probability 1 − i on every step, or sinh(κdi)

when dN2 < ε. ∗ N2 x2 – the nearest to x2 on the boundary

0 ∗ 0 φ(x2) = E(φ(x2)|x2) + O(ε) (14) Repeat the randomized treatment of the boundary condition at ∗ the point x2

& % Prof. Michael Mascagni: Stochastic Electrostatics Slide 33 of 56 ' $ Molecular Electrostatics Problem (cont.)

In the exterior probability of terminating Markov chain depends

linearly on the initial distance to the boundary, d0 ⇒ −1 Mean number of returns to the boundary is O(d0) • Finite-difference approximation of boundary conditions, ε = h2 Mean number of steps in the algorithm is O(h−1 log(h) f(κ)), f is a decreasing function (f(κ) = O(log(κ)) for small κ). Estimates for point values of the potential and free energy are O(h)-biased • New treatment of boundary conditions provides O(a)2-biased and more efficient Monte Carlo algorithm. Mean number of steps is O((a)−1 log(a) f(κ)), a = a/2R. The same simulations give point values of the gradient and free electrostatic energy & % Prof. Michael Mascagni: Stochastic Electrostatics Slide 34 of 56 ' $ Molecular Electrostatics Problem (cont.) Mathematical model (with ion-exclusion layer)

• Poisson equation inside a molecule • Laplace equation in the ion-exclusion layer:

−∆φlay(x) = 0

• linearized Poisson-Boltzmann equation outside, x ∈ R3 \ Ω0: • Continuity condition on the intermediate boundary, ∂Ω: ∂φ ∂φ φ = φ , ² i = ² lay i lay i ∂n(y) e ∂n(y) • Continuity condition on the external boundary, ∂Ω0: ∂φ ∂φ φ = φ , lay = e lay e ∂n(y) ∂n(y) & % Prof. Michael Mascagni: Stochastic Electrostatics Slide 35 of 56 ' $

Molecular Electrostatics Problem (Cont.)

Mathematical model (nonlinear)

• nonlinear Poisson-Boltzmann equation outside (1-to-1 electrolyte): 2 ∆φe(x) − κ sinh φe(x) = 0 Second order approximation to the non-linear term: κ2 ∆φ (x) − κ2φ (x) = φ3(x) e e 6 e

& % Prof. Michael Mascagni: Stochastic Electrostatics Slide 36 of 56 ' $

Exit Point Probabilities

Figure 2: Exit points on the van der Waals surface for the first 12- atom cluster from the Barnase molecule.

& % Prof. Michael Mascagni: Stochastic Electrostatics Slide 37 of 56 ' $ Exit Point Probabilities (Cont.)

Figure 3: Exit points on the van der Waals surface for the entire Barnase molecule. & % Prof. Michael Mascagni: Stochastic Electrostatics Slide 38 of 56 ' $ Capacitance of a Conductor G

Z 1 ∂u C = − ds , 4π Γ ∂n u – solution of the external Dirichlet problem for the Laplace equation

3 ∆u(x) = 0 , x ∈ G1 = R \ G, u(y) = 1 , y ∈ Γ , lim u(x) = 0 . |x|→∞ By Green’s formula C = 4πRu(R) = E (4πu(Rω)) = E (4πξ(Rω)) , ξ – Monte Carlo estimate for u, ω – unit isotropic vector, S(0,R)– sphere containing G. & % Prof. Michael Mascagni: Stochastic Electrostatics Slide 39 of 56 ' $ Monte Carlo Estimates Based on Integral Equations

Consider u(x) to be an integral functional of an integral equation solution: Z

u(x) = hx(y)µ(y)dσ(y) Z Y µ(y) = k(y, y0)µ(y0)dσ(y0) + f(y) ≡ Kµ(y) + f(y) Y Example: In the energy calculation, assume there are no charges outside the ‘molecule’ G. The non-singular part of the solution can be represented as a single-layer potential Z 1 1 u(0)(x) = µ(y)dσ(y) Γ 2π |x − y| & % Prof. Michael Mascagni: Stochastic Electrostatics Slide 40 of 56 ' $ Integral Equations (Cont.)

Potential’s density satisfies the integral equation Z 1 cos ϕyy0 0 0 µ(y) = −λ0 0 2 µ(y )dσ(y ) + f(y) Γ 2π |y − y |

²e − ²i Here λ0 = . The Neumann series ²e + ²i X∞ i (−λ0K) f i=0 for this equation converges, but slowly. Substitution of spectral parameter to speed up the convergence: Xn (n) i n+1 µ = li (−λ0K) f + O(q ) i=0 & % Prof. Michael Mascagni: Stochastic Electrostatics Slide 41 of 56 ' $

Integral Equations (Cont.)

Monte Carlo Estimate Markov chain of random walk on the boundary:

p0(y) – initial distribution density

1 cos ϕyi+1yi p(yi → yi+1) = 2 2π |yi+1 − yi| – transition density (uniform in the solid angle) The estimate (biased, for a convex Γ) " # Xn f(y ) u(x) = E l(n)(−λ )i 0 h (y ) i 0 p (y ) x i i=0 0 0

& % Prof. Michael Mascagni: Stochastic Electrostatics Slide 42 of 56 ' $

Capacitance: Random Walk on the Boundary

Capacitance Z C = µ(y) dσ(y) Γ Charge distribution 1 ∂u µ(y) = − (y) 4π ∂n is the eigenfunction of the integral operator K: Z cos ϕyy0 0 0 µ(y) = 0 2 µ(y )dσ(y ) Γ 2π|y − y |

& % Prof. Michael Mascagni: Stochastic Electrostatics Slide 43 of 56 ' $ Capacitance: Random Walk on the Boundary (Cont.)

For a convex G, stationary distribution of isotropic random walk on boundary: 1 π = µ ∞ C By the ergodic theorem à !−1 1 XN C = lim v(yn) N→∞ N n=1 1 for v(y) = (arbitrary x ∈ G), since inside G the potential |x − y| Z 1 0 0 0 µ(y )dσ(y ) = 1 . Γ |x − y | & % Prof. Michael Mascagni: Stochastic Electrostatics Slide 44 of 56 ' $

First-Passage Charge Density Calculation

Launch Sphere

b

Circular Disk

a

& % Prof. Michael Mascagni: Stochastic Electrostatics Slide 45 of 56 ' $

First-Passage Methods

Ü

½

Ù×iÒg ! ´ ; µ

Ü

¼

 a

b

Launching sphere

& % Prof. Michael Mascagni: Stochastic Electrostatics Slide 46 of 56 ' $

First-Passage Results: Cumulative Charge Distribution

0.5

0.4

0.3

total charge 0.2

0.1

0 0 0.2 0.4 0.6 0.8 1 r

& % Prof. Michael Mascagni: Stochastic Electrostatics Slide 47 of 56 ' $

Charge Density on a Circular Disk via Last-Passage

& % Prof. Michael Mascagni: Stochastic Electrostatics Slide 48 of 56 ' $ Approach from the Outside

• P (x): prob. of diffusing from ² above lower FP surface to ∞ Z P (x) = g(x, y, ²)p(y, ∞)dS (15) ∂Ω y ¯ ¯ ¯ ¯ 1 d ¯ 1 d ¯ σ(x) = − ¯ φ(x) = ¯ P (x) (16) 4π d²¯ 4π d²¯ Z ²=0 ²=0 1 σ(x) = G(x, y)p(y, ∞)dS (17) 4π ∂Ωy where ¯ ¯ d ¯ G(x, y) = ¯ g(x, y, ²) (18) d²¯ ²=0 • G(x, y) satisfies a point dipole problem

& % Prof. Michael Mascagni: Stochastic Electrostatics Slide 49 of 56 ' $

Unit Cube Edge Distribution

@ ª

e

Æ

e

Ü

Ä

a «

& % Prof. Michael Mascagni: Stochastic Electrostatics Slide 50 of 56 ' $

Unit Cube Edge Distribution (Cont.)

π/α−1 σ(x, δe) = δe σe(x) (19)

• σ(x, δe): charge on a curve parallel to the edge separated by δe

• σe(x): edge distribution • α: angle between the two intersecting surfaces, here α = 3π/2

Z 1 1−π/α σe(x) = lim δe G(x, y)p(y, ∞)dS (20) δe→0 4π ∂Ωe

• ∂Ωe: cylindrical surface that intersects the pair of absorbing surfaces meeting at angle α

& % Prof. Michael Mascagni: Stochastic Electrostatics Slide 51 of 56 ' $ Unit Cube Edge Distribution (Cont.)

2

1.8 using last−passage simulation using σ at (0.495,y)

1.6 (0) e σ (x)/ e

σ 1.4

1.2

1 0 0.1 0.2 0.3 0.4 0.5 y

Figure 4: First- and last-passage edge computations

& % Prof. Michael Mascagni: Stochastic Electrostatics Slide 52 of 56 ' $ Unit Cube Edge Distribution (Cont.)

−1.8

−1.9

−2.0

−2.1 ) e

σ −2.2 ln(

−2.3

−2.4 edge distribution data −2.5 linear regerssion

−2.6 −5 −4 −3 −2 δ ln( c)

Figure 5: The slope, that is, the exponent of the edge distribution −1/5 near the corner is approximately −0.20, that is, σe ∼ δc

& % Prof. Michael Mascagni: Stochastic Electrostatics Slide 53 of 56 ' $

Conclusions and Future Work

Conclusions • Stochastic algorithms are very effective in a wide range of partial differential equation and integral equation settings

• Efficiency comes from choosing among the appropriate variant: WOS, GFFP, S-T, ’Walk on the Boundary,’ or ’Walk on Subdomains’

• Many applications can be addresses, here the examples are related through electrostatics

& % Prof. Michael Mascagni: Stochastic Electrostatics Slide 54 of 56 ' $

Conclusions and Future Work (Cont.)

Future Work • Molecular Electrostatics – More complicated functionals of the solution – Derivatives (forces) – Nonlinear problem via branching processes and expansions

• Multiscale Monte Carlo

& % Prof. Michael Mascagni: Stochastic Electrostatics Slide 55 of 56 ' $

Local Bibliography

• M. Mascagni and N. A. Simonov (2004), “Monte Carlo Methods for Calculating Some Physical Properties of Large Molecules,” SIAM Journal on Scientific Computing, 26(1): 339–357.

• N. A. Simonov and M. Mascagni (2004), “Random Walk Algorithms for Estimating Effective Properties of Digitized Porous Media,” Monte Carlo Methods and Applications, 10: 599–608.

• M. Mascagni and N. A. Simonov (2004), “The Random Walk on the Boundary Method for Calculating Capacitance,” Journal of Computational Physics, 195(2): 465–473.

• C.-O. Hwang and M. Mascagni (2003), “Analysis and Comparison of Green’s Function First-Passage Algorithms with ”Walk on Spheres” Algorithms,” Mathematics and Computers in Simulation, 63: 605–613.

• J. A. Given, C.-O. Hwang and M. Mascagni (2002), “First- and last-passage Monte Carlo algorithms for the charge density distribution on a conducting surface,” Physical Review E, 66, 056704, 8 pages.

• (2001), “The Simulation-Tabulation Method for Classical Diffusion Monte Carlo,” Journal of Computational Physics, 174: 925–946.

• C.-O. Hwang, J. A. Given, and M. Mascagni (2000), “On the Rapid Calculation of Permeability for Porous Media Using Brownian Motion Paths,” Physics of Fluids, 12: 1699–1709.

& % Prof. Michael Mascagni: Stochastic Electrostatics Slide 56 of 56