Lunch with George Advisor, Marshall Stone

Total Page:16

File Type:pdf, Size:1020Kb

Lunch with George Advisor, Marshall Stone occasionally one-on-one. I have always been im- them on: my latest student, Hadi Salmasian, has pressed by the independence of his views—he used these same ideas to take the line of work came to his own conclusions and advanced them further and show that what had seemed perhaps with conviction born of long thought—and by his ad hoc constructions for classical groups could scholarship—he carefully studied relevant papers be seen as a natural part of the representation in mathematics or physics and took them in- theory of any semisimple or reductive group. to account, sometimes accepting, sometimes not, George’s body may have given up the ghost, but according to what seemed right. I particularly his spirit and his mathematics will be with us for remember a short but highly referenced oral dis- a long time to come. sertation on the Higgs Boson, delivered for my sole benefit. I forget when George took to referring to me as Arthur Jaffe his grandstudent, but a particularly memorable oc- casion when he did so was in introducing me to his Lunch with George advisor, Marshall Stone. The Stone-von Neumann Theorem, which originated as a mathematical Background characterization of the Heisenberg canonical com- mutation relations, was reinterpreted by Mackey I was delighted to see that the program of the as a classification theorem for the unitary repre- 2007 New Orleans AMS meeting listed me cor- sentations of certain nilpotent groups. Both Cal rectly as a student; in fact I have been a student Moore and I have found new interpretations and of George Mackey practically all my mathemati- applications for it, and now my students use it cal life. George loved interesting and provoking in their work. In fall 2004 I attended a program mathematical conversations, and we had many at the Newton Institute on quantum informa- over lunch, explaining my congenial title. tion theory (QIT). There I learned that QIT had Most of our spurred new interest in Hilbert space geometry. individual meet- One topic that had attracted substantial atten- ings began at tion was mutually unbiased bases. Two bases {uj } the Harvard Fac- and {vj }, 1 ≤ j ≤ dim H, of a finite-dimensional ulty Club. George Hilbert space H, are called mutually unbiased if walked there from the inner product of uj with vk has absolute val- working at home 1 1 2 to meet for our ue dim H , independent of j and k. A number of luncheon, and I of- constructions of such bases had been given, and ten watched him some relations to group theory had been found. pass the reading The topic attracted me, and in thinking about it, I was amazed and delighted to see that George’s room windows. Photo courtesy of Ann Mackey. Generally our con- work on induced representations, systems of im- Mackey in Harvard office. primitivity, and the Heisenberg group combined versations engaged to give a natural and highly effective theory and us so we continued construction of large families of mutually unbi- afterward in one of our offices, which for years ased bases. It seemed quite wonderful that ideas adjoined each other in the mathematics library. that George had introduced to clarify the founda- Some other occasions also provided opportunity tions of quantum mechanics would have such a for conversation: thirty years ago the department satisfying application to this very different aspect met over lunch at the Faculty Club. Frequent- of the subject. I presented my preprint on the sub- ly we also exchanged invitations for dinner at ject to George, but at that time his health was in each other’s home. Both customs had declined decline, and I am afraid he was not able to share significantly in recent years. Another central fix- my pleasure at this unexpected application. ture revolved about the mathematics colloquium, I hadn’t expected the strange-seeming ideas which for years George organized at Harvard. in George’s notes for that reading course to im- George and Lars Alfhors invariably attended the pinge on my research. I had quite different, more dinner, and for many years a party followed in algebraic and geometric, ideas about how to ap- someone’s home. George also made sure that proach representation theory. But impinge they each participant paid their exact share of the bill, did. When I was struggling to understand some a role that could not mask the generous side of qualitative properties of unitary representations his character. of classical Lie groups, I found that the ideas from that course were exactly what I needed. And I am Arthur Jaffe is the Landon T. Clay Professor of Mathe- extremely happy not only to have used them (and matics and Theoretical Science at Harvard University. His to have had them to use!) but also to have passed email address is [email protected]. August 2007 Notices of the AMS 833 George also enjoyed lunch at the “long table” ago, the theme “The Mathematical Theory of Ele- in the Faculty Club, where a group of regulars mentary Particles” represented more dream than gathered weekly. Occasionally I joined him there reality. or more recently at the American Academy of I knew George’s excellent book on the math- Arts and Sciences, near the Harvard campus. I ematical foundations of quantum theory, so I could count on meeting George at those places looked forward to meeting him and to discussing without planning in advance. Through these in- the laws of particle physics and quantum field teractions my informal teacher became one of my theory. George was forty-nine, and I was still a best Harvard friends. So it was natural that our student at Princeton. Perhaps the youngest per- conversations ultimately led to pleasant evenings son at the meeting, I arrived in awe among many at 25 Coolidge Hill Road, where Alice and George experts whose work I had come to admire. George were gracious and generous hosts, and on other and I enjoyed a number of interesting interac- occasions to 27 Lancaster Street. tions on that occasion, including our first lunch While the main topic of our luncheons focused together. on mathematics, it was usual that the topic of Our paths crossed again two years later, on- conversation veered to a variety of other subjects, ly weeks before my moving from Stanford to including social questions of the time and even Harvard. That summer we both attended the to novels by David Lodge or Anthony Trollope. “Rochester Conference”, which brought together George seemed to come up with a viewpoint on particle physicists every couple of years. Return- any topic somewhat orthogonal to mine or to ing in 1967 to the University of Rochester where other companions, but one that he defended both the series began, the organizers made an attempt with glee as well as success. to involve some mathematicians as well. George began as a student of physics and The Rochester hosts prepared the proceedings found ideas in physics central to his mathemat- in style. Not only do they include the lectures, but ics. Yet George could be called a “quantum field they also include transcripts of the extemporane- theory skeptic”. He never worked directly on this ous discussions afterward. Today those informal subject, and he remained unsure whether quan- interchanges remain of interest, providing far tum mechanics could be shown to be compatible better insights into the thinking of the time than with special relativity in the framework of the the prepared lectures that precede them. The Wightman (or any other) axioms for quantum discussion following the lecture by Arthur Wight- fields. man includes comments by George Mackey, Irving When we began to interact, the possibility to Segal, Klaus Hepp, Rudolf Haag, Stanley Mandel- give a mathematical foundation to any complete stam, Eugene Wigner, C.-N. Yang, and Richard example of a relativistic, nonlinear quantum field Feynman. It is hard to imagine that diverse a appeared far beyond reach. Yet during the first ten years of our acquaintance these mathemat- spectrum of scientists, from mathematicians to ical questions underwent a dramatic transition, physicists, sitting in the same lecture hall—much and the first examples fell into place. George less discussing a lecture among themselves! and I discussed this work many times, reviewing Reading the text with hindsight, I am struck by how models of quantum field theory in two- and how the remarks of Mackey and of Feynman hit three-dimensional Minkowski space-time could be the bull’s-eye. George’s comments from the point achieved. While this problem still remains open in of view of ergodic theory apply to the physical four dimensions, our understanding and intuition picture of the vacuum. Feynman’s attitude about have advanced to the point that suggests one may mathematics has been characterized by “It is a find a positive answer for Yang-Mills theory. Yet theorem that a mathematician cannot prove a George remained unsure about whether this cul- nontrivial theorem, as every proved theorem is mination of the program is possible, rightfully trivial,” in Surely You’re Joking, Mr. Feynman. questioning whether a more sophisticated con- Yet in Rochester, Feynman was intent to know cept of space-time would revolutionize our view whether quantum electrodynamics could be (or of physics. had been) put on a solid mathematical footing. Despite this skepticism, George’s deep in- Today we think it unlikely, unlike the situation sights, especially those in ergodic theory, con- for Yang-Mills theory. nected in uncanny ways to the ongoing progress in quantum field theory throughout his lifetime. Harvard George chaired the mathematics department Early Encounters when I arrived at Harvard in 1967, and from I first met George face-to-face during a conference that time we saw each other frequently.
Recommended publications
  • R Mathematics Esearch Eports
    Mathematics r research reports M r Boris Hasselblatt, Svetlana Katok, Michele Benzi, Dmitry Burago, Alessandra Celletti, Tobias Holck Colding, Brian Conrey, Josselin Garnier, Timothy Gowers, Robert Griess, Linus Kramer, Barry Mazur, Walter Neumann, Alexander Olshanskii, Christopher Sogge, Benjamin Sudakov, Hugh Woodin, Yuri Zarhin, Tamar Ziegler Editorial Volume 1 (2020), p. 1-3. <http://mrr.centre-mersenne.org/item/MRR_2020__1__1_0> © The journal and the authors, 2020. Some rights reserved. This article is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0/ Mathematics Research Reports is member of the Centre Mersenne for Open Scientific Publishing www.centre-mersenne.org Mathema tics research reports Volume 1 (2020), 1–3 Editorial This is the inaugural volume of Mathematics Research Reports, a journal owned by mathematicians, and dedicated to the principles of fair open access and academic self- determination. Articles in Mathematics Research Reports are freely available for a world-wide audi- ence, with no author publication charges (diamond open access) but high production value, thanks to financial support from the Anatole Katok Center for Dynamical Sys- tems and Geometry at the Pennsylvania State University and to the infrastructure of the Centre Mersenne. The articles in MRR are research announcements of significant ad- vances in all branches of mathematics, short complete papers of original research (up to about 15 journal pages), and review articles (up to about 30 journal pages). They communicate their contents to a broad mathematical audience and should meet high standards for mathematical content and clarity. The entire Editorial Board approves the acceptance of any paper for publication, and appointments to the board are made by the board itself.
    [Show full text]
  • Hyberbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves CBMS-NSF REGIONAL CONFERENCE SERIES in APPLIED MATHEMATICS
    Hyberbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS A series of lectures on topics of current research interest in applied mathematics under the direction of the Conference Board of the Mathematical Sciences, supported by the National Science Foundation and published by SIAM. GARRETT BIRKHOFF, The Numerical Solution of Elliptic Equations D. V. LINDLEY, Bayesian Statistics, A Review R. S. VARGA, Functional Analysis and Approximation Theory in Numerical Analysis R. R. BAHADUR, Some Limit Theorems in Statistics PATRICK BILLINGSLEY, Weak Convergence of Measures: Applications in Probability J. L. LIONS, Some Aspects of the Optimal Control of Distributed Parameter Systems ROGER PENROSE, Techniques of Differential Topology in Relativity HERMAN CHERNOFF, Sequential Analysis and Optimal Design J. DURBIN, Distribution Theory for Tests Based on the Sample Distribution Function SOL I. RUBINOW, Mathematical Problems in the Biological Sciences P. D. LAX, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves I. J. SCHOENBERG, Cardinal Spline Interpolation IVAN SINGER, The Theory of Best Approximation and Functional Analysis WERNER C. RHEINBOLDT, Methods of Solving Systems of Nonlinear Equations HANS F. WEINBERGER, Variational Methods for Eigenvalue Approximation R. TYRRELL ROCKAFELLAR, Conjugate Duality and Optimization SIR JAMES LIGHTHILL, Mathematical Biofluiddynamics GERARD SALTON, Theory of Indexing CATHLEEN S. MORAWETZ, Notes on Time Decay and Scattering for Some Hyperbolic Problems F. HOPPENSTEADT, Mathematical Theories of Populations: Demographics, Genetics and Epidemics RICHARD ASKEY, Orthogonal Polynomials and Special Functions L. E. PAYNE, Improperly Posed Problems in Partial Differential Equations S. ROSEN, Lectures on the Measurement and Evaluation of the Performance of Computing Systems HERBERT B.
    [Show full text]
  • Life and Work of Friedrich Hirzebruch
    Jahresber Dtsch Math-Ver (2015) 117:93–132 DOI 10.1365/s13291-015-0114-1 HISTORICAL ARTICLE Life and Work of Friedrich Hirzebruch Don Zagier1 Published online: 27 May 2015 © Deutsche Mathematiker-Vereinigung and Springer-Verlag Berlin Heidelberg 2015 Abstract Friedrich Hirzebruch, who died in 2012 at the age of 84, was one of the most important German mathematicians of the twentieth century. In this article we try to give a fairly detailed picture of his life and of his many mathematical achievements, as well as of his role in reshaping German mathematics after the Second World War. Mathematics Subject Classification (2010) 01A70 · 01A60 · 11-03 · 14-03 · 19-03 · 33-03 · 55-03 · 57-03 Friedrich Hirzebruch, who passed away on May 27, 2012, at the age of 84, was the outstanding German mathematician of the second half of the twentieth century, not only because of his beautiful and influential discoveries within mathematics itself, but also, and perhaps even more importantly, for his role in reshaping German math- ematics and restoring the country’s image after the devastations of the Nazi years. The field of his scientific work can best be summed up as “Topological methods in algebraic geometry,” this being both the title of his now classic book and the aptest de- scription of an activity that ranged from the signature and Hirzebruch-Riemann-Roch theorems to the creation of the modern theory of Hilbert modular varieties. Highlights of his activity as a leader and shaper of mathematics inside and outside Germany in- clude his creation of the Arbeitstagung,
    [Show full text]
  • Annual Report 2009 - 2010
    Annual Report 2009 - 2010 Department of Mathematics, Tucson, AZ 85721 • 520.626.6145 • ime.math.arizona.edu Table of Contents About the Institute 1 Ongoing Programs 2 Arizona Teacher Initiative (ATI) 2 Untangling KnoTSS 2 Tucson Math Circle 3 Tucson Teachers’ Circle 3 Graduate Students and Teachers Engaging in Mathematical Sciences (G-TEAMS) 4 The Intel Math Program 5 2009-2010 Events 6 2009 State of Education 6 Math League Contest 6 Mapping the Calculus Curriculum Workshop 6 Mathematicians in Mathematics Education (MIME) 6 2010-2011 Events 8 Progressions Workshop 8 Knowledge of Mathematics for Teaching at the Secondary Level 8 Mathematicians in Mathematics Education (MIME) 9 The Illustrative Mathematics Project 9 Featured Programs 10 People 14 ii Annual Report, 2009 - 2010 About the Institute Our Vision The Institute was created in 2006 by William McCallum, Distinguished Professor of Mathematics at the University of Arizona. The principal mission of the Institute is to support local, national, and international projects in mathematics education, from kindergarten to college, that pay attention to both the mathematics and the students, have practical application to current needs, build on existing knowledge, and are grounded in the work of teachers. The Need Mathematics is crucial for innovation in science, technology and engineering; competitiveness in a global workforce, and informed participation in democratic government. Three decades of reports, from the Department of Education’s A Nation at Risk (1983) to the National Academies’ Rising Above the Gathering Storm (2006) offer ample evidence for the need to improve mathematics education in the United States. Our Approach The problems of mathematics education cannot be solved by one group alone.
    [Show full text]
  • The Legacy of Norbert Wiener: a Centennial Symposium
    http://dx.doi.org/10.1090/pspum/060 Selected Titles in This Series 60 David Jerison, I. M. Singer, and Daniel W. Stroock, Editors, The legacy of Norbert Wiener: A centennial symposium (Massachusetts Institute of Technology, Cambridge, October 1994) 59 William Arveson, Thomas Branson, and Irving Segal, Editors, Quantization, nonlinear partial differential equations, and operator algebra (Massachusetts Institute of Technology, Cambridge, June 1994) 58 Bill Jacob and Alex Rosenberg, Editors, K-theory and algebraic geometry: Connections with quadratic forms and division algebras (University of California, Santa Barbara, July 1992) 57 Michael C. Cranston and Mark A. Pinsky, Editors, Stochastic analysis (Cornell University, Ithaca, July 1993) 56 William J. Haboush and Brian J. Parshall, Editors, Algebraic groups and their generalizations (Pennsylvania State University, University Park, July 1991) 55 Uwe Jannsen, Steven L. Kleiman, and Jean-Pierre Serre, Editors, Motives (University of Washington, Seattle, July/August 1991) 54 Robert Greene and S. T. Yau, Editors, Differential geometry (University of California, Los Angeles, July 1990) 53 James A. Carlson, C. Herbert Clemens, and David R. Morrison, Editors, Complex geometry and Lie theory (Sundance, Utah, May 1989) 52 Eric Bedford, John P. D'Angelo, Robert E. Greene, and Steven G. Krantz, Editors, Several complex variables and complex geometry (University of California, Santa Cruz, July 1989) 51 William B. Arveson and Ronald G. Douglas, Editors, Operator theory/operator algebras and applications (University of New Hampshire, July 1988) 50 James Glimm, John Impagliazzo, and Isadore Singer, Editors, The legacy of John von Neumann (Hofstra University, Hempstead, New York, May/June 1988) 49 Robert C. Gunning and Leon Ehrenpreis, Editors, Theta functions - Bowdoin 1987 (Bowdoin College, Brunswick, Maine, July 1987) 48 R.
    [Show full text]
  • 17 Oct 2019 Sir Michael Atiyah, a Knight Mathematician
    Sir Michael Atiyah, a Knight Mathematician A tribute to Michael Atiyah, an inspiration and a friend∗ Alain Connes and Joseph Kouneiher Sir Michael Atiyah was considered one of the world’s foremost mathematicians. He is best known for his work in algebraic topology and the codevelopment of a branch of mathematics called topological K-theory together with the Atiyah-Singer index theorem for which he received Fields Medal (1966). He also received the Abel Prize (2004) along with Isadore M. Singer for their discovery and proof of the index the- orem, bringing together topology, geometry and analysis, and for their outstanding role in building new bridges between mathematics and theoretical physics. Indeed, his work has helped theoretical physicists to advance their understanding of quantum field theory and general relativity. Michael’s approach to mathematics was based primarily on the idea of finding new horizons and opening up new perspectives. Even if the idea was not validated by the mathematical criterion of proof at the beginning, “the idea would become rigorous in due course, as happened in the past when Riemann used analytic continuation to justify Euler’s brilliant theorems.” For him an idea was justified by the new links between different problems which it illuminated. Our experience with him is that, in the manner of an explorer, he adapted to the landscape he encountered on the way until he conceived a global vision of the setting of the problem. Atiyah describes here 1 his way of doing mathematics2 : arXiv:1910.07851v1 [math.HO] 17 Oct 2019 Some people may sit back and say, I want to solve this problem and they sit down and say, “How do I solve this problem?” I don’t.
    [Show full text]
  • Council Congratulates Exxon Education Foundation
    from.qxp 4/27/98 3:17 PM Page 1315 From the AMS ics. The Exxon Education Foundation funds programs in mathematics education, elementary and secondary school improvement, undergraduate general education, and un- dergraduate developmental education. —Timothy Goggins, AMS Development Officer AMS Task Force Receives Two Grants The AMS recently received two new grants in support of its Task Force on Excellence in Mathematical Scholarship. The Task Force is carrying out a program of focus groups, site visits, and information gathering aimed at developing (left to right) Edward Ahnert, president of the Exxon ways for mathematical sciences departments in doctoral Education Foundation, AMS President Cathleen institutions to work more effectively. With an initial grant Morawetz, and Robert Witte, senior program officer for of $50,000 from the Exxon Education Foundation, the Task Exxon. Force began its work by organizing a number of focus groups. The AMS has now received a second grant of Council Congratulates Exxon $50,000 from the Exxon Education Foundation, as well as a grant of $165,000 from the National Science Foundation. Education Foundation For further information about the work of the Task Force, see “Building Excellence in Doctoral Mathematics De- At the Summer Mathfest in Burlington in August, the AMS partments”, Notices, November/December 1995, pages Council passed a resolution congratulating the Exxon Ed- 1170–1171. ucation Foundation on its fortieth anniversary. AMS Pres- ident Cathleen Morawetz presented the resolution during —Timothy Goggins, AMS Development Officer the awards banquet to Edward Ahnert, president of the Exxon Education Foundation, and to Robert Witte, senior program officer with Exxon.
    [Show full text]
  • Virtual Groups 45 Years Later
    VIRTUAL GROUPS 45 YEARS LATER by Calvin C. Moore Dedicated to the memory of George W. Mackey Abstract In 1961 George Mackey introduced the concept of a virtual group as an equivalence class under similarity of ergodic measured groupoids, and he developed this circle of ideas in subsequent papers in 1963 and 1966. The goal here is first to explain these ideas, place them in a larger context, and then to show how they have influenced and helped to shape developments in four different but related areas of research over the following 45 years. These areas include first the general area and the connections between ergodic group actions, von Neumann algebras, measurable group theory and rigidity theorems. Then we turn to the second area concerning topological groupoids, C∗-algebras, K-theory and cyclic homology, or as it is now termed non-commutative geometry. We briefly discuss some aspects of Lie groupoids, and finally we shall turn attention to the fourth area of Borel equivalence relations seen as a part of descriptive set theory. In each case we trace the influence that Mackey’s ideas have had in shaping each of these four areas of research. 1. Introduction. In his 1961 American Mathematical Society Colloquium Lectures, George Mackey introduced his concept of a virtual group. He briefly described this on pages 651–654 in his Bulletin article [Ma63a] that was based on his Colloquium lectures, and then discussed it again in a research announcement in the Proceedings of the National Academy of Science [Ma63b] and then more fully in [Ma66]. His concept of virtual groups was also a theme in some of his subsequent integrative and expository articles and books.
    [Show full text]
  • Mathematical Sciences Meetings and Conferences Section
    OTICES OF THE AMERICAN MATHEMATICAL SOCIETY Richard M. Schoen Awarded 1989 Bacher Prize page 225 Everybody Counts Summary page 227 MARCH 1989, VOLUME 36, NUMBER 3 Providence, Rhode Island, USA ISSN 0002-9920 Calendar of AMS Meetings and Conferences This calendar lists all meetings which have been approved prior to Mathematical Society in the issue corresponding to that of the Notices the date this issue of Notices was sent to the press. The summer which contains the program of the meeting. Abstracts should be sub­ and annual meetings are joint meetings of the Mathematical Associ­ mitted on special forms which are available in many departments of ation of America and the American Mathematical Society. The meet­ mathematics and from the headquarters office of the Society. Ab­ ing dates which fall rather far in the future are subject to change; this stracts of papers to be presented at the meeting must be received is particularly true of meetings to which no numbers have been as­ at the headquarters of the Society in Providence, Rhode Island, on signed. Programs of the meetings will appear in the issues indicated or before the deadline given below for the meeting. Note that the below. First and supplementary announcements of the meetings will deadline for abstracts for consideration for presentation at special have appeared in earlier issues. sessions is usually three weeks earlier than that specified below. For Abstracts of papers presented at a meeting of the Society are pub­ additional information, consult the meeting announcements and the lished in the journal Abstracts of papers presented to the American list of organizers of special sessions.
    [Show full text]
  • Table of Contents
    TABLE OF CONTENTS Chapter 1 Introduction . 2 Chapter 2 Organization and Establishment . 3 Chapter 3 Early Years . 5 Chapter 4 Operation, Expansion and Emergence . 8 Chapter 5 Meetings, Conferences and Workshops . 13 Chapter 6 SIAM’s Journals Fulfill a Mission . 15 Chapter 7 The Book Publishing Program . 19 Chapter 8 Commitment to Education . 22 Chapter 9 Recognizing Excellence . 25 Chapter 10 Leadership . 29 2 CHAPTER 1 INTRODUCTION One of the most significant factors affecting the increasing demand for mathematicians during the early 1950s was the development of the electronic digital computer. The ENIAC was developed in Philadelphia in 1946. Origins A Need Arises Mathematicians In the years during and especially One of the most significant eventually began following the Second World War, the factors affecting this increas- working with engi- nation experienced a surge in industri- ing demand for mathemati- neers and scientists al and military research and the devel- cians during the early 1950s more frequently, in opment of related technology, thus was the development of the a wider variety of creating a need for improved mathe- electronic digital computer. areas, including matical and computational methods. One of the first, the ENIAC, software develop- To illustrate, in 1938, there were about was completed in 1946. As An ad that appeared in the ment, trajectory 850 mathematicians and statisticians early as 1933, scientists, engi- SIAM NEWSLETTER May, 1956 simulations, com- employed by the federal government. neers and mathematicians at puter design, vibra- By 1954, however, that number nearly the Moore School of Electrical tion studies, structural and mechanical quadrupled to 3200.
    [Show full text]
  • Glimm and Witten Receive National Medal of Science, Volume 51, Number 2
    Glimm and Witten Receive National Medal of Science On October 22, 2003, President Bush named eight of the nation’s leading scientists and engineers to receive the National Medal of Science. The medal is the nation’s highest honor for achievement in sci- ence, mathematics, and engineering. The medal James G. Glimm Edward Witten also recognizes contributions to innovation, in- dustry, or education. Columbia University in 1959. He is the Distin- Among the awardees are two who work in the guished Leading Professor of Mathematics at the mathematical sciences, JAMES G. GLIMM and EDWARD State University of New York at Stony Brook. WITTEN. Edward Witten James G. Glimm Witten is a world leader in “string theory”, an attempt Glimm has made outstanding contributions to by physicists to describe in one unified way all the shock wave theory, in which mathematical models known forces of nature as well as to understand are developed to explain natural phenomena that nature at the most basic level. Witten’s contributions involve intense compression, such as air pressure while at the Institute for Advanced Study have set in sonic booms, crust displacement in earthquakes, the agenda for many developments, such as progress and density of material in volcanic eruptions and in “dualities”, which suggest that all known string other explosions. Glimm also has been a leading theories are related. theorist in operator algebras, partial differential Witten’s earliest papers produced advances in equations, mathematical physics, applied mathe- quantum chromodynamics (QCD), a theory that matics, and quantum statistical mechanics. describes the interactions among the fundamental Glimm’s work in quantum field theory and particles (quarks and gluons) that make up all statistical mechanics had a major impact on atomic nuclei.
    [Show full text]
  • George Mackey and His Work on Representation Theory and Foundations of Physics
    Contemporary Mathematics George Mackey and His Work on Representation Theory and Foundations of Physics V. S. Varadarajan To the memory of George Mackey Abstract. This article is a retrospective view of the work of George Mackey and its impact on the mathematics of his time and ours. The principal themes of his work–systems of imprimitivity, induced representations, projective rep- resentations, Borel cohomology, metaplectic representations, and so on, are examined and shown to have been central in the development of the theory of unitary representations of arbitrary separable locally compact groups. Also examined are his contributions to the foundations of quantum mechanics, in particular the circle of ideas that led to the famous Mackey-Gleason theorem and a significant sharpening of von Neumann’s theorem on the impossibil- ity of obtaining the results of quantum mechanics by a mechanism of hidden variables. Contents 1. Introduction 2 2. Stone-Von Neumann theorem, systems of imprimitivity, and the imprimitivity theorem 3 3. Semi direct products and the little group method. Representations of finite length and orbit schemes 8 4. Super Lie groups and their systems of imprimitivity 11 5. Intertwining numbers, double coset decompositions, and irreducibility of induced representations 13 6. Projective representations, Borel cohomology of groups, and the metaplectic representation 15 7. Foundations of Physics: hidden variables and the Mackey-Gleason theorem 21 2000 Mathematics Subject Classification. 22D10, 81P10. Key words and phrases. Stone-von Neumann theorem, systems of imprimitivity, unitary rep- resentations, induced representations, semi direct products, super Lie groups, intertwining num- bers, double coset decompositions, projective representations, Borel cohomology, Baruer groups, metaplectic representation, hidden variables, Mackey-Gleason theorem, quantum logics, canonical commutation rules, quantum information theory, quantum stochastic calculus.
    [Show full text]