The CERN Large Hadron Collider LHC Abstract

Total Page:16

File Type:pdf, Size:1020Kb

The CERN Large Hadron Collider LHC Abstract EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Europ ean Lab oratory for Particle Physics Large Hadron Collider Pro ject LHC Project Rep ort 83 The CERN Large Hadron Collider LHC Eb erhard Keil Abstract The Large Hadron Collider Pro ject LHC was approved by the CERN Council in December 1994. Commissioning with b eam will start in the second half of 2005. The pap er discusses the most imp ortant parameters, the general layout of the LHC o ctants, and the status of the exp eriments ALICE, ATLAS, CMS and LHC-B. Also describ ed are some asp ects of the b eam- b eam interactions, the transverse coupled-bunch instability,aswell as the technical developments of the cryogenics, the tests of half an arc cell, and the new civil engineering needed. Invited talk at the 34-th Eloisatron Workshop, Erice, Italy, 4{13 Novemb er 1996 Administrative Secretariat LHC Division CERN CH-1211 Geneva23 Switzerland Geneva, Decemb er 6, 1996 1 INTRODUCTION The LHC pro ject was approved by Council in December 1994. Big contracts start b eing placed. In Septemb er 1996, the Finance Committee approved contracts for the whole 50000 t of steel supply, the sup ervision of the civil engineering work, and eight magnet measuring b enches. I assume for the remainder of the milestones that enough funds are available to construct the LHC in a single stage. By the end of 1999 most of the big contracts will have b een placed, the prices will be known, and a nal decision on the con guration can be taken. We assume that LEP will stop op eration at the end of 1999. Continuing LEP op eration into 2000 must be justi ed on scienti c grounds and money must be found. Dismantling LEP will start in Octob er 2000 when the civil engineering work for LHC is advanced such that it b ecomes necessary to break into the tunnel, in particular for the ATLAS and CMS caverns. Injection tests are foreseen from Octob er 2003. Commissioning with b eam will start in the second half of 2005. The latest conceptual design rep ort [1] for the LHC was issued in Octob er 1995. The remainder of this pap er is organised as follows: Chapter 2 discusses the most imp ortant parameters, the overall layout, the state of the exp eriments, and the layout and optical functions in the neighb ourho o d of Pit 5, Chapter 3 the b eam-b eam fo otprints and the choice of the crossing angle, and Chapter 4 the cryogenics, the string tests of half an arc cell, and the new civil engineering needed are presented in Chapter 5. Finally, Chapter 6 contains the conclusions. 2 PARAMETERS, LAYOUT, EXPERIMENTS, OPTICAL FUNCTIONS This chapter is divided into three sections, discussing the most imp ortant parame- ters, the overall layout of the LHC, and the detailed layout and optical functions in the neighb ourho o d of the CMS exp eriment in Pit 5. Table 1: LHC Parameters Circumference C 26659 m Energy E 7 TeV Dip ole eld B 8.4 T Bunch spacing s 25 ns 11 Bunch p opulation N 10 Bunch radius = 16 m x y Bunch length 75 mm s Beam-b eam parameter 0.0034 1 1 Luminosity L 10 nb s Distance to nearest quadrup ole ` 23 m Q Events/collision n 19 c 2.1 Parameters Tab. 1 shows the LHC parameters. The circumference C is that of LEP, and known to even more digits than shown. The maximum energy E is a round gure, achieved at the dip ole eld B listed. The bunch spacing s corresp onds to 10 RF wavelengths. Together with the distance from the interaction p oint IP to the separating dip oles it determines the numb er of parasitic collisions, ab out 15 on either side of the IP. The bunch p opulation N 1 and the bunch radii and are shown at the interaction p oint IP. They are adjusted x y such that the b eam-b eam tune shift parameter falls into range b elieved to b e achievable from exp erience with other hadron colliders which were or are in op eration [2], and that the luminosity L is in a range which the exp eriments b elieve they can handle. The total b eam-b eam tune spread from the nearly head-on collisions and from all parasitic collisions should b e small enough to t b etween nonlinear resonances of order up to twelve. Not all the space ` between the IP and the front face of the nearest quadrup ole is available to Q the exp eriments. At the assumed inelastic non-di ractive cross section =60 mb, the pp number of events in a single collision is n = 19. c Low ß (pp) High Luminosity CMS RF & Future Expt. Dump Octant 5 Octant 6 Octant 4 Octant 7 Cleaning Cleaning Octant 3 Octant 2 Octant 8 Octant 1 ALICE Injection LHC-B Injection Low ß (Ions) ATLAS Low ß (B physics) Low ß (pp) High Luminosity Figure 1: Layout and Exp eriments 2.2 Overall Layout and Exp eriments Fig. 1 shows the layout of the LHC. The pits are at the centres of the o ctants. The two LHC rings cross in Pits 1, 2, 5, and 8. The circumferences of the two rings are the same, since b oth rings have four inner and four outer arcs. The two large exp eriments, ATLAS and CMS, are diametrically opp osite in Pits 1 and 5, resp ectively. Both are approved exp eriments with a cost ceiling of 475 MCHF each. Technical prop osals were published in 1994 [3, 4]. The LHCC exp ects technical prop osals for the subsystems. The heavy-ion exp eriment ALICE will b e in Pit 2. The technical prop osal for the core exp eriment [5] was published in 1995. The LHCC is waiting for the technical prop osal for the muon arm. The LHC-B exp eriment is dedicated to the study of CP violation and other rare phenomena in the decay of Beauty particles. It uses colliding b eams and a forward detector, contrary to the HERA-B exp eriment which uses a single b eam and a gas jet target. A letter of intent [6] has b een submitted to the LHCC. The LHCC wants an R&D programme for the detector. The two b eams are injected into LHC into outer arcs upstream of Pits 2 and 2 8. The b eam cleaning insertions to steer the b eam halo into staggered sets of collimators rather than the sup er-conducting magnets are in Pits 3 and 7. Pit 4 houses the RF system. Pit 6 is reserved for the b eam dumping system. 2.3 Layout and Optical Functions near Pit 5 Fig. 2 shows the layout and optical functions near Pit 5. The mimic diagram shows the LHC layout schematically over ab out 500 m in the neighb ourho o d of Pit 5. The low- interaction p oint IP5 and CMS are close to the centre. On either side of IP5 is a quadrup ole triplet, actually consisting of four quadrup oles. Because of the antisymmetry designed into LHC, the rst quadrup ole of the triplet fo cuses horizontally on the left, and defo cuses on the right, and similarly for all other quadrup oles. The b oxes b ehind the rst triplet are the dip ole magnets which rst separate the two b eams, and then make them parallel again at the correct distance of 194 mm at 1.9 K. Just b efore the disp ersion p suppressors there is a second triplet. The graph shows the optical functions in black, x q in red. They are prop ortional to the horizontal and vertical b eam radii. The and y antisymmetry of LHC makes them swap values when passing through IP5. Their values at IP5, = =0:5 m, are to o small to show clearly. Their maximum values in the rst x x triplet are quite large. The green curve shows the horizontal disp ersion D . It is matched x 0 to D = D = 0 at IP5, and has asymmetric nonzero values b ehind the rst separating x x dip oles. The layout and optical functions near Pit 1 are the same as those near Pit 5. The layout and optical functions near Pits 2 and 8 are very similar. LHC4.2 near IP5 HP/UX version 8.17/3 18/06/96 09.12.11 ) 70. .40 1/ 2 63. .35 (m) x (m D 56. .30 1/ 2 49. .25 42. .20 35. .15 28. .10 21. .05 14. 0.0 7. -.05 0.0 -.10 13.05 13.25 13.45 s (m) E /p0c= 0. Table name = TWISS ∗10∗∗( 3) Figure 2: Layout and Optical Functions near Pit 5. The interaction p oint is close to the centre of the abscissa. The diagram ab ove the graph schematically shows the horizontally fo cusing (defo cusing) quadrup oles as rectangles ab ove (b elow) the axis, and the separating dip oles as centred rectangles. The curves are the square ro ots of the horizontal and vertical amplitude functions in black and red and the horizontal disp ersion in green. 3 3 BEAM-BEAM EFFECTS The tune spread caused by the nonlinearityof the b eam-b eam force is usually dis- played in the form of \fo otprints" which show the horizontal and vertical tune shifts Q x and Q for combinations of horizontal and vertical b etatron amplitudes a and a .
Recommended publications
  • CERN Courier–Digital Edition
    CERNMarch/April 2021 cerncourier.com COURIERReporting on international high-energy physics WELCOME CERN Courier – digital edition Welcome to the digital edition of the March/April 2021 issue of CERN Courier. Hadron colliders have contributed to a golden era of discovery in high-energy physics, hosting experiments that have enabled physicists to unearth the cornerstones of the Standard Model. This success story began 50 years ago with CERN’s Intersecting Storage Rings (featured on the cover of this issue) and culminated in the Large Hadron Collider (p38) – which has spawned thousands of papers in its first 10 years of operations alone (p47). It also bodes well for a potential future circular collider at CERN operating at a centre-of-mass energy of at least 100 TeV, a feasibility study for which is now in full swing. Even hadron colliders have their limits, however. To explore possible new physics at the highest energy scales, physicists are mounting a series of experiments to search for very weakly interacting “slim” particles that arise from extensions in the Standard Model (p25). Also celebrating a golden anniversary this year is the Institute for Nuclear Research in Moscow (p33), while, elsewhere in this issue: quantum sensors HADRON COLLIDERS target gravitational waves (p10); X-rays go behind the scenes of supernova 50 years of discovery 1987A (p12); a high-performance computing collaboration forms to handle the big-physics data onslaught (p22); Steven Weinberg talks about his latest work (p51); and much more. To sign up to the new-issue alert, please visit: http://comms.iop.org/k/iop/cerncourier To subscribe to the magazine, please visit: https://cerncourier.com/p/about-cern-courier EDITOR: MATTHEW CHALMERS, CERN DIGITAL EDITION CREATED BY IOP PUBLISHING ATLAS spots rare Higgs decay Weinberg on effective field theory Hunting for WISPs CCMarApr21_Cover_v1.indd 1 12/02/2021 09:24 CERNCOURIER www.
    [Show full text]
  • CERN Celebrates Discoveries
    INTERNATIONAL JOURNAL OF HIGH-ENERGY PHYSICS CERN COURIER VOLUME 43 NUMBER 10 DECEMBER 2003 CERN celebrates discoveries NEW PARTICLES NETWORKS SPAIN Protons make pentaquarks p5 Measuring the digital divide pl7 Particle physics thrives p30 16 KPH impact 113 KPH impact series VISyN High Voltage Power Supplies When the objective is to measure the almost immeasurable, the VISyN-Series is the detector power supply of choice. These multi-output, card based high voltage power supplies are stable, predictable, and versatile. VISyN is now manufactured by Universal High Voltage, a world leader in high voltage power supplies, whose products are in use in every national laboratory. For worldwide sales and service, contact the VISyN product group at Universal High Voltage. Universal High Voltage Your High Voltage Power Partner 57 Commerce Drive, Brookfield CT 06804 USA « (203) 740-8555 • Fax (203) 740-9555 www.universalhv.com Covering current developments in high- energy physics and related fields worldwide CERN Courier (ISSN 0304-288X) is distributed to member state governments, institutes and laboratories affiliated with CERN, and to their personnel. It is published monthly, except for January and August, in English and French editions. The views expressed are CERN not necessarily those of the CERN management. Editor Christine Sutton CERN, 1211 Geneva 23, Switzerland E-mail: [email protected] Fax:+41 (22) 782 1906 Web: cerncourier.com COURIER Advisory Board R Landua (Chairman), P Sphicas, K Potter, E Lillest0l, C Detraz, H Hoffmann, R Bailey
    [Show full text]
  • A Time of Great Growth
    Newsletter | Spring 2019 A Time of Great Growth Heartfelt greetings from the UC Riverside Department of Physics and Astronomy. This is our annual newsletter, sent out each Spring to stay connected with our former students, retired faculty, and friends in the wider community. The Department continues to grow, not merely in size but also in stature and reputation. For the 2018-2019 academic year, we were pleased to welcome two new faculty: Professors Thomas Kuhlman and Barry Barish. Professor Kuhlman was previously on the faculty at the University of Illinois at Urbana-Champaign. He joins our efforts in the emerging field of biophysics. His research lies in the quantitative imaging and theoretical modeling of biological systems. He works on genome dynamics, quantification of the activity of transposable elements in living cells, and applications to the engineering of genome editing. Professor Barry Barish, who joins us from Caltech, is the winner of the 2017 Nobel Prize in Physics. He brings great prestige to our Department. Along with Professor Richard Schrock of the Department of Chemistry, who also joined UCR in 2018, UCR now has two Nobel Prize winners on its faculty. Professor Barish is an expert on the detection and physics of gravitational waves. He has been one of the key figures in the conception, construction, and operation of the LIGO detector, where gravitational waves were first discovered in 2015, and which led to his Nobel Prize. He is a member of the National Academy of Sciences and the winner of many other prestigious awards. The discovery of gravitational waves is one of the most exciting developments in physics so far this century.
    [Show full text]
  • The AWAKE Acceleration Scheme for New Particle Physics Experiments at CERN
    AWAKE++: the AWAKE Acceleration Scheme for New Particle Physics Experiments at CERN W. Bartmann1, A. Caldwell2, M. Calviani1, J. Chappell3, P. Crivelli4, H. Damerau1, E. Depero4, S. Doebert1, J. Gall1, S. Gninenko5, B. Goddard1, D. Grenier1, E. Gschwendtner*1, Ch. Hessler1, A. Hartin3, F. Keeble3, J. Osborne1, A. Pardons1, A. Petrenko1, A. Scaachi3, and M. Wing3 1CERN, Geneva, Switzerland 2Max Planck Institute for Physics, Munich, Germany 3University College London, London, UK 4ETH Zürich, Switzerland 5INR Moscow, Russia 1 Abstract The AWAKE experiment reached all planned milestones during Run 1 (2016-18), notably the demon- stration of strong plasma wakes generated by proton beams and the acceleration of externally injected electrons to multi-GeV energy levels in the proton driven plasma wakefields. During Run 2 (2021 - 2024) AWAKE aims to demonstrate the scalability and the acceleration of elec- trons to high energies while maintaining the beam quality. Within the Physics Beyond Colliders (PBC) study AWAKE++ has explored the feasibility of the AWAKE acceleration scheme for new particle physics experiments at CERN. Assuming continued success of the AWAKE program, AWAKE will be in the position to use the AWAKE scheme for particle physics ap- plications such as fixed target experiments for dark photon searches and also for future electron-proton or electron-ion colliders. With strong support from the accelerator and high energy physics community, these experiments could be installed during CERN LS3; the integration and beam line design show the feasibility of a fixed target experiment in the AWAKE facility, downstream of the AWAKE experiment in the former CNGS area. The expected electrons on target for fixed target experiments exceeds the electrons on target by three to four orders of magnitude with respect to the current NA64 experiment, making it a very promising experiment in the search for new physics.
    [Show full text]
  • Barry Barish and the Gde: Mission Achievable
    INTERVIEW Barry Barish and the GDE: mission achievable The head of the Global Design Effort for a future International Linear Collider talks about challenges past, present and future. Barry Barish likes a challenge. He admits to a complete tendency to go for the difficult in his research – in his view, life is an adventure. Some might say that his most recent challenge would fit well with a certain famous TV series: “Your mission, should you choose to accept it… is to produce a design for the International Linear Collider that includes a detailed design concept, performance assessments, reliable international costing, an industrialization plan, and siting analysis, as well as detector concepts and scope.” Barish did indeed accept the challenge in March 2005, when he became director of the Global Design Effort (GDE) for a proposed International Linear Collider (ILC). He started in a directorate of one – himself – at the head of a “virtual” laboratory of hundreds of physicists and engineers around the globe. To run the “lab” he has set up a small executive committee, which includes three regional directors (for the Americas, Asia and Europe), three project manag- ers and two leading accelerator experts. There are also boards for R&D, change control and design cost. Barish operates from his base at Caltech, where he has been since 1962 and ultimately became Linde Professor of Physics (now emeri- tus). His taste for research challenges became evident in the 1970s, when he was co-spokesperson with Frank Sciulli (also at Caltech) of the “narrow band” neutrino experiment at Fermilab that studied Barish became director of the Global Design Effort for the International weak neutral currents and the quark substructure of the nucleon.
    [Show full text]
  • Gravitational Waves from the Early Universe
    Gravitational Waves from the Early Universe Lecture 1A: Gravitational Waves, Theory Kai Schmitz (CERN) Chung-Ang University, Seoul, South Korea j June 2 – 4 1/21 ◦ 1916: Albert Einstein predicts GWs based on his general theory of relativity ◦ 2016: The LIGO/Virgo Collaboration announces the detection of GW150914 ◦ 2017: Nobel Prize in Physics awarded to Rainer Weiss, Barry Barish, and Kip Thorne → Milestone in fundamental physics, triumph of general relativity → Discovery of a new class of astrophysical objects: heavy black holes in binary systems First direct detection of gravitational waves [Nicolle Rager Fuller for sciencenews.org] 2/21 ◦ 2016: The LIGO/Virgo Collaboration announces the detection of GW150914 ◦ 2017: Nobel Prize in Physics awarded to Rainer Weiss, Barry Barish, and Kip Thorne → Milestone in fundamental physics, triumph of general relativity → Discovery of a new class of astrophysical objects: heavy black holes in binary systems First direct detection of gravitational waves [Nicolle Rager Fuller for sciencenews.org] ◦ 1916: Albert Einstein predicts GWs based on his general theory of relativity 2/21 ◦ 2017: Nobel Prize in Physics awarded to Rainer Weiss, Barry Barish, and Kip Thorne → Milestone in fundamental physics, triumph of general relativity → Discovery of a new class of astrophysical objects: heavy black holes in binary systems First direct detection of gravitational waves [Nicolle Rager Fuller for sciencenews.org] ◦ 1916: Albert Einstein predicts GWs based on his general theory of relativity ◦ 2016: The LIGO/Virgo
    [Show full text]
  • AWAKE! Allen Caldwell Even Larger Accelerators ?
    Swapan Chattopadhyay Symposium April 30, 2021 AWAKE! Allen Caldwell Even larger Accelerators ? Energy limit of circular proton collider given by magnetic field strength. P B R / · Energy gain relies in large part on magnet development Linear Electron Collider or Muon Collider? proton P P Leptons preferred: Collide point particles rather than complex objects But, charged particles radiate energy when accelerated. Power α (E/m)4 Need linear electron accelerator or m large (muon 200 heavier than electron) A plasma: collection of free positive and negative charges (ions and electrons). Material is already broken down. A plasma can therefore sustain very high fields. C. Joshi, UCLA E. Adli, Oslo An intense particle beam, or intense laser beam, can be used to drive the plasma electrons. Plasma frequency depends only on density: Ideas of ~100 GV/m electric fields in plasma, using 1018 W/cm2 lasers: 1979 T.Tajima and J.M.Dawson (UCLA), Laser Electron Accelerator, Phys. Rev. Lett. 43, 267–270 (1979). Using partice beams as drivers: P. Chen et al. Phys. Rev. Lett. 54, 693–696 (1985) Energy Budget: Introduction Witness: Staging Concepts 1010 particles @ 1 TeV ≈ few kJ Drivers: PW lasers today, ~40 J/Pulse FACET (e beam, SLAC), 30J/bunch SPS@CERN 20kJ/bunch Leemans & Esarey, Phys. Today 62 #3 (2009) LHC@CERN 300 kJ/bunch Dephasing 1 LHC driven stage SPS: ~100m, LHC: ~few km E. Adli et al. arXiv:1308.1145,2013 FCC: ~ 1<latexit sha1_base64="TR2ZhSl5+Ed6CqWViBcx81dMBV0=">AAAB7XicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeyx4MVjBfsBbSib7aZdu9mE3YkQQv+DFw+KePX/ePPfuG1z0NYXFh7emWFn3iCRwqDrfjuljc2t7Z3ybmVv/+DwqHp80jFxqhlvs1jGuhdQw6VQvI0CJe8lmtMokLwbTG/n9e4T10bE6gGzhPsRHSsRCkbRWp2BUCFmw2rNrbsLkXXwCqhBodaw+jUYxSyNuEImqTF9z03Qz6lGwSSfVQap4QllUzrmfYuKRtz4+WLbGbmwzoiEsbZPIVm4vydyGhmTRYHtjChOzGptbv5X66cYNvxcqCRFrtjyozCVBGMyP52MhOYMZWaBMi3sroRNqKYMbUAVG4K3evI6dK7qnuX761qzUcRRhjM4h0vw4AaacActaAODR3iGV3hzYufFeXc+lq0lp5g5hT9yPn8Avy+PMg==</latexit> A. Caldwell and K. V. Lotov, Phys.
    [Show full text]
  • Inter Actions Department of Physics 2015
    INTER ACTIONS DEPARTMENT OF PHYSICS 2015 The Department of Physics has a very accomplished family of alumni. In this issue we begin to recognize just a few of them with stories submitted by graduates from each of the decades since 1950. We want to invite all of you to renew and strengthen your ties to our department. We would love to hear from you, telling us what you are doing and commenting on how the department has helped in your career and life. Alumna returns to the Physics Department to Implement New MCS Core Education When I heard that the Department of Physics needed a hand implementing the new MCS Core Curriculum, I couldn’t imagine a better fit. Not only did it provide an opportunity to return to my hometown, but Carnegie Mellon itself had been a fixture in my life for many years, from taking classes as a high school student to teaching after graduation. I was thrilled to have the chance to return. I graduated from Carnegie Mellon in 2008, with a B.S. in physics and a B.A. in Japanese. Afterwards, I continued to teach at CMARC’s Summer Academy for Math and Science during the summers while studying down the street at the University of Pittsburgh. In 2010, I earned my M.A. in East Asian Studies there based on my research into how cultural differences between Japan and America have helped shape their respective robotics industries. After receiving my master’s degree and spending a summer studying in Japan, I taught for Kaplan as graduate faculty for a year before joining the Department of Physics at Cornell University.
    [Show full text]
  • MIT at the Large Hadron Collider—Illuminating the High-Energy Frontier
    Mit at the large hadron collider—Illuminating the high-energy frontier 40 ) roland | klute mit physics annual 2010 gunther roland and Markus Klute ver the last few decades, teams of physicists and engineers O all over the globe have worked on the components for one of the most complex machines ever built: the Large Hadron Collider (LHC) at the CERN laboratory in Geneva, Switzerland. Collaborations of thousands of scientists have assembled the giant particle detectors used to examine collisions of protons and nuclei at energies never before achieved in a labo- ratory. After initial tests proved successful in late 2009, the LHC physics program was launched in March 2010. Now the race is on to fulfill the LHC’s paradoxical mission: to complete the Stan- dard Model of particle physics by detecting its last missing piece, the Higgs boson, and to discover the building blocks of a more complete theory of nature to finally replace the Standard Model. The MIT team working on the Compact Muon Solenoid (CMS) experiment at the LHC stands at the forefront of this new era of particle and nuclear physics. The High Energy Frontier Our current understanding of the fundamental interactions of nature is encap- sulated in the Standard Model of particle physics. In this theory, the multitude of subatomic particles is explained in terms of just two kinds of basic building blocks: quarks, which form protons and neutrons, and leptons, including the electron and its heavier cousins. From the three basic interactions described by the Standard Model—the strong, electroweak and gravitational forces—arise much of our understanding of the world around us, from the formation of matter in the early universe, to the energy production in the Sun, and the stability of atoms and mit physics annual 2010 roland | klute ( 41 figure 1 A photograph of the interior, central molecules.
    [Show full text]
  • The People Who Invented the Internet Source: Wikipedia's History of the Internet
    The People Who Invented the Internet Source: Wikipedia's History of the Internet PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 22 Sep 2012 02:49:54 UTC Contents Articles History of the Internet 1 Barry Appelman 26 Paul Baran 28 Vint Cerf 33 Danny Cohen (engineer) 41 David D. Clark 44 Steve Crocker 45 Donald Davies 47 Douglas Engelbart 49 Charles M. Herzfeld 56 Internet Engineering Task Force 58 Bob Kahn 61 Peter T. Kirstein 65 Leonard Kleinrock 66 John Klensin 70 J. C. R. Licklider 71 Jon Postel 77 Louis Pouzin 80 Lawrence Roberts (scientist) 81 John Romkey 84 Ivan Sutherland 85 Robert Taylor (computer scientist) 89 Ray Tomlinson 92 Oleg Vishnepolsky 94 Phil Zimmermann 96 References Article Sources and Contributors 99 Image Sources, Licenses and Contributors 102 Article Licenses License 103 History of the Internet 1 History of the Internet The history of the Internet began with the development of electronic computers in the 1950s. This began with point-to-point communication between mainframe computers and terminals, expanded to point-to-point connections between computers and then early research into packet switching. Packet switched networks such as ARPANET, Mark I at NPL in the UK, CYCLADES, Merit Network, Tymnet, and Telenet, were developed in the late 1960s and early 1970s using a variety of protocols. The ARPANET in particular led to the development of protocols for internetworking, where multiple separate networks could be joined together into a network of networks. In 1982 the Internet Protocol Suite (TCP/IP) was standardized and the concept of a world-wide network of fully interconnected TCP/IP networks called the Internet was introduced.
    [Show full text]
  • 50 Years of Pulsars: Jocelyn Bell Burnell an Interview P
    LIGO Scientific Collaboration Scientific LIGO issue 11 9/2017 LIGO MAGAZINE O2: Third Detection! 10:11:58.6 UTC, 4 January 2017 ELL F, H O L P IS L A E ! Y B D O O G 50 Years of Pulsars: Jocelyn Bell Burnell An interview p. 6 The Search for Continuous Waves To name a neutron star p.10 ... and in 1989: The first joint interferometric observing run p. 26 Before the Merger: Spiraling Black Holes Front cover image: Artist’s conception shows two merging black holes similar to those detected by LIGO. The black holes are spinning in a non-aligned fashion, which means they have different orientations relative to the overall orbital motion of the pair. LIGO found a hint of this phenomenon in at least one black hole of the GW170104 system. Image: LIGO/Caltech/MIT/Sonoma State (Aurore Simonnet) Image credits Front cover main image – Credit: LIGO/Caltech/MIT/Sonoma State (Aurore Simonnet) Front cover inset LISA – Courtesy of LISA Consortium/Simon Barke Front cover inset of Jocelyn Bell Burnell and the 4 acre telescope c 1967 courtesy Jocelyn Bell Burnell. Front cover inset of the supernova remnant G347.3-0.5 – Credit: Chandra: NASA/CXC/SAO/P.Slane et al.; XMM-Newton:ESA/RIKEN/J.Hiraga et al. p. 3 Comic strip by Nutsinee Kijbunchoo p. 4-5 Photos by Matt Gush, Bryce Vickmark and Josh Meister p. 6 Jocelyn Bell Burnell and the 4 acre telescope courtesy Jocelyn Bell Burnell. Paper chart analysis courtesy Robin Scagell p. 8 Pulsar chart recordings courtesy Mullard Radio Astronomy Observatory p.
    [Show full text]
  • 1 the Warped Science of Interstellar Jean
    The Warped Science of Interstellar Jean-Pierre Luminet Aix-Marseille Université, CNRS, Laboratoire d'Astrophysique de Marseille (LAM) UMR 7326 Centre de Physique Théorique de Marseille (CPT) UMR 7332 and Observatoire de Paris (LUTH) UMR 8102 France E-mail: [email protected] The science fiction film, Interstellar, tells the story of a team of astronauts searching a distant galaxy for habitable planets to colonize. Interstellar’s story draws heavily from contemporary science. The film makes reference to a range of topics, from established concepts such as fast-spinning black holes, accretion disks, tidal effects, and time dilation, to far more speculative ideas such as wormholes, time travel, additional space dimensions, and the theory of everything. The aim of this article is to decipher some of the scientific notions which support the framework of the movie. INTRODUCTION The science-fiction movie Interstellar (2014) tells the adventures of a group of explorers who use a wormhole to cross intergalactic distances and find potentially habitable exoplanets to colonize. Interstellar is a fiction, obeying its own rules of artistic license : the film director Christopher Nolan and the screenwriter, his brother Jonah, did not intended to put on the screens a documentary on astrophysics – they rather wanted to produce a blockbuster, and they succeeded pretty well on this point. However, for the scientific part, they have collaborated with the physicist Kip Thorne, a world-known specialist in general relativity and black hole theory. With such an advisor, the promotion of the movie insisted a lot on the scientific realism of the story, in particular on black hole images calculated by Kip Thorne and the team of visual effects company Double Negative.
    [Show full text]