Check-List for New-Mineral Proposals (2005)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Washington State Minerals Checklist
Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite -
New Mineral Names*
American Mineralogist, Volume 68, pages 280-2E3, 1983 NEW MINERAL NAMES* MrcnnBr- FrelscHen AND ADoLF Pnnsr Arsendescloizite* The mineral occurs at Uchucchacua,Peru, in acicular crystals up to 2fi) x 20 microns, associatedwith galena, manganoan (1982) Paul Keller and P. J. Dunn Arsendescloizite, a new sphalerite, pyrite, pyrrhotite, and alabandite, with gangue of mineral from Tsumeb. Mineralog. Record, 13, 155-157. quartz, bustamite, rhodonite, and calcite. Also found at Stitra, pyrite-pyrrhotite in rhyo- Microprobe analysis (HzO by TGA) gave AszOs 26.5, PbO Sweden,in a metamorphosed deposit 52.3,ZnO1E.5, FeO 0.3, Il2O2.9, sum 100.5%,corresponding to litic and dacitic rocks; in roundedgrains up to 50 fl.min diameter, associated with galena, freibergite, gudmundite, manganoan Pb1.s6(Zn1.63Fe6.oJ(AsOaXOH)1a or PbZn(AsO+XOH), the ar- senateanalogue ofdescloizite. The mineral is slightly soluble in sphalerite,bismuth, and spessartine. hot HNO3. The name is for A. Benavides, for his contribution to the Weissenbergand precessionmeasurements show the mineral development of mining in Peru. Type material is at the Ecole (Uchucchacua)and at the Free to be orthorhombic, space group F212121,a : 6.075, b = 9.358, Natl. Superieuredes Mines, Paris (SAtra). c = 7.$44, Z = 4, D. calc. 6.57. The strongestX-ray lines University, Amsterdam, Netherlands M.F. (31 eiven) are 4.23(6)(lll); 3.23(lOXl02);2.88(10)(210,031); 2.60 Kolfanite* (E)(13 I ) ; 2.W6)Q3r) ; I .65(6X33I, 143,233); r.559 (EX3I 3,060,25I ). Crystalsare tabular up to 1.0 x 0.4 x 0.5 mm in size, on {001}, A. -
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
Koritnigite Zn(Aso3oh)•
Koritnigite Zn(AsO3OH) • H2O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Triclinic, pseudomonoclinic. Point Group: 1. As imperfect platy crystals, to 5 mm, in aggregates. Physical Properties: Cleavage: {010}, perfect; cleavage traces k [001] and k [100], visible on {010}. Tenacity: Flexible. Hardness = 2 D(meas.) = 3.54 D(calc.) = 3.56 Optical Properties: Transparent. Color: Colorless, white, rose. Luster: Pearly on {010}. Optical Class: Biaxial (+). Orientation: X = b; Y ∧ a ' 28◦; Z ∧ c ' 22◦. α = 1.632(5) β = 1.652(3) γ = 1.693(3) 2V(meas.) = 70(5)◦ Cell Data: Space Group: P 1. a = 7.948(2) b = 15.829(5) c = 6.668(2) α =90.86(2)◦ β =96.56(2)◦ γ =90.05(2)◦ Z=8 X-ray Powder Pattern: Tsumeb, Namibia; very close to cobaltkoritnigite. 7.90 (10), 3.16 (9), 3.83 (7), 2.461 (6), 2.186 (5), 3.95 (4), 2.926 (4) Chemistry: (1) (2) (3) As2O5 51.75 54.67 51.46 FeO + Fe2O3 trace 0.05 CoO 4.54 NiO 2.44 ZnO 35.97 25.83 36.44 MgO trace H2O [12.3] [12.47] 12.10 Total [100.0] [100.00] 100.00 2− (1) Tsumeb, Namibia; by electron microprobe, (AsO3OH) confirmed by IR, H2O by difference. • (2) J´achymov, Czech Republic; H2O by difference. (3) Zn(AsO3OH) H2O. Occurrence: A secondary mineral of the lower oxidation zone in a dolostone-hosted polymetallic hydrothermal ore deposit (Tsumeb, Namibia). Association: Tennantite, cuprian adamite, stranskiite, lavendulan, k¨ottigite,tsumcorite, prosperite, o’danielite (Tsumeb, Namibia); erythrite, arsenolite, sphalerite (J´achymov, Czech Republic). -
Ferrilotharmeyerite Ca(Fe3+,Zn,Cu)
3+ Ferrilotharmeyerite Ca(Fe , Zn, Cu)2(AsO4)2(OH, H2O)2 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. As subhedral crystals, to 0.6 mm, tabular on {101}, slightly elongated along [010], wedge- or lozenge-shaped, terminated by {111}, composed of multiple crystallites. Physical Properties: Cleavage: Good on {001}. Fracture: Uneven. Tenacity: Brittle. Hardness = ∼3 D(meas.) = 4.25(5) D(calc.) = 4.21–4.38 Optical Properties: Transparent to translucent. Color: Yellow, brownish yellow, yellowish brown. Streak: Very pale yellow. Luster: Adamantine to greasy. Optical Class: Biaxial (+). Pleochroism: Strong; X = olive-green or orange; Y = pale green or yellow; Z = colorless. Orientation: X = b; Y ∧ c = ∼22◦. Dispersion: r> v,distinct, inclined. Absorption: X > Y Z. α = 1.83(1) β = [1.835] γ = 1.87(1) 2V(meas.) = 40◦ Cell Data: Space Group: C2/m. a = 8.997–9.010 b = 6.236–6.246 c = 7.387–7.391 β = 115.52−115.74◦ Z=2 X-ray Powder Pattern: Tsumeb, Namibia. 3.398 (100), 3.175 (100), 2.938 (100), 2.544 (100), 4.95 (70), 2.823 (70), 2.702 (70) Chemistry: (1) (2) As2O5 48.66 48.73 Al2O3 0.13 < 0.1 Fe2O3 13.96 15.68 CuO 5.75 < 0.1 ZnO 13.94 17.88 PbO 2.13 0.14 CaO 10.86 12.07 H2O 5.85 [5.80] Total 101.28 [100.30] (1) Tsumeb, Namibia; by electron microprobe, H2O by CHN analyzer; corresponds to (Ca0.92Pb0.05)Σ=0.97(Fe0.87Zn0.81Cu0.34Al0.01)Σ=2.03(AsO4)2(OH, H2O)2. -
Raman and Infrared Spectroscopy of Arsenates of the Roselite and Fairfeldite Mineral Subgroups
This may be the author’s version of a work that was submitted/accepted for publication in the following source: Frost, Ray (2009) Raman and infrared spectroscopy of arsenates of the roselite and fair- feldite mineral subgroups. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71(5), pp. 1788-1794. This file was downloaded from: https://eprints.qut.edu.au/17596/ c Copyright 2009 Elsevier Reproduced in accordance with the copyright policy of the publisher. Notice: Please note that this document may not be the Version of Record (i.e. published version) of the work. Author manuscript versions (as Sub- mitted for peer review or as Accepted for publication after peer review) can be identified by an absence of publisher branding and/or typeset appear- ance. If there is any doubt, please refer to the published source. https://doi.org/10.1016/j.saa.2008.06.039 QUT Digital Repository: http://eprints.qut.edu.au/ Frost, Ray L. (2009) Raman and infrared spectroscopy of arsenates of the roselite and fairfieldite mineral subgroups. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71(5). pp. 1788-1794. © Copyright 2009 Elsevier Raman and infrared spectroscopy of arsenates of the roselite and fairfieldite mineral subgroups Ray L. Frost• Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001, Australia. Abstract Raman spectroscopy complimented with infrared spectroscopy has been used to determine the molecular structure of the roselite arsenate minerals of the roselite and 2+ fairfieldite subgroups of formula Ca2B(AsO4)2.2H2O (where B may be Co, Fe , Mg, 2- Mn, Ni, Zn). -
Cobalt Mineral Ecology
American Mineralogist, Volume 102, pages 108–116, 2017 Cobalt mineral ecology ROBERT M. HAZEN1,*, GRETHE HYSTAD2, JOSHUA J. GOLDEN3, DANIEL R. HUMMER1, CHAO LIU1, ROBERT T. DOWNS3, SHAUNNA M. MORRISON3, JOLYON RALPH4, AND EDWARD S. GREW5 1Geophysical Laboratory, Carnegie Institution, 5251 Broad Branch Road NW, Washington, D.C. 20015, U.S.A. 2Department of Mathematics, Computer Science, and Statistics, Purdue University Northwest, Hammond, Indiana 46323, U.S.A. 3Department of Geosciences, University of Arizona, 1040 East 4th Street, Tucson, Arizona 85721-0077, U.S.A. 4Mindat.org, 128 Mullards Close, Mitcham, Surrey CR4 4FD, U.K. 5School of Earth and Climate Sciences, University of Maine, Orono, Maine 04469, U.S.A. ABSTRACT Minerals containing cobalt as an essential element display systematic trends in their diversity and distribution. We employ data for 66 approved Co mineral species (as tabulated by the official mineral list of the International Mineralogical Association, http://rruff.info/ima, as of 1 March 2016), represent- ing 3554 mineral species-locality pairs (www.mindat.org and other sources, as of 1 March 2016). We find that cobalt-containing mineral species, for which 20% are known at only one locality and more than half are known from five or fewer localities, conform to a Large Number of Rare Events (LNRE) distribution. Our model predicts that at least 81 Co minerals exist in Earth’s crust today, indicating that at least 15 species have yet to be discovered—a minimum estimate because it assumes that new minerals will be found only using the same methods as in the past. Numerous additional cobalt miner- als likely await discovery using micro-analytical methods. -
Mineralogy and Crystal Structure of Bouazzerite from Bou Azzer, Anti-Atlas, Morocco: Bi-As-Fe Nanoclusters Containing Fe3+ in Trigonal Prismatic Coordination
American Mineralogist, Volume 92, pages 1630–1639, 2007 Mineralogy and crystal structure of bouazzerite from Bou Azzer, Anti-Atlas, Morocco: Bi-As-Fe nanoclusters containing Fe3+ in trigonal prismatic coordination JOËL BRUGGER,1,* NICOLAS MEISSER,2 SERGEY KRIVOVICHEV,3 THOMAS ARMBRUSTER,4 AND GEORGES FAVREAU5 1Department of Geology and Geophysics, Adelaide University, North Terrace, SA-5001 Adelaide, Australia and South Australian Museum, North Terrace, SA-5000 Adelaide, Australia 2Musée Géologique Cantonal and Laboratoire des Rayons-X, Institut de Minéralogie et Géochimie, UNIL-Anthropole, CH-1015 Lausanne- Dorigny, Switzerland 3Department of Crystallography, St. Petersburg State University, University Emb. 7/9, 199034 St. Petersburg, Russia 4Laboratorium für chemische und mineralogische Kristallographie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland 5421 Avenue Jean Monnet, 13090 Aix-en-Provence, France ABSTRACT Bouazzerite, Bi6(Mg,Co)11Fe14[AsO4]18O12(OH)4(H2O)86, is a new mineral occurring in “Filon 7” at the Bou Azzer mine, Anti-Atlas, Morocco. Bouazzerite is associated with quartz, chalcopyrite, native gold, erythrite, talmessite/roselite-beta, Cr-bearing yukonite, alumopharmacosiderite, powellite, and a blue-green earthy copper arsenate related to geminite. The mineral results from the weathering of a Va- riscan hydrothermal As-Co-Ni-Ag-Au vein. The Bou Azzer mine and the similarly named district have produced many outstanding mineral specimens, including the world’s best erythrite and roselite. Bouazzerite forms monoclinic prismatic {021} crystals up to 0.5 mm in length. It has a pale 3 apple green color, a colorless streak, and is translucent with adamantine luster. dcalc is 2.81(2) g/cm (from X-ray structure refi nement). -
Formation of Chrysocolla and Secondary Copper Phosphates in the Highly Weathered Supergene Zones of Some Australian Deposits
Records of the Australian Museum (2001) Vol. 53: 49–56. ISSN 0067-1975 Formation of Chrysocolla and Secondary Copper Phosphates in the Highly Weathered Supergene Zones of Some Australian Deposits MARTIN J. CRANE, JAMES L. SHARPE AND PETER A. WILLIAMS School of Science, University of Western Sydney, Locked Bag 1797, Penrith South DC NSW 1797, Australia [email protected] (corresponding author) ABSTRACT. Intense weathering of copper orebodies in New South Wales and Queensland, Australia has produced an unusual suite of secondary copper minerals comprising chrysocolla, azurite, malachite and the phosphates libethenite and pseudomalachite. The phosphates persist in outcrop and show a marked zoning with libethenite confined to near-surface areas. Abundant chrysocolla is also found in these environments, but never replaces the two secondary phosphates or azurite. This leads to unusual assemblages of secondary copper minerals, that can, however, be explained by equilibrium models. Data from the literature are used to develop a comprehensive geochemical model that describes for the first time the origin and geochemical setting of this style of economically important mineralization. CRANE, MARTIN J., JAMES L. SHARPE & PETER A. WILLIAMS, 2001. Formation of chrysocolla and secondary copper phosphates in the highly weathered supergene zones of some Australian deposits. Records of the Australian Museum 53(1): 49–56. Recent exploitation of oxide copper resources in Australia these deposits are characterized by an abundance of the has enabled us to examine supergene mineral distributions secondary copper phosphates libethenite and pseudo- in several orebodies that have been subjected to intense malachite associated with smaller amounts of cornetite and weathering. -
The Origins of Color in Minerals Four Distinct Physical Theories
American Mineralogist, Volume 63. pages 219-229, 1978 The origins of color in minerals KURT NASSAU Bell Laboratories Murray Hill, New Jersey 07974 Abstract Four formalisms are outlined. Crystal field theory explains the color as well as the fluores- cence in transition-metal-containing minerals such as azurite and ruby. The trap concept, as part of crystal field theory, explains the varying stability of electron and hole color centers with respect to light or heat bleaching, as well as phenomena such as thermoluminescence. The molecular orbital formalism explains the color of charge transfer minerals such as blue sapphire and crocoite involving metals, as well as the nonmetal-involving colors in lazurite, graphite and organically colored minerals. Band theory explains the colors of metallic minerals; the color range black-red-orange- yellow-colorless in minerals such as galena, proustite, greenockite, diamond, as well as the impurity-caused yellow and blue colors in diamond. Lastly, there are the well-known pseudo- chromatic colors explained by physical optics involving dispersion, scattering, interference, and diffraction. Introduction The approach here used is tutorial in nature and references are given for further reading or, in some Four distinct physical theories (formalisms) are instances, for specific examples. Color illustrations of required for complete coverage in the processes by some of the principles involved have been published which intrinsic constituents, impurities, defects, and in an earlier less technical version (Nassau, 1975a). specific structures produce the visual effects we desig- Specific examples are given where the cause of the nate as color. All four are necessary in that each color is reasonably well established, although reinter- provides insights which the others do not when ap- pretations continue to appear even in materials, such plied to specific situations. -
Mineralogy and Environmental Stability of Slags from the Tsumeb Smelter, Namibia
Applied Geochemistry 24 (2009) 1–15 Contents lists available at ScienceDirect Applied Geochemistry journal homepage: www.elsevier.com/locate/apgeochem Mineralogy and environmental stability of slags from the Tsumeb smelter, Namibia Vojteˇch Ettler a,*, Zdenek Johan b, Bohdan Krˇíbek c, Ondrˇej Šebek d, Martin Mihaljevicˇ a a Institute of Geochemistry, Mineralogy and Mineral Resources, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic b Bureau des Recherches Géologiques et Minières (BRGM), av. Claude Guillemin, 45060 Orléans, cedex 2, France c Czech Geological Survey, Geologická 6, 152 00 Prague 5, Czech Republic d Laboratories of the Geological Institutes, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic article info abstract Article history: Three types of smelting slags originating from historically different smelting technologies in the Tsumeb Received 27 June 2008 area (Namibia) were studied: (i) slags from processing of carbonate/oxide ore in a Cu–Pb smelter (1907– Accepted 22 October 2008 1948), (ii) slags from Cu and Pb smelting of sulphide ores (1963–1970) and (iii) granulated Cu smelting Available online 30 October 2008 slags (1980–2000). Bulk chemical analyses of slags were combined with detailed mineralogical investi- gation using X-ray diffraction analysis (XRD), scanning electron microscopy (SEM/EDS) and electron Editorial handling by R. Fuge microprobe (EPMA). The slags are significantly enriched in metals and metalloids: Pb (0.97–18.4 wt.%), Cu (0.49–12.2 wt.%), Zn (2.82–12.09 wt.%), Cd (12–6940 mg/kg), As (930–75,870 mg/kg) and Sb (67– 2175 mg/kg). Slags from the oldest technology are composed of primary Ca- and Pb-bearing feldspars, spinels, complex Cu–Fe and Cu–Cr oxides, delafossite–mcconnellite phases and Ca–Pb arsenates. -
Geology and Mineralogy of the Ape.X Washington County, Utah
Geology and Mineralogy of the Ape.x Germanium-Gallium Mine, Washington County, Utah Geology and Mineralogy of the Apex Germanium-Gallium Mine, Washington County, Utah By LAWRENCE R. BERNSTEIN U.S. GEOLOGICAL SURVEY BULLETIN 1577 DEPARTMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1986 For sale by the Distribution Branch, Text Products Section U.S. Geological Survey 604 South Pickett St. Alexandria, VA 22304 Library of Congress Cataloging-in-Publication Data Bernstein, Lawrence R. Geology and mineralogy of the Apex Germanium Gallium mine, Washington County, Utah (U.S. Geological Survey Bulletin 1577) Bibliography: p. 9 Supt. of Docs. no.: I 19.3:1577 1. Mines and mineral resources-Utah-Washington County. 2. Mineralogy-Utah-Washington County. 3. Geology-Utah-Wasington County. I. Title. II. Series: United States. Geological Survey. Bulletin 1577. QE75.B9 no. 1577 557.3 s 85-600355 [TN24. U8] [553' .09792'48] CONTENTS Abstract 1 Introduction 1 Germanium and gallium 1 Apex Mine 1 Acknowledgments 3 Methods 3 Geologic setting 3 Regional geology 3 Local geology 3 Ore geology 4 Mineralogy 5 Primary ore 5 Supergene ore 5 Discussion and conclusions 7 Primary ore deposition 7. Supergene alteration 8 Implications 8 References 8 FIGURES 1. Map showing location of Apex Mine and generalized geology of surrounding region 2 2. Photograph showing main adit of Apex Mine and gently dipping beds of the Callville Limestone 3 3. Geologic map showing locations of Apex and Paymaster mines and Apex fault zone 4 4. Scanning electron photomicrograph showing plumbian jarosite crystals from the 1,601-m level, Apex Mine 6 TABLES 1.